203 lines
14 KiB
Agda
203 lines
14 KiB
Agda
|
module Monads where
|
|||
|
|
|||
|
open import Level
|
|||
|
open import Categories.Category
|
|||
|
open import Categories.Monad
|
|||
|
open import Categories.Object.Terminal
|
|||
|
open import Categories.Object.Exponential
|
|||
|
open import Categories.Functor renaming (id to idF)
|
|||
|
open import Categories.Category.Cocartesian.Bundle
|
|||
|
open import Categories.Category.CartesianClosed
|
|||
|
open import Categories.Category.Cartesian
|
|||
|
open import Categories.Category.BinaryProducts
|
|||
|
open import Categories.Category.CartesianClosed.Bundle
|
|||
|
open import Categories.NaturalTransformation renaming (id to idN)
|
|||
|
open import Function using (_$_)
|
|||
|
|
|||
|
module _ (o ℓ e : Level) where
|
|||
|
|
|||
|
|
|||
|
--*
|
|||
|
-- Exception monad TX = X + E
|
|||
|
--*
|
|||
|
|
|||
|
|
|||
|
ExceptionMonad : (C : CocartesianCategory o ℓ e) → CocartesianCategory.Obj C → Monad (CocartesianCategory.U C)
|
|||
|
ExceptionMonad CC E = record
|
|||
|
{ F = F
|
|||
|
; η = η'
|
|||
|
; μ = μ'
|
|||
|
; assoc = assoc'
|
|||
|
; sym-assoc = λ {X} → sym assoc'
|
|||
|
; identityˡ = begin
|
|||
|
[ id , i₂ ] ∘ (i₁ +₁ id) ≈⟨ []∘+₁ ⟩
|
|||
|
[ id ∘ i₁ , i₂ ∘ id ] ≈⟨ []-cong₂ identityˡ identityʳ ⟩
|
|||
|
[ i₁ , i₂ ] ≈⟨ +-η ⟩
|
|||
|
id ∎
|
|||
|
; identityʳ = inject₁
|
|||
|
}
|
|||
|
where
|
|||
|
open CocartesianCategory CC renaming (U to C)
|
|||
|
open HomReasoning
|
|||
|
open Equiv
|
|||
|
F : Endofunctor C
|
|||
|
F = record
|
|||
|
{ F₀ = λ X → X + E
|
|||
|
; F₁ = λ f → f +₁ id
|
|||
|
; identity = λ {A} → begin
|
|||
|
id +₁ id ≈⟨ sym identityˡ ⟩
|
|||
|
(id ∘ (id +₁ id)) ≈⟨ ∘-resp-≈ˡ (sym +-η) ⟩
|
|||
|
([ i₁ , i₂ ] ∘ (id +₁ id)) ≈⟨ []∘+₁ ⟩
|
|||
|
[ i₁ ∘ id , i₂ ∘ id ] ≈⟨ []-cong₂ identityʳ identityʳ ⟩
|
|||
|
[ i₁ , i₂ ] ≈⟨ +-η ⟩
|
|||
|
id ∎
|
|||
|
; homomorphism = λ {X} {Y} {Z} {f} {g} → begin
|
|||
|
g ∘ f +₁ id ≈⟨ sym (+₁-cong₂ refl identity²) ⟩
|
|||
|
(g ∘ f +₁ id ∘ id) ≈⟨ sym +₁∘+₁ ⟩
|
|||
|
((g +₁ id) ∘ (f +₁ id)) ∎
|
|||
|
; F-resp-≈ = λ {A B f g} fg → +₁-cong₂ fg refl
|
|||
|
}
|
|||
|
open Functor F
|
|||
|
η' : NaturalTransformation idF F
|
|||
|
η' = ntHelper record
|
|||
|
{ η = λ X → i₁
|
|||
|
; commute = λ {X Y} f → sym +₁∘i₁
|
|||
|
}
|
|||
|
open NaturalTransformation η'
|
|||
|
μ' : NaturalTransformation (F ∘F F) F
|
|||
|
μ' = ntHelper record
|
|||
|
{ η = λ X → [ id , i₂ ]
|
|||
|
; commute = λ {X Y} f → begin
|
|||
|
([ id , i₂ ] ∘ ((f +₁ id) +₁ id)) ≈⟨ []∘+₁ ⟩
|
|||
|
[ id ∘ (f +₁ id) , i₂ ∘ id ] ≈⟨ []-cong₂ identityˡ identityʳ ⟩
|
|||
|
[ f +₁ id , i₂ ] ≈⟨ []-congˡ (sym identityʳ) ⟩
|
|||
|
[ f +₁ id , i₂ ∘ id ] ≈⟨ sym ([]-cong₂ identityʳ +₁∘i₂) ⟩
|
|||
|
[ (f +₁ id) ∘ id , (f +₁ id) ∘ i₂ ] ≈⟨ sym ∘[] ⟩
|
|||
|
((f +₁ id) ∘ [ id , i₂ ]) ∎
|
|||
|
}
|
|||
|
open NaturalTransformation μ' renaming (η to μ)
|
|||
|
assoc' : ∀ {X : Obj} → μ X ∘ F₁ (μ X) ≈ μ X ∘ μ (F₀ X)
|
|||
|
assoc' {X} = begin
|
|||
|
[ id , i₂ ] ∘ ([ id , i₂ ] +₁ id) ≈⟨ []∘+₁ ⟩
|
|||
|
[ id ∘ [ id , i₂ ] , i₂ ∘ id ] ≈⟨ []-cong₂ identityˡ identityʳ ⟩
|
|||
|
[ [ id , i₂ ] , i₂ ] ≈⟨ sym ([]-cong₂ identityʳ inject₂) ⟩
|
|||
|
[ [ id , i₂ ] ∘ id , [ id , i₂ ] ∘ i₂ ] ≈⟨ sym (∘[]) ⟩
|
|||
|
[ id , i₂ ] ∘ [ id , i₂ ] ∎
|
|||
|
|
|||
|
-- Maybe monad as special case of exception monad
|
|||
|
MaybeMonad : (C : CocartesianCategory o ℓ e) → Terminal (CocartesianCategory.U C) → Monad (CocartesianCategory.U C)
|
|||
|
MaybeMonad C T = ExceptionMonad C (Terminal.⊤ T)
|
|||
|
|
|||
|
|
|||
|
--*
|
|||
|
-- Reader monad TX = X^S
|
|||
|
--*
|
|||
|
|
|||
|
|
|||
|
ReaderMonad : (CCC : CartesianClosedCategory o ℓ e) → CartesianClosedCategory.Obj CCC → Monad (CartesianClosedCategory.U CCC)
|
|||
|
ReaderMonad CCC S = record
|
|||
|
{ F = F
|
|||
|
; η = η'
|
|||
|
; μ = μ'
|
|||
|
; assoc = assoc'
|
|||
|
; sym-assoc = λ {X} → sym assoc'
|
|||
|
; identityˡ = λ {X} → begin
|
|||
|
(λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ (λg ((λg π₁) ∘ eval′)) ≈⟨ exp.subst product product ⟩
|
|||
|
λg ((eval′ ∘ ⟨ eval′ , π₂ ⟩) ∘ ((λg ((λg π₁) ∘ eval′)) ⁂ id)) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ , π₂ ⟩ ∘ ((λg ((λg π₁) ∘ eval′)) ⁂ id))) ≈⟨ λ-cong (∘-resp-≈ʳ ⟨⟩∘) ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ ∘ ((λg ((λg π₁) ∘ eval′)) ⁂ id) , π₂ ∘ ((λg ((λg π₁) ∘ eval′)) ⁂ id) ⟩)) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ β′ π₂∘⁂)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ (λg π₁) ∘ eval′ , id ∘ π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (sym ⁂∘⟨⟩)) ⟩
|
|||
|
λg (eval′ ∘ (((λg π₁) ⁂ id) ) ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong sym-assoc ⟩
|
|||
|
λg ((eval′ ∘ (((λg π₁) ⁂ id) )) ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ˡ β′) ⟩
|
|||
|
λg (π₁ ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong project₁ ⟩
|
|||
|
λg eval′ ≈⟨ η-id′ ⟩
|
|||
|
id ∎
|
|||
|
; identityʳ = λ {X} → begin
|
|||
|
(λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ λg π₁ ≈⟨ exp.subst product product ⟩
|
|||
|
λg ((eval′ ∘ ⟨ eval′ , π₂ ⟩) ∘ ((λg π₁) ⁂ id)) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ , π₂ ⟩ ∘ ((λg π₁) ⁂ id))) ≈⟨ λ-cong (∘-resp-≈ʳ ⟨⟩∘) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ ∘ ((λg π₁) ⁂ id) , π₂ ∘ ((λg π₁) ⁂ id) ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ β′ π₂∘⁂)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ π₁ , id ∘ π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-congˡ identityˡ)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ π₁ , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ p-η) ⟩
|
|||
|
λg (eval′ ∘ id) ≈⟨ λ-cong identityʳ ⟩
|
|||
|
λg eval′ ≈⟨ η-id′ ⟩
|
|||
|
id ∎
|
|||
|
}
|
|||
|
where
|
|||
|
open CartesianClosedCategory CCC renaming (U to C)
|
|||
|
open CartesianClosed cartesianClosed
|
|||
|
open Cartesian cartesian
|
|||
|
