somewhat finish coalgebras
This commit is contained in:
parent
89d5719369
commit
16e70f6bb2
5 changed files with 87 additions and 25 deletions
3
tex/.vscode/ltex.dictionary.en-US.txt
vendored
3
tex/.vscode/ltex.dictionary.en-US.txt
vendored
|
@ -48,3 +48,6 @@ coalgebras
|
|||
F-coalgebras
|
||||
coalgebra
|
||||
corecursion
|
||||
bisimulation
|
||||
bisimilar
|
||||
bisimilarity
|
||||
|
|
3
tex/.vscode/settings.json
vendored
3
tex/.vscode/settings.json
vendored
|
@ -30,5 +30,8 @@
|
|||
"\\setmintedinline[]{}": "ignore",
|
||||
"\\setmathfont[]{}": "ignore",
|
||||
"\\setmathfont{}": "ignore"
|
||||
},
|
||||
"ltex.latex.environments": {
|
||||
"cases": "ignore"
|
||||
}
|
||||
}
|
|
@ -146,16 +146,16 @@
|
|||
\providecommand{\bigmeet}{\bigsqcap}
|
||||
|
||||
%% Products
|
||||
\providecommand{\fst}{\oname{fst}}
|
||||
\providecommand{\snd}{\oname{snd}}
|
||||
\providecommand{\fst}{\pi_1}
|
||||
\providecommand{\snd}{\pi_2}
|
||||
\providecommand{\pr}{\oname{pr}}
|
||||
|
||||
\providecommand{\brks}[1]{\langle #1\rangle}
|
||||
\providecommand{\Brks}[1]{\bigl\langle #1\bigr\rangle}
|
||||
|
||||
%% Coproducts
|
||||
\providecommand{\inl}{\oname{inl}}
|
||||
\providecommand{\inr}{\oname{inr}}
|
||||
\providecommand{\inl}{\oname{i}_1}
|
||||
\providecommand{\inr}{\oname{i}_2}
|
||||
\providecommand{\inj}{\oname{in}}
|
||||
|
||||
\DeclareSymbolFont{Symbols}{OMS}{cmsy}{m}{n}
|
||||
|
|
BIN
tex/main.pdf
BIN
tex/main.pdf
Binary file not shown.
|
@ -164,15 +164,15 @@ This yields a proof principle ``by duality'', where every theorem yields another
|
|||
\section{Products and Coproducts}
|
||||
The categorical abstraction of Cartesian products is:
|
||||
\begin{definition}[Product]
|
||||
The \emph{product} of two objects $A, B \in \obj{\CC}$ is an object that we call $A \times B$ together with morphisms $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ (the projections), where the following property holds:
|
||||
The \emph{product} of two objects $A, B \in \obj{\CC}$ is an object that we call $A \times B$ together with morphisms $\fst : A \times B \to A$ and $\snd : A \times B \to B$ (the projections), where the following property holds:
|
||||
% https://q.uiver.app/#q=WzAsNCxbMiwyLCJBIFxcdGltZXMgQiJdLFs0LDIsIkIiXSxbMCwyLCJBIl0sWzIsMCwiQyJdLFswLDIsIlxccGlfMSJdLFswLDEsIlxccGlfMiIsMl0sWzMsMiwiZiIsMl0sWzMsMSwiZyJdLFszLDAsIlxcZXhpc3RzIVxcbGFuZ2xlIGYsIGcgXFxyYW5nbGUiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
&& C \\
|
||||
\\
|
||||
A && {A \times B} && B
|
||||
\arrow["{\pi_1}", from=3-3, to=3-1]
|
||||
\arrow["{\pi_2}"', from=3-3, to=3-5]
|
||||
\arrow["{\fst}", from=3-3, to=3-1]
|
||||
\arrow["{\snd}"', from=3-3, to=3-5]
|
||||
\arrow["f"', from=1-3, to=3-1]
|
||||
\arrow["g", from=1-3, to=3-5]
|
||||
\arrow["{\exists!\langle f, g \rangle}", dashed, from=1-3, to=3-3]
|
||||
|
@ -189,15 +189,15 @@ The categorical abstraction of Cartesian products is:
|
|||
\end{example}
|
||||
Dual to products are:
|
||||
\begin{definition}[Coproduct]
|
||||
