agda-poset/Poset.agda
2024-02-16 14:33:29 +01:00

80 lines
2.6 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Poset where
open import Level
open import Relation.Binary
open import Categories.Monad
open import Categories.Category
open import Categories.Category.Construction.Thin
open import Categories.Functor renaming (id to Id)
open import Categories.NaturalTransformation
open import Data.Product renaming (_×_ to _∧_)
open import Agda.Builtin.Unit
private
variable
o ℓ₁ ℓ₂ e : Level
-- Definining a closure operator on a poset
record Closure (𝑃 : Poset o ℓ₁ ℓ₂) : Set (o ℓ₁ ℓ₂) where
open Poset 𝑃 using (Carrier; _≤_; _≈_)
field
T : Carrier Carrier
extensiveness : {X : Carrier} X T X
monotonicity : {X Y : Carrier} X Y T X T Y
idempotence : {X : Carrier} T (T X) T X
--*
-- Proposition: closure operators on posets are equivalent to monads on the corresponding thin category
--*
-- '→'
Closure→Monad : {𝑃 : Poset o ℓ₁ ℓ₂} Closure 𝑃 Monad {o} {ℓ₂} {e} (Thin e 𝑃)
Closure→Monad {𝑃 = 𝑃} T = record
{ F = F
; η = η'
; μ = μ'
; assoc = λ {X} lift tt
; sym-assoc = λ {X} lift tt
; identityˡ = λ {X} lift tt
; identityʳ = λ {X} lift tt
}
where
open Closure T renaming (T to T₀)
open Poset 𝑃 using (Carrier; _≤_; _≈_; reflexive)
F = record
{ F₀ = T₀
; F₁ = monotonicity
; identity = lift tt
; homomorphism = lift tt
; F-resp-≈ = λ {A} {B} {f} {g} _ lift tt
}
η' = ntHelper {F = Id} {G = F} record
{ η = λ X extensiveness
; commute = λ {X} {Y} f lift tt
}
μ' = ntHelper {F = F ∘F F} {G = F} record
{ η = λ X reflexive idempotence
; commute = λ {X} {Y} f lift tt
}
open NaturalTransformation η'
open NaturalTransformation μ' renaming (η to μ)
-- '←'
Monad→Closure : {𝑃 : Poset o ℓ₁ ℓ₂} Monad {o} {ℓ₂} {e} (Thin e 𝑃) Closure 𝑃
Monad→Closure {𝑃 = 𝑃} 𝑀 = record
{ T = F₀
; extensiveness = λ {X} η.η X
; monotonicity = F₁
; idempotence = λ {X} antisym (μ.η X) (η.η (F₀ X))
}
where
open Poset 𝑃
open Monad 𝑀
open Functor F
-- full proof
Closure↔Monad : {𝑃 : Poset o ℓ₁ ℓ₂} (Closure 𝑃 Monad {o} {ℓ₂} {e} (Thin e 𝑃)) (Monad {o} {ℓ₂} {e} (Thin e 𝑃) Closure 𝑃)
Closure↔Monad = Closure→Monad , Monad→Closure