open BinaryProducts products renaming (η to p-η)
|
|||
|
open HomReasoning
|
|||
|
open Equiv
|
|||
|
F = record
|
|||
|
{ F₀ = λ X → X ^ S
|
|||
|
; F₁ = λ {A B} f → λg (f ∘ eval′)
|
|||
|
; identity = λ {A} → begin
|
|||
|
λg (id ∘ eval′) ≈⟨ λ-cong identityˡ ⟩
|
|||
|
λg eval′ ≈⟨ η-id′ ⟩
|
|||
|
id ∎
|
|||
|
; homomorphism = λ {X Y Z f g } → begin
|
|||
|
λg ((g ∘ f) ∘ eval′) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (g ∘ (f ∘ eval′)) ≈⟨ sym (λ-cong (∘-resp-≈ʳ β′)) ⟩
|
|||
|
λg (g ∘ (eval′ ∘ ((λg (f ∘ eval′)) ⁂ id))) ≈⟨ sym (λ-cong assoc) ⟩
|
|||
|
λg ((g ∘ eval′) ∘ ((λg (f ∘ eval′)) ⁂ id)) ≈⟨ sym (exp.subst product product) ⟩
|
|||
|
(λg (g ∘ eval′)) ∘ (λg (f ∘ eval′)) ∎
|
|||
|
; F-resp-≈ = λ {A B f g} fg → λ-cong (∘-resp-≈ˡ fg)
|
|||
|
}
|
|||
|
open Functor F
|
|||
|
η' = ntHelper record
|
|||
|
{ η = λ X → λg π₁
|
|||
|
; commute = λ {X Y} f → sym $ begin
|
|||
|
(λg (f ∘ eval′)) ∘ λg π₁ ≈⟨ exp.subst product product ⟩
|
|||
|
λg ((f ∘ eval′) ∘ (λg π₁ ⁂ id)) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (f ∘ (eval′ ∘ (λg π₁ ⁂ id))) ≈⟨ λ-cong (∘-resp-≈ʳ β′) ⟩
|
|||
|
λg (f ∘ π₁) ≈⟨ sym (λ-cong π₁∘⁂) ⟩
|
|||
|
λg (π₁ ∘ (f ⁂ id)) ≈⟨ sym (exp.subst product product) ⟩
|
|||
|
λg π₁ ∘ f ∎
|
|||
|
}
|
|||
|
open NaturalTransformation η'
|
|||
|
μ' = ntHelper record
|
|||
|
{ η = λ X → λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)
|
|||
|
; commute = λ {X Y} f → begin
|
|||
|
(λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ (λg ((λg (f ∘ eval′)) ∘ eval′)) ≈⟨ ∘-resp-≈ʳ (λ-cong (exp.subst product product)) ⟩
|
|||
|
((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ (λg (λg ((f ∘ eval′) ∘ (eval′ ⁂ id))))) ≈⟨ exp.subst product product ⟩
|
|||
|
λg ((eval′ ∘ ⟨ eval′ , π₂ ⟩) ∘ ((λg (λg ((f ∘ eval′) ∘ (eval′ ⁂ id)))) ⁂ id )) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ , π₂ ⟩ ∘ ((λg (λg ((f ∘ eval′) ∘ (eval′ ⁂ id)))) ⁂ id ))) ≈⟨ λ-cong (∘-resp-≈ʳ ⟨⟩∘) ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ ∘ ((λg (λg ((f ∘ eval′) ∘ (eval′ ⁂ id)))) ⁂ id ) , π₂ ∘ ((λg (λg ((f ∘ eval′) ∘ (eval′ ⁂ id)))) ⁂ id ) ⟩)) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ β′ π₂∘⁂)) ⟩
|
|||
|
λg (eval′ ∘ (⟨ λg ((f ∘ eval′) ∘ (eval′ ⁂ id)) , id ∘ π₂ ⟩)) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-congˡ identityˡ)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ λg ((f ∘ eval′) ∘ (eval′ ⁂ id)) , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-congʳ (sym (exp.subst product product)))) ⟩
|
|||
|
λg (eval′ ∘ ⟨ λg (f ∘ eval′) ∘ eval′ , π₂ ⟩) ≈⟨ λ-unique′ ((
|
|||
|
begin
|
|||
|
eval′ ∘ ((λg (eval′ ∘ ⟨ λg (f ∘ eval′) ∘ eval′ , π₂ ⟩)) ⁂ id) ≈⟨ β′ ⟩
|
|||
|
eval′ ∘ ⟨ λg (f ∘ eval′) ∘ eval′ , π₂ ⟩ ≈⟨ ∘-resp-≈ʳ (⟨⟩-congˡ (sym identityˡ)) ⟩
|
|||
|
(eval′ ∘ ⟨ λg (f ∘ eval′) ∘ eval′ , id ∘ π₂ ⟩) ≈⟨ ∘-resp-≈ʳ (sym ⁂∘⟨⟩) ⟩
|
|||
|
eval′ ∘ ( (λg (f ∘ eval′)) ⁂ id ) ∘ ⟨ eval′ , π₂ ⟩ ≈⟨ sym-assoc ⟩
|
|||
|
(eval′ ∘ ( (λg (f ∘ eval′)) ⁂ id )) ∘ ⟨ eval′ , π₂ ⟩ ≈⟨ ∘-resp-≈ˡ β′ ⟩
