diff --git a/tex/.vscode/ltex.dictionary.en-US.txt b/tex/.vscode/ltex.dictionary.en-US.txt index f3b49f7..bf59a35 100644 --- a/tex/.vscode/ltex.dictionary.en-US.txt +++ b/tex/.vscode/ltex.dictionary.en-US.txt @@ -62,3 +62,9 @@ colimits colimit finitary Finitary +cocone +cocones +Cocones +coequalizer +coequalizers +pushouts diff --git a/tex/main.pdf b/tex/main.pdf index 0903fdb..aa80921 100644 Binary files a/tex/main.pdf and b/tex/main.pdf differ diff --git a/tex/sections/02_categories.tex b/tex/sections/02_categories.tex index 4952928..49f63e1 100644 --- a/tex/sections/02_categories.tex +++ b/tex/sections/02_categories.tex @@ -979,7 +979,7 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial: % TODO example proof, needs some interesting functions introduced earlier. \end{example} -\section{Limits} +\section{Limits}\label{sec:limit} Limits are an abstraction of products and many other categorical concepts. \begin{definition}[Limit] We will need to introduce some related notions first. \begin{enumerate} @@ -988,40 +988,40 @@ Limits are an abstraction of products and many other categorical concepts. \begin{itemize} \item an object $C \in \obj{\CC}$ called the \emph{apex} and \item a family of morphisms ${(f_d : C \to Dd)}_{d\in\obj{\CD}}$ such that - % https://q.uiver.app/#q=WzAsMyxbMCwwLCJDIl0sWzAsMiwiRGQiXSxbMiwyLCJEZCciXSxbMCwxLCJmX2QiLDJdLFswLDIsImZfe2QnfSJdLFsxLDIsInUiXV0= + % https://q.uiver.app/#q=WzAsMyxbMSwwLCJDIl0sWzAsMiwiRGQiXSxbMiwyLCJEZCciXSxbMCwxLCJmX2QiLDJdLFswLDIsImZfe2QnfSJdLFsxLDIsIkR1Il1d \[\begin{tikzcd} - C \\ + & C \\ \\ Dd && {Dd'} - \arrow["{f_d}"', from=1-1, to=3-1] - \arrow["{f_{d'}}", from=1-1, to=3-3] - \arrow["u", from=3-1, to=3-3] + \arrow["{f_d}"', from=1-2, to=3-1] + \arrow["{f_{d'}}", from=1-2, to=3-3] + \arrow["Du", from=3-1, to=3-3] \end{tikzcd}\] commutes for every $u : d \to d'$. \end{itemize} - \item A \emph{limit} of a diagram $D$ is a universal cone, i.e.\ a cone $(L, out_d)$ such that for every cone $(C, f_d)$ there exists a unique morphism $h : C \to L$ such that $out_d \comp h = f_d$ for all $d \in \obj{\CD}$: - % https://q.uiver.app/#q=WzAsMyxbMiwwLCJMIl0sWzIsMiwiRGQiXSxbMCwwLCJDIl0sWzAsMSwib3V0X2QiXSxbMiwwLCJoIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMSwiZl9kIiwyXV0= + \item A \emph{limit} of a diagram $D$ is a terminal cone, i.e.\ a cone $(L, out_d)$ such that for every cone $(C, f_d)$ there exists a unique morphism $h : C \to L$ such that $out_d \comp h = f_d$ for all $d \in \obj{\CD}$: + % https://q.uiver.app/#q=WzAsMyxbMiwwLCJMIl0sWzEsMiwiRGQiXSxbMCwwLCJDIl0sWzAsMSwib3V0X2QiXSxbMiwwLCJoIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMSwiZl9kIiwyXV0= \[\begin{tikzcd} C && L \\ \\ - && Dd - \arrow["{out_d}", from=1-3, to=3-3] + & Dd + \arrow["{out_d}", from=1-3, to=3-2] \arrow["h", dashed, from=1-1, to=1-3] - \arrow["{f_d}"', from=1-1, to=3-3] + \arrow["{f_d}"', from=1-1, to=3-2] \end{tikzcd}\] \end{enumerate} \end{definition} The notion of limit can be instantiated to many interesting notions: -\begin{definition}[Terminal object (as limit)] +\begin{definition}[Terminal Object (as Limit)] Let $\CD$ be the empty category $\emptyset$. Diagrams of $\CD$ are empty and thus cones consist of just the apex $C\in\obj{\CC}$. This also means that every object in $\CC$ forms a cone for this diagