minor
This commit is contained in:
parent
cce33d138a
commit
2eabecda8f
6 changed files with 85 additions and 12 deletions
|
@ -33,7 +33,7 @@
|
|||
\begin{parts}
|
||||
\part Was sind F-Algebren?
|
||||
\part Was sind initiale Algebren?
|
||||
\part Hat jede Algebra eine initiale Algebra? Wenn nein Gegenbeispiel
|
||||
\part Hat jeder Funktor eine initiale Algebra? Wenn nein Gegenbeispiel
|
||||
\part Wie beweist man Lambeks Lemma?
|
||||
\part Wie konstruiert man F-Algebren?
|
||||
\end{parts}
|
||||
|
|
2
tex/.vscode/ltex.dictionary.en-US.txt
vendored
2
tex/.vscode/ltex.dictionary.en-US.txt
vendored
|
@ -68,3 +68,5 @@ Cocones
|
|||
coequalizer
|
||||
coequalizers
|
||||
pushouts
|
||||
pushout
|
||||
monic
|
||||
|
|
BIN
tex/main.pdf
BIN
tex/main.pdf
Binary file not shown.
|
@ -25,6 +25,7 @@
|
|||
\pagestyle{scrheadings}
|
||||
\newcounter{resumeenum} % for resuming enumerated lists, https://tex.stackexchange.com/a/1702
|
||||
\usepackage{catprog}
|
||||
\usepackage{multicol}
|
||||
%%%%
|
||||
|
||||
%%%% Metadata
|
||||
|
|
|
@ -940,11 +940,12 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
|
|||
\end{remark}
|
||||
\begin{example}
|
||||
As a consequence of the previous remark, we can follow that for $FX = 2 \times X^\Sigma$ the following holds:
|
||||
\[x \sim y \iff x,y accept the same formal language.\]
|
||||
\[x \sim y \iff x,y \text{ accept the same formal language.}\]
|
||||
\end{example}
|
||||
|
||||
\begin{definition}[Bisimulation]
|
||||
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras. A \emph{bisimulation} is a relation $R \subseteq C \times C$ such that a coalgebra $(R, r)$ exists where
|
||||
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras.
|
||||
A \emph{bisimulation} is a relation $R \subseteq C \times D$ such that a coalgebra $(R, r)$ exists where
|
||||
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJDIl0sWzAsMiwiRkMiXSxbMiwwLCJSIl0sWzIsMiwiRlIiXSxbNCwwLCJEIl0sWzQsMiwiRkQiXSxbMSwxLCJcXGNvbW0iXSxbMywxLCJcXGNvbW0iXSxbMCwxLCJjIl0sWzIsMywiciJdLFs0LDUsImQiXSxbMiwwLCJcXHBpXzEiLDJdLFsyLDQsIlxccGlfMiJdLFszLDEsIkZcXHBpXzEiLDJdLFszLDUsIkZcXHBpXzIiXV0=
|
||||
\[\begin{tikzcd}
|
||||
C && R && D \\
|
||||
|
@ -1107,14 +1108,13 @@ The notion of limit can be instantiated to many interesting notions:
|
|||
|
||||
\begin{definition}[Pullback]
|
||||
Let $\CD$ be a poset category illustrated by the following diagram:
|
||||
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJcXGJ1bGxldCJdLFswLDEsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCwxXSxbMCwyXV0=
|
||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXGJ1bGxldCJdLFsyLDAsIlxcYnVsbGV0Il0sWzEsMSwiXFxidWxsZXQiXSxbMCwyXSxbMSwyXV0=
|
||||
\[\begin{tikzcd}
|
||||
& \bullet \\
|
||||
\bullet && \bullet
|
||||
\arrow[from=1-2, to=2-1]
|
||||
\arrow[from=1-2, to=2-3]
|
||||
\bullet && \bullet \\
|
||||
& \bullet
|
||||
\arrow[from=1-1, to=2-2]
|
||||
\arrow[from=1-3, to=2-2]
|
||||
\end{tikzcd}\]
|
||||
|
||||
Diagrams consist of two arrows with the same codomain.
