This commit is contained in:
Leon Vatthauer 2024-04-02 11:40:26 +02:00
parent cce33d138a
commit 2eabecda8f
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
6 changed files with 85 additions and 12 deletions

View file

@ -33,7 +33,7 @@
\begin{parts}
\part Was sind F-Algebren?
\part Was sind initiale Algebren?
\part Hat jede Algebra eine initiale Algebra? Wenn nein Gegenbeispiel
\part Hat jeder Funktor eine initiale Algebra? Wenn nein Gegenbeispiel
\part Wie beweist man Lambeks Lemma?
\part Wie konstruiert man F-Algebren?
\end{parts}

View file

@ -68,3 +68,5 @@ Cocones
coequalizer
coequalizers
pushouts
pushout
monic

Binary file not shown.

View file

@ -25,6 +25,7 @@
\pagestyle{scrheadings}
\newcounter{resumeenum} % for resuming enumerated lists, https://tex.stackexchange.com/a/1702
\usepackage{catprog}
\usepackage{multicol}
%%%%
%%%% Metadata

View file

@ -940,11 +940,12 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
\end{remark}
\begin{example}
As a consequence of the previous remark, we can follow that for $FX = 2 \times X^\Sigma$ the following holds:
\[x \sim y \iff x,y accept the same formal language.\]
\[x \sim y \iff x,y \text{ accept the same formal language.}\]
\end{example}
\begin{definition}[Bisimulation]
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras. A \emph{bisimulation} is a relation $R \subseteq C \times C$ such that a coalgebra $(R, r)$ exists where
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras.
A \emph{bisimulation} is a relation $R \subseteq C \times D$ such that a coalgebra $(R, r)$ exists where
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJDIl0sWzAsMiwiRkMiXSxbMiwwLCJSIl0sWzIsMiwiRlIiXSxbNCwwLCJEIl0sWzQsMiwiRkQiXSxbMSwxLCJcXGNvbW0iXSxbMywxLCJcXGNvbW0iXSxbMCwxLCJjIl0sWzIsMywiciJdLFs0LDUsImQiXSxbMiwwLCJcXHBpXzEiLDJdLFsyLDQsIlxccGlfMiJdLFszLDEsIkZcXHBpXzEiLDJdLFszLDUsIkZcXHBpXzIiXV0=
\[\begin{tikzcd}
C && R && D \\
@ -1107,14 +1108,13 @@ The notion of limit can be instantiated to many interesting notions:
\begin{definition}[Pullback]
Let $\CD$ be a poset category illustrated by the following diagram:
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJcXGJ1bGxldCJdLFswLDEsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCwxXSxbMCwyXV0=
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXGJ1bGxldCJdLFsyLDAsIlxcYnVsbGV0Il0sWzEsMSwiXFxidWxsZXQiXSxbMCwyXSxbMSwyXV0=
\[\begin{tikzcd}
& \bullet \\
\bullet && \bullet
\arrow[from=1-2, to=2-1]
\arrow[from=1-2, to=2-3]
\bullet && \bullet \\
& \bullet
\arrow[from=1-1, to=2-2]
\arrow[from=1-3, to=2-2]
\end{tikzcd}\]
Diagrams consist of two arrows with the same codomain.
Cones are of the form:
% https://q.uiver.app/#q=WzAsNixbMiwwLCJDIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJEIl0sWzEsMiwiXFxjb21tIl0sWzMsMiwiXFxjb21tIl0sWzAsMSwiZiIsMl0sWzAsMiwiZyJdLFsxLDMsIm0iLDJdLFsyLDMsIm4iXSxbMCwzLCJoIiwyXV0=
@ -1160,7 +1160,35 @@ The notion of limit can be instantiated to many interesting notions:
Limits are unique up to isomorphism.
\end{proposition}
\begin{proof}
% TODO proof that limits are up to iso
Let $\CD$ be a small category and $D : \CD \to \CC$ a diagram.
Furthermore, let $(L, {out}_d)$ and $(L', {out'}_d)$ be two limits of this diagram.
Note that both $L$ and $L'$ are apexes of cones, thus they induce morphisms:
\begin{multicols}{2}
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJMIl0sWzIsMCwiTCciXSxbMSwyLCJEZCJdLFswLDIsIntvdXR9X2QiLDJdLFsxLDIsIntvdXQnfV9kIl0sWzAsMSwiaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==
\[\begin{tikzcd}
L && {L'} \\
\\
& Dd
\arrow["{{out}_d}"', from=1-1, to=3-2]
\arrow["{{out'}_d}", from=1-3, to=3-2]
\arrow["i", dashed, from=1-1, to=1-3]
\end{tikzcd}\]
\columnbreak
% https://q.uiver.app/#q=WzAsMyxbMiwwLCJMIl0sWzAsMCwiTCciXSxbMSwyLCJEZCJdLFswLDIsIntvdXR9X2QiXSxbMSwyLCJ7b3V0J31fZCIsMl0sWzEsMCwiaV5cXG1vbmUiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
\[\begin{tikzcd}
{L'} && L \\
\\
& Dd
\arrow["{{out}_d}", from=1-3, to=3-2]
\arrow["{{out'}_d}"', from=1-1, to=3-2]
\arrow["{i^\mone}", dashed, from=1-1, to=1-3]
\end{tikzcd}\]
\end{multicols}
Now, using the fact that the ${out}_d$ and ${out'}_d$ are jointly monic, we are done by:
\[{out}_d \comp i^\mone \comp i = {out'}_d \comp i = {out}_d = {out}_d \comp id_L \Rightarrow i^\mone \comp i = id_L\]
and
\[{out'}_d \comp i \comp i^\mone = {out}_d \comp i^\mone = {out'}_d = {out'}_d \comp id_{L'} \Rightarrow i \comp i^\mone = id_{L'}\]
Thus $L \iso L'$.
\end{proof}
\begin{definition}[Complete Category]
@ -1311,7 +1339,49 @@ Now we can instantiate the notion of colimit to the dual notions of \autoref{sec
\end{proof}
\begin{definition}[Pushout]
% TODO
Let $\CD$ be the poset:
% https://q.uiver.app/#q=WzAsMyxbMSwwLCJcXGJ1bGxldCJdLFswLDEsIlxcYnVsbGV0Il0sWzIsMSwiXFxidWxsZXQiXSxbMCwxXSxbMCwyXV0=
\[\begin{tikzcd}
& \bullet \\
\bullet && \bullet
\arrow[from=1-2, to=2-1]
\arrow[from=1-2, to=2-3]
\end{tikzcd}\]
Diagrams consist of two arrows with the same domain and cocones are of the form:
% https://q.uiver.app/#q=WzAsNixbMiwwLCJIIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJDIl0sWzEsMiwiXFxjb21tIl0sWzMsMiwiXFxjb21tIl0sWzAsMSwibSIsMl0sWzAsMiwibiJdLFsxLDMsImYiLDJdLFsyLDMsImciXSxbMCwzLCJoIiwyXV0=
\[\begin{tikzcd}
&& H \\
\\
A & \comm && \comm & B \\
\\
&& C
\arrow["m"', from=1-3, to=3-1]
\arrow["n", from=1-3, to=3-5]
\arrow["f"', from=3-1, to=5-3]
\arrow["g", from=3-5, to=5-3]
\arrow["h"', from=1-3, to=5-3]
\end{tikzcd}\]
where $h$ is usually omitted, and instead the condition is expressed as $f \comp m = g \comp n$.
A colimit of such a diagram is called a \emph{pushout} and usually denoted:
% https://q.uiver.app/#q=WzAsNSxbMiwwLCJIIl0sWzAsMiwiQSJdLFs0LDIsIkIiXSxbMiw0LCJQIl0sWzIsNiwiQyJdLFsxLDMsInBfMSIsMl0sWzIsMywicF8yIl0sWzAsMSwiZiIsMl0sWzAsMiwiZyJdLFszLDQsIiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDQsImEiLDIseyJjdXJ2ZSI6M31dLFsyLDQsImIiLDAseyJjdXJ2ZSI6LTN9XSxbMywwLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=
\[\begin{tikzcd}
&& H \\
\\
A &&&& B \\
\\
&& P \\
\\
&& C
\arrow["{p_1}"', from=3-1, to=5-3]
\arrow["{p_2}", from=3-5, to=5-3]
\arrow["f"', from=1-3, to=3-1]
\arrow["g", from=1-3, to=3-5]
\arrow[dashed, from=5-3, to=7-3]
\arrow["a"', curve={height=18pt}, from=3-1, to=7-3]
\arrow["b", curve={height=-18pt}, from=3-5, to=7-3]
\arrow["\lrcorner"{anchor=center, pos=0.125, rotate=135}, draw=none, from=5-3, to=1-3]
\end{tikzcd}\]
\end{definition}
\begin{lemma}

View file

@ -120,7 +120,7 @@ A consequence of \autoref{lem:finclosed} is that for any signature $\Sigma$, the
is finitary.
\begin{theorem}
Let $\CC$ be cocomplete and $F : \CC \to \CC$ $\sigma$-cocontinuous. Then $F$ has the initial algebra $I = \oname{colim}_{n\in\mathbb{N}} F^n 0$.
Let $\CC$ be cocomplete and $F : \CC \to \CC$ $\omega$-cocontinuous. Then $F$ has the initial algebra $I = \oname{colim}_{n\in\mathbb{N}} F^n 0$.
More concretely $I$ is the colimit of the $\omega$-chain:
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiRjAiXSxbNCwwLCJGRjAiXSxbNiwwLCJcXGxkb3RzIl0sWzIsMiwiXFxtdSBGIl0sWzAsMSwiaSJdLFsxLDIsIkZpIl0sWzIsMywiXFxsZG90cyJdLFswLDQsIlxcaW90YV8wIiwyLHsiY3VydmUiOjJ9XSxbMSw0LCJcXGlvdGFfMSIsMl0sWzIsNCwiXFxpb3RhXzIiLDIseyJjdXJ2ZSI6LTN9XSxbMyw0LCJcXGxkb3RzIiwwLHsiY3VydmUiOi0zfV1d
\[\begin{tikzcd}