|
|||
|
(((f ∘ eval′)) ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ assoc ⟩
|
|||
|
f ∘ (eval′ ∘ ⟨ eval′ , π₂ ⟩) ∎
|
|||
|
)) ⟩
|
|||
|
λg (f ∘ (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ≈⟨ sym (λ-cong (∘-resp-≈ʳ β′)) ⟩
|
|||
|
λg (f ∘ (eval′ ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id))) ≈⟨ (λ-cong sym-assoc) ⟩
|
|||
|
λg ((f ∘ eval′) ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id)) ≈⟨ sym (exp.subst product product) ⟩
|
|||
|
(λg (f ∘ eval′)) ∘ λg (eval′ ∘ ⟨ eval′ , π₂ ⟩) ∎
|
|||
|
}
|
|||
|
open NaturalTransformation μ' renaming (η to μ)
|
|||
|
assoc' : ∀ {X : Obj} → μ X ∘ F₁ (μ X) ≈ μ X ∘ μ (F₀ X)
|
|||
|
assoc' {X} = begin
|
|||
|
(λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ (λg ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′)) ≈⟨ exp.subst product product ⟩
|
|||
|
λg ((eval′ ∘ ⟨ eval′ , π₂ ⟩) ∘ ((λg ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′)) ⁂ id)) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ , π₂ ⟩ ∘ ((λg ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′)) ⁂ id))) ≈⟨ λ-cong (∘-resp-≈ʳ ⟨⟩∘) ⟩
|
|||
|
λg (eval′ ∘ (⟨ eval′ ∘ ((λg ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′)) ⁂ id) , π₂ ∘ ((λg ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′)) ⁂ id) ⟩)) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ β′ π₂∘⁂)) ⟩
|
|||
|
λg (eval′ ∘ (⟨ (λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ eval′ , id ∘ π₂ ⟩)) ≈⟨ λ-cong (∘-resp-≈ʳ (sym ⁂∘⟨⟩)) ⟩
|
|||
|
λg (eval′ ∘ (((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id) ∘ ⟨ eval′ , π₂ ⟩)) ≈⟨ λ-cong sym-assoc ⟩
|
|||
|
λg ((eval′ ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id)) ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ˡ β′) ⟩
|
|||
|
λg (((eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong assoc ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ , π₂ ⟩ ∘ ⟨ eval′ , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ ⟨⟩∘) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ ∘ ⟨ eval′ , π₂ ⟩ , π₂ ∘ ⟨ eval′ , π₂ ⟩ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-congˡ project₂)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ ∘ ⟨ eval′ , π₂ ⟩ , π₂ ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (⟨⟩-congˡ (sym identityˡ))) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ ∘ ⟨ eval′ , π₂ ⟩ , id ∘ π₂ ⟩) ≈⟨ sym (λ-cong (∘-resp-≈ʳ (⟨⟩-cong₂ β′ π₂∘⁂))) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id) , π₂ ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id) ⟩) ≈⟨ λ-cong (∘-resp-≈ʳ (sym ⟨⟩∘)) ⟩
|
|||
|
λg (eval′ ∘ ⟨ eval′ , π₂ ⟩ ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id)) ≈⟨ λ-cong sym-assoc ⟩
|
|||
|
λg ((eval′ ∘ ⟨ eval′ , π₂ ⟩) ∘ ((λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ⁂ id)) ≈⟨ sym (exp.subst product product) ⟩
|
|||
|
(λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∘ (λg (eval′ ∘ ⟨ eval′ , π₂ ⟩)) ∎
|