The \emph{coproduct} of two objects $A, B \in \obj{\CC}$ is an object that we call $A + B$ together with morphisms $i_1 : A \to A + B$ and $i_2 : B \to A + B$ (the injections), where the following property holds:
|
||||
The \emph{coproduct} of two objects $A, B \in \obj{\CC}$ is an object that we call $A + B$ together with morphisms $\inl : A \to A + B$ and $\inr : B \to A + B$ (the injections), where the following property holds:
|
||||
% https://q.uiver.app/#q=WzAsNCxbMiwwLCJBK0IiXSxbMCwwLCJBIl0sWzQsMCwiQiJdLFsyLDIsIkMiXSxbMSwwLCJpXzEiXSxbMiwwLCJpXzIiLDJdLFsxLDMsImYiLDJdLFsyLDMsImciXSxbMCwzLCJcXGV4aXN0cyFbZixnXSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==
|
||||
\[
|
||||
\begin{tikzcd}
|
||||
A && {A+B} && B \\
|
||||
\\
|
||||
&& C
|
||||
\arrow["{i_1}", from=1-1, to=1-3]
|
||||
\arrow["{i_2}"', from=1-5, to=1-3]
|
||||
\arrow["{\inl}", from=1-1, to=1-3]
|
||||
\arrow["{\inr}"', from=1-5, to=1-3]
|
||||
\arrow["f"', from=1-1, to=3-3]
|
||||
\arrow["g", from=1-5, to=3-3]
|
||||
\arrow["{\exists![f,g]}", dashed, from=1-3, to=3-3]
|
||||
|
@ -249,27 +249,27 @@ We can now characterize products (and later dually coproducts) as a commutative
|
|||
$1$ is a unit of $\times$, i.e.\ $A \iso A \times 1$ for any $A \in \obj{\CC}$.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Take $\langle id_A , !_A \rangle : A \to A \times 1$ and $\pi_1 : A \times 1 \to A$, this indeed constitutes an isomorphism, since
|
||||
\[\pi_1 \comp \langle id_A , !_A \rangle = id_A \]
|
||||
Take $\langle id_A , !_A \rangle : A \to A \times 1$ and $\fst : A \times 1 \to A$, this indeed constitutes an isomorphism, since
|
||||
\[\fst \comp \langle id_A , !_A \rangle = id_A \]
|
||||
by definition and
|
||||
\[\langle id_A , !_A \rangle \comp \pi_1 = \langle \pi_1 , !_A \rangle = \langle \pi_1 , \pi_2 \rangle = id_{A \times 1},\]
|
||||
because $\pi_2 = !_A : A \times 1 \to 1$ by uniqueness of $!_A$.
|
||||
\[\langle id_A , !_A \rangle \comp \fst = \langle \fst , !_A \rangle = \langle \fst , \snd \rangle = id_{A \times 1},\]
|
||||
because $\snd = !_A : A \times 1 \to 1$ by uniqueness of $!_A$.
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
$\times$ is associative, i.e.\ $A \times (B \times C) \iso (A \times B) \times C$ for any $A,B,C \in \obj{\CC}$.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Take \[\alpha = \langle \langle \pi_1 , \pi_1 \comp \pi_2 \rangle , \pi_2 \comp \pi_2 \rangle : A \times (B \times C) \to (A \times B) \times C\]
|
||||
and \[\alpha^{-1} = \langle \pi_1 \comp \pi_1 , \langle \pi_2 \comp \pi_1 , \pi_2 \rangle \rangle : (A \times B) \times C \to A \times (B \times C).\]
|
||||
Take \[\alpha = \langle \langle \fst , \fst \comp \snd \rangle , \snd \comp \snd \rangle : A \times (B \times C) \to (A \times B) \times C\]
|
||||
and \[\alpha^{-1} = \langle \fst \comp \fst , \langle \snd \comp \fst , \snd \rangle \rangle : (A \times B) \times C \to A \times (B \times C).\]
|
||||
The rest of the proof then amounts to simply rewriting.
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
$\times$ is commutative, i.e.\ $A \times B \iso B \times A$ for any $A, B \in \obj{\CC}$.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Take \[\langle \pi_2 , \pi_1 \rangle : A \times B \to B \times A\]
|
||||
and \[\langle \pi_2 , \pi_1 \rangle : B \times A \to A \times B.\]
|
||||
Indeed, $\langle \pi_2 , \pi_1 \rangle \comp \langle \pi_2 , \pi_1 \rangle = \langle \pi_2 \comp \langle \pi_2 , \pi_1 \rangle , \pi_1 \comp \langle \pi_2 , \pi_1 \rangle \rangle = \langle \pi_1 , \pi_2 \rangle = id$.
|
||||
Take \[\langle \snd , \fst \rangle : A \times B \to B \times A\]
|
||||
and \[\langle \snd , \fst \rangle : B \times A \to A \times B.\]
|
||||
Indeed, $\langle \snd , \fst \rangle \comp \langle \snd , \fst \rangle = \langle \snd \comp \langle \snd , \fst \rangle , \fst \comp \langle \snd , \fst \rangle \rangle = \langle \fst , \snd \rangle = id$.
|
||||
\end{proof}
|
||||
|
||||
Duality instantly yields the commutative monoid structure of coproducts:
|
||||
|
@ -334,7 +334,7 @@ We can however consider structures like products and isomorphisms in the quasi-c
|
|||
\item $\obj{\CC \times \CD} = \obj{\CC} \times \obj{\CD}$,
|
||||
\item $(\CC \times \CD)((A_1, A_2),(B_1,B_2)) = \CC(A_1, B_1) \times D(A_2, B_2)$,
|
||||
\end{itemize}
|
||||
with projection functors $\pi_1 : \CC \times \CD \to \CC, \pi_2 : \CC \times \CD \to \CD$.
|
||||
with projection functors $\fst : \CC \times \CD \to \CC, \snd : \CC \times \CD \to \CD$.
|
||||
\end{definition}
|
||||
\begin{example} More examples of functors include:
|
||||
\begin{enumerate} \setcounter{enumi}{\value{resumeenum}}
|
||||
|
@ -895,7 +895,7 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
|
|||
\arrow["zip"', from=1-1, to=3-1]
|
||||
\arrow["{\langle hd , tl \rangle}"', from=3-1, to=3-4]
|
||||
\arrow["{id \times zip}", from=1-4, to=3-4]
|
||||
\arrow["{\langle hd \comp \pi_1 , \langle \pi_2 , tl \comp \pi_1 \rangle \rangle}", from=1-1, to=1-4]
|
||||
\arrow["{\langle hd \comp \fst , \langle \snd , tl \comp \fst \rangle \rangle}", from=1-1, to=1-4]
|
||||
\end{tikzcd}\]
|
||||
\item Similarly, for $f : A \rightarrow B$ we can define $map\;f : A^\omega \to B^\omega$ by
|
||||
\[hd(map\;f\;as) = f(hd\;as); \qquad tl(map\;f\;as) = map\;f\;(tl\;as),\]
|
||||
|
@ -919,9 +919,65 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
|
|||
\[(C,c) \overset{h}{\longrightarrow} (E,e) \overset{k}{\longleftarrow} (D,d),\]
|
||||
such that $h\;x = k\;y$.
|
||||
\end{definition}
|
||||
% TODO if \nu F exists, ...
|
||||
% TODO bisimilarity
|
||||
% TODO proof bisimilar \to \sim, etc
|
||||
% TODO examples of bisimilarity
|
||||
|
||||
\begin{remark}
|
||||
If $\nu F$ exists then
|
||||
\[x \sim y \iff h_c\;x = h_d\;y,\]
|
||||
where $h_c : (C,c) \to (\nu F, t), h_d : (D,d) \to (\nu F, t)$ are the unique morphisms into the terminal coalgebra.
