commit ac004c06239f7dceea40f90427916013f7e9a9a6 Author: Leon Vatthauer Date: Sat Jul 15 16:08:13 2023 +0200 Initial commit diff --git a/Poset.agda b/Poset.agda new file mode 100644 index 0000000..0892d82 --- /dev/null +++ b/Poset.agda @@ -0,0 +1,81 @@ +module Poset where + +open import Level +open import Relation.Binary +open import Categories.Monad +open import Categories.Category +open import Categories.Category.Construction.Thin +open import Categories.Functor renaming (id to Id) +open import Categories.NaturalTransformation +open import Data.Product renaming (_×_ to _∧_) +open import Agda.Builtin.Unit + +private + variable + o ℓ₁ ℓ₂ e : Level + + +-- Definining a closure operator on a poset +record Closure (𝑃 : Poset o ℓ₁ ℓ₂) : Set (o ⊔ ℓ₁ ⊔ ℓ₂) where + open Poset 𝑃 using (Carrier; _≤_; _≈_) + field + T : Carrier → Carrier + extensiveness : ∀ {X : Carrier} → X ≤ T X + monotonicity : ∀ {X Y : Carrier} → X ≤ Y → T X ≤ T Y + idempotence : ∀ {X : Carrier} → T (T X) ≈ T X + + +--* +-- Proposition: closure operators on posets are equivalent to monads on the corresponding thin category +--* + +-- '→' +Closure→Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃) +Closure→Monad {𝑃 = 𝑃} T = record + { F = F + ; η = η' + ; μ = μ' + + ; assoc = λ {X} → lift tt + ; sym-assoc = λ {X} → lift tt + ; identityˡ = λ {X} → lift tt + ; identityʳ = λ {X} → lift tt + } + where + open Closure T renaming (T to T₀) + open Poset 𝑃 using (Carrier; _≤_; _≈_; reflexive) + F = record + { F₀ = T₀ + ; F₁ = monotonicity + ; identity = lift tt + ; homomorphism = lift tt + ; F-resp-≈ = λ {A} {B} {f} {g} _ → lift tt + } + η' = ntHelper {F = Id} {G = F} record + { η = λ X → extensiveness + ; commute = λ {X} {Y} f → lift tt + } + μ' = ntHelper {F = F ∘F F} {G = F} record + { η = λ X → reflexive idempotence + ; commute = λ {X} {Y} f → lift tt + } + open NaturalTransformation η' + open NaturalTransformation μ' renaming (η to μ) + + +-- '←' +Monad→Closure : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃 +Monad→Closure {𝑃 = 𝑃} 𝑀 = record + { T = F₀ + ; extensiveness = λ {X} → η.η X + ; monotonicity = F₁ + ; idempotence = λ {X} → antisym (μ.η X) (η.η (F₀ X)) + } + where + open Poset 𝑃 + open Monad 𝑀 + open Functor F + +-- full proof +Closure↔Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → (Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃)) ∧ (Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃) +Closure↔Monad = Closure→Monad , Monad→Closure \ No newline at end of file diff --git a/Poset.agda-lib b/Poset.agda-lib new file mode 100644 index 0000000..ae471ed --- /dev/null +++ b/Poset.agda-lib @@ -0,0 +1,3 @@ +name: Poset +include: . +depend: agda-categories, standard-library \ No newline at end of file