diff --git a/tex/sections/02_categories.tex b/tex/sections/02_categories.tex index 53330a6..10b3e65 100644 --- a/tex/sections/02_categories.tex +++ b/tex/sections/02_categories.tex @@ -944,7 +944,7 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial: \end{example} \begin{definition}[Bisimulation] - Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras. + Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras. A \emph{bisimulation} is a relation $R \subseteq C \times D$ such that a coalgebra $(R, r)$ exists where % https://q.uiver.app/#q=WzAsOCxbMCwwLCJDIl0sWzAsMiwiRkMiXSxbMiwwLCJSIl0sWzIsMiwiRlIiXSxbNCwwLCJEIl0sWzQsMiwiRkQiXSxbMSwxLCJcXGNvbW0iXSxbMywxLCJcXGNvbW0iXSxbMCwxLCJjIl0sWzIsMywiciJdLFs0LDUsImQiXSxbMiwwLCJcXHBpXzEiLDJdLFsyLDQsIlxccGlfMiJdLFszLDEsIkZcXHBpXzEiLDJdLFszLDUsIkZcXHBpXzIiXV0= \[\begin{tikzcd} @@ -963,9 +963,53 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial: Two elements $c \in C, d \in D$ are called \emph{bisimilar} if there exists a bisimulation $R$ such that $xRy$ holds. \end{definition} -\begin{proposition} +\begin{proposition} Let $\CC$ be a category that has pushouts, then \[x,y \text{ bisimilar} \Rightarrow x \sim y\] \end{proposition} +\begin{proof} + Let $x \in (C,c)$ and $y \in (D,d)$ be bisimilar with the bisimilarity $R \subseteq C \times D$. + Since $\CC$ has pushouts, also $\Alg{F}$ has pushouts. + Consider the following pushout: + % https://q.uiver.app/#q=WzAsNSxbMSwwLCIoUixyKSJdLFsyLDEsIihELGQpIl0sWzAsMSwiKEMsYykiXSxbMSwyLCIoUCxwKSJdLFsxLDEsIlxcY29tbSJdLFswLDIsIlxccGlfMSIsMl0sWzAsMSwiXFxwaV8yIl0sWzIsMywiaF9jIiwyXSxbMSwzLCJoX2QiXSxbMywwLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyLWludmVyc2UifX1dXQ== + \[\begin{tikzcd} + & {(R,r)} \\ + {(C,c)} & \comm & {(D,d)} \\ + & {(P,p)} + \arrow["{\pi_1}"', from=1-2, to=2-1] + \arrow["{\pi_2}", from=1-2, to=2-3] + \arrow["{h_c}"', from=2-1, to=3-2] + \arrow["{h_d}", from=2-3, to=3-2] + \arrow["\ulcorner"{anchor=center, pos=0.125, rotate=135}, draw=none, from=3-2, to=1-2] + \end{tikzcd}\] + It thus suffices to show that $h_c(x) = h_d(y)$, which indeed follows by the pushout diagram: + \[h_c(x) = h_c(\pi_1(x,y)) = h_d(\pi_2(x,y)) = h_d(y).\] +\end{proof} + +\begin{proposition} + If the terminal F-coalgebra $\nu F$ exists, then + \[x,y \text{ bisimilar} \Rightarrow x \sim y\] +\end{proposition} +\begin{proof} + Consider the diagram + % https://q.uiver.app/#q=WzAsNCxbMCwxLCIoQyxjKSJdLFsxLDAsIihSLHIpIl0sWzIsMSwiKEQsZCkiXSxbMSwyLCIoXFxudSBGLHQpIl0sWzEsMCwiXFxwaV8xIiwyXSxbMSwyLCJcXHBpXzIiXSxbMCwzLCJoX2MiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJoX2QiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwzLCJoX3AiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0= + \[\begin{tikzcd} + & {(R,r)} \\ + {(C,c)} && {(D,d)} \\ + & {(\nu F,t)} + \arrow["{\pi_1}"', from=1-2, to=2-1] + \arrow["{\pi_2}", from=1-2, to=2-3] + \arrow["{h_c}"', dashed, from=2-1, to=3-2] + \arrow["{h_d}", dashed, from=2-3, to=3-2] + \arrow["{h_p}"', dashed, from=1-2, to=3-2] + \end{tikzcd}\] + Again, since $x$ and $y$ are bisimilar we get + \[h_c(x) = h_c(\pi_1(x,y)) = h_d(\pi_2(x,y)) = h_d(y).\] +\end{proof} +\begin{remark} + Bisimilarity of elements of the terminal F-coalgebra is equivalent to equality, + since then $R \subseteq \Delta = \{(x,x)\;\vert\;x\in \nu F\}$, + because in this case $\pi_1 = \pi_2$, by uniqueness of the morphism into the terminal F-coalgebra. +\end{remark} % TODO proof and backwards direction. \begin{example}