|
||||
The proof of ``$\Leftarrow$'' is clear, for ``$\Rightarrow$'' consider the diagram:
|
||||
% https://q.uiver.app/#q=WzAsNixbMCwwLCIoQywgYykiXSxbMywwLCIoRSxlKSJdLFs2LDAsIihELGQpIl0sWzMsMywiKFxcbnUgRiwgdCkiXSxbMiwxLCJcXGNvbW0iXSxbNCwxLCJcXGNvbW0iXSxbMCwxLCJoIl0sWzIsMSwiayIsMl0sWzAsMywiaF9jIiwyXSxbMiwzLCJoX2QiXSxbMSwzLCJoX2UiLDJdXQ==
|
||||
\[\begin{tikzcd}
|
||||
{(C, c)} &&& {(E,e)} &&& {(D,d)} \\
|
||||
&& \comm && \comm \\
|
||||
\\
|
||||
&&& {(\nu F, t)}
|
||||
\arrow["h", from=1-1, to=1-4]
|
||||
\arrow["k"', from=1-7, to=1-4]
|
||||
\arrow["{h_c}"', from=1-1, to=4-4]
|
||||
\arrow["{h_d}", from=1-7, to=4-4]
|
||||
\arrow["{h_e}"', from=1-4, to=4-4]
|
||||
\end{tikzcd}\]
|
||||
\end{remark}
|
||||
\begin{example}
|
||||
As a consequence of the previous remark, we can follow that for $FX = 2 \times X^\Sigma$ the following holds:
|
||||
\[x \sim y \iff x,y accept the same formal language.\]
|
||||
\end{example}
|
||||
|
||||
\begin{definition}[Bisimulation]
|
||||
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras. A \emph{bisimulation} is a relation $R \subseteq C \times C$ such that a coalgebra $(R, r)$ exists where
|
||||
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJDIl0sWzAsMiwiRkMiXSxbMiwwLCJSIl0sWzIsMiwiRlIiXSxbNCwwLCJEIl0sWzQsMiwiRkQiXSxbMSwxLCJcXGNvbW0iXSxbMywxLCJcXGNvbW0iXSxbMCwxLCJjIl0sWzIsMywiciJdLFs0LDUsImQiXSxbMiwwLCJcXHBpXzEiLDJdLFsyLDQsIlxccGlfMiJdLFszLDEsIkZcXHBpXzEiLDJdLFszLDUsIkZcXHBpXzIiXV0=
|
||||
\[\begin{tikzcd}
|
||||
C && R && D \\
|
||||
& \comm && \comm \\
|
||||
FC && FR && FD
|
||||
\arrow["c", from=1-1, to=3-1]
|
||||
\arrow["r", from=1-3, to=3-3]
|
||||
\arrow["d", from=1-5, to=3-5]
|
||||
\arrow["{\fst}"', from=1-3, to=1-1]
|
||||
\arrow["{\snd}", from=1-3, to=1-5]
|
||||
\arrow["{F\fst}"', from=3-3, to=3-1]
|
||||
\arrow["{F\snd}", from=3-3, to=3-5]
|
||||
\end{tikzcd}\]
|
||||
commutes.
|
||||
Two elements $c \in C, d \in D$ are called \emph{bisimilar} if there exists a bisimulation $R$ such that $xRy$ holds.
|
||||
\end{definition}
|
||||
|
||||
\begin{proposition}
|
||||
\[x,y \text{ bisimilar} \Rightarrow x \sim y\]
|
||||
\end{proposition}
|
||||
% TODO proof and backwards direction.
|
||||
|
||||
\begin{example}
|
||||
Let us examine bisimilarity of streams, i.e.\ consider the functor $FX = A \times X$ and coalgebras
|
||||
\[C \overset{\langle h , t \rangle}{\longrightarrow} A \times C; \qquad D \overset{\langle h', t'\rangle}{\longrightarrow} A \times D.\]
|
||||
A relation $R \subseteq C \times D$ is a bisimulation if
|
||||
\begin{itemize}
|
||||
\item $h\;x = h'\;y$,
|
||||
\item $xRy \Rightarrow (t\;x)R(t'\;y)$.
|
||||
\end{itemize}
|
||||
|
||||
% TODO example proof, needs some interesting functions introduced earlier.
|
||||
\end{example}
|
||||
|
||||
\section{Limits}
|
||||
\section{Colimits}
|
Loading…
Reference in a new issue