diff --git a/ExtensionSystem.agda b/ExtensionSystem.agda index 6cd6b68..1a9d26d 100644 --- a/ExtensionSystem.agda +++ b/ExtensionSystem.agda @@ -32,8 +32,11 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record { F = T ; η = η' ; μ = μ' + -- M3 ; identityˡ = Identityˡ + -- M2 ; identityʳ = K2 + -- M1 ; assoc = assoc' ; sym-assoc = sym assoc' } @@ -45,20 +48,22 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record T = RMonad⇒Functor 𝐾 open Functor T renaming (F₁ to T₁) open Equiv + -- constructing the natural transformation η from the given family of morphisms 'unit' η' = ntHelper {F = Id} {G = T} record { η = λ X → unit ; commute = λ {X} {Y} f → sym K2 } + -- constructing the natural transformation μ μ' = ntHelper {F = T ∘F T} {G = T} record { η = λ X → (idC {A = T₀ X})ᵀ ; commute = λ {X} {Y} f → begin - ((idC ᵀ) ∘ (unit ∘ (unit ∘ f)ᵀ)ᵀ) ≈⟨ (sym $ K3) ⟩ - (((idC ᵀ) ∘ unit ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ sym-assoc ⟩ - ((((idC ᵀ) ∘ unit) ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ (∘-resp-≈ˡ K2) ⟩ - ((idC ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ identityˡ ⟩ - (((unit ∘ f) ᵀ) ᵀ) ≈⟨ ᵀ-≈ (sym identityʳ) ⟩ - ((((unit ∘ f) ᵀ) ∘ idC) ᵀ) ≈⟨ K3 ⟩ - (unit ∘ f)ᵀ ∘ (idC ᵀ) ∎ + ((idC ᵀ) ∘ (unit ∘ (unit ∘ f)ᵀ)ᵀ) ≈⟨ (sym $ K3) ⟩ + (((idC ᵀ) ∘ unit ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ sym-assoc ⟩ + ((((idC ᵀ) ∘ unit) ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ (∘-resp-≈ˡ K2) ⟩ + ((idC ∘ ((unit ∘ f) ᵀ)) ᵀ) ≈⟨ ᵀ-≈ identityˡ ⟩ + (((unit ∘ f) ᵀ) ᵀ) ≈⟨ ᵀ-≈ (sym identityʳ) ⟩ + ((((unit ∘ f) ᵀ) ∘ idC) ᵀ) ≈⟨ K3 ⟩ + (unit ∘ f)ᵀ ∘ (idC ᵀ) ∎ } open NaturalTransformation η' using () renaming (η to η) open NaturalTransformation μ' using () renaming (η to μ)