|
||||
Cones are of the form:
|
||||
% https://q.uiver.app/#q=WzAsNixbMiwwLCJDIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJEIl0sWzEsMiwiXFxjb21tIl0sWzMsMiwiXFxjb21tIl0sWzAsMSwiZiIsMl0sWzAsMiwiZyJdLFsxLDMsIm0iLDJdLFsyLDMsIm4iXSxbMCwzLCJoIiwyXV0=
|
||||
|
@ -1160,7 +1160,35 @@ The notion of limit can be instantiated to many interesting notions:
|
|||
Limits are unique up to isomorphism.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
% TODO proof that limits are up to iso
|
||||
Let $\CD$ be a small category and $D : \CD \to \CC$ a diagram.
|
||||
Furthermore, let $(L, {out}_d)$ and $(L', {out'}_d)$ be two limits of this diagram.
|
||||
Note that both $L$ and $L'$ are apexes of cones, thus they induce morphisms:
|
||||
\begin{multicols}{2}
|
||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJMIl0sWzIsMCwiTCciXSxbMSwyLCJEZCJdLFswLDIsIntvdXR9X2QiLDJdLFsxLDIsIntvdXQnfV9kIl0sWzAsMSwiaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==
|
||||
\[\begin{tikzcd}
|
||||
L && {L'} \\
|
||||
\\
|
||||
& Dd
|
||||
\arrow["{{out}_d}"', from=1-1, to=3-2]
|
||||
\arrow["{{out'}_d}", from=1-3, to=3-2]
|
||||
\arrow["i", dashed, from=1-1, to=1-3]
|
||||
\end{tikzcd}\]
|
||||
\columnbreak
|
||||
% https://q.uiver.app/#q=WzAsMyxbMiwwLCJMIl0sWzAsMCwiTCciXSxbMSwyLCJEZCJdLFswLDIsIntvdXR9X2QiXSxbMSwyLCJ7b3V0J31fZCIsMl0sWzEsMCwiaV5cXG1vbmUiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
||||
\[\begin{tikzcd}
|
||||
{L'} && L \\
|
||||
\\
|
||||
& Dd
|
||||
\arrow["{{out}_d}", from=1-3, to=3-2]
|
||||
\arrow["{{out'}_d}"', from=1-1, to=3-2]
|
||||
\arrow["{i^\mone}", dashed, from=1-1, to=1-3]
|
||||
\end{tikzcd}\]
|
||||
\end{multicols}
|
||||
Now, using the fact that the ${out}_d$ and ${out'}_d$ are jointly monic, we are done by:
|
||||
\[{out}_d \comp i^\mone \comp i = {out'}_d \comp i = {out}_d = {out}_d \comp id_L \Rightarrow i^\mone \comp i = id_L\]
|
||||
and
|
||||
\[{out'}_d \comp i \comp i^\mone = {out}_d \comp i^\mone = {out'}_d = {out'}_d \comp id_{L'} \Rightarrow i \comp i^\mone = id_{L'}\]
|
||||
Thus $L \iso L'$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}[Complete Category]
|
||||
|
@ -1311,7 +1339,49 @@ Now we can instantiate the notion of colimit to the dual notions of \autoref{sec
|
|||
\end{proof}
|
||||
|
||||
\begin{definition}[Pushout]
|
||||
% TODO
|
||||
Let $\CD$ be the poset:
|
||||
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJcXGJ1bGxldCJdLFswLDEsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCwxXSxbMCwyXV0=
|
||||
\[\begin{tikzcd}
|
||||
& \bullet \\
|
||||
\bullet && \bullet
|
||||
\arrow[from=1-2, to=2-1]
|
||||
\arrow[from=1-2, to=2-3]
|
||||
\end{tikzcd}\]
|
||||
|
||||
Diagrams consist of two arrows with the same domain and cocones are of the form:
|
||||
% https://q.uiver.app/#q=WzAsNixbMiwwLCJIIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJDIl0sWzEsMiwiXFxjb21tIl0sWzMsMiwiXFxjb21tIl0sWzAsMSwibSIsMl0sWzAsMiwibiJdLFsxLDMsImYiLDJdLFsyLDMsImciXSxbMCwzLCJoIiwyXV0=
|
||||
\[\begin{tikzcd}
|
||||
&& H \\
|
||||
\\
|
||||
A & \comm && \comm & B \\
|
||||
\\
|
||||
&& C
|
||||
\arrow["m"', from=1-3, to=3-1]
|
||||
\arrow["n", from=1-3, to=3-5]
|
||||
\arrow["f"', from=3-1, to=5-3]
|
||||
\arrow["g", from=3-5, to=5-3]
|
||||
\arrow["h"', from=1-3, to=5-3]
|
||||
\end{tikzcd}\]
|
||||
where $h$ is usually omitted, and instead the condition is expressed as $f \comp m = g \comp n$.
|
||||
A colimit of such a diagram is called a \emph{pushout} and usually denoted:
|
||||
% https://q.uiver.app/#q=WzAsNSxbMiwwLCJIIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJQIl0sWzIsNiwiQyJdLFsxLDMsInBfMSIsMl0sWzIsMywicF8yIl0sWzAsMSwiZiIsMl0sWzAsMiwiZyJdLFszLDQsIiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDQsImEiLDIseyJjdXJ2ZSI6M31dLFsyLDQsImIiLDAseyJjdXJ2ZSI6LTN9XSxbMywwLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=
|
||||
\[\begin{tikzcd}
|
||||
&& H \\
|
||||
\\
|
||||
A &&&& B \\
|
||||
\\
|
||||
&& P \\
|
||||
\\
|
||||
&& C
|
||||
\arrow["{p_1}"', from=3-1, to=5-3]
|
||||
\arrow["{p_2}", from=3-5, to=5-3]
|
||||
\arrow["f"', from=1-3, to=3-1]
|
||||
\arrow["g", from=1-3, to=3-5]
|
||||
\arrow[dashed, from=5-3, to=7-3]
|
||||
\arrow["a"', curve={height=18pt}, from=3-1, to=7-3]
|
||||
\arrow["b", curve={height=-18pt}, from=3-5, to=7-3]
|
||||
\arrow["\lrcorner"{anchor=center, pos=0.125, rotate=135}, draw=none, from=5-3, to=1-3]
|
||||
\end{tikzcd}\]
|
||||
\end{definition}
|
||||
|
||||
\begin{lemma}
|
||||
|
|
|
@ -120,7 +120,7 @@ A consequence of \autoref{lem:finclosed} is that for any signature $\Sigma$, the
|
|||
is finitary.
|
||||
|
||||
\begin{theorem}
|
||||
Let $\CC$ be cocomplete and $F : \CC \to \CC$ $\sigma$-cocontinuous. Then $F$ has the initial algebra $I = \oname{colim}_{n\in\mathbb{N}} F^n 0$.
|
||||
Let $\CC$ be cocomplete and $F : \CC \to \CC$ $\omega$-cocontinuous. Then $F$ has the initial algebra $I = \oname{colim}_{n\in\mathbb{N}} F^n 0$.
|
||||
More concretely $I$ is the colimit of the $\omega$-chain:
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiRjAiXSxbNCwwLCJGRjAiXSxbNiwwLCJcXGxkb3RzIl0sWzIsMiwiXFxtdSBGIl0sWzAsMSwiaSJdLFsxLDIsIkZpIl0sWzIsMywiXFxsZG90cyJdLFswLDQsIlxcaW90YV8wIiwyLHsiY3VydmUiOjJ9XSxbMSw0LCJcXGlvdGFfMSIsMl0sWzIsNCwiXFxpb3RhXzIiLDIseyJjdXJ2ZSI6LTN9XSxbMyw0LCJcXGxkb3RzIiwwLHsiY3VydmUiOi0zfV1d
|
||||
\[\begin{tikzcd}
|
||||
|
|
Loading…
Reference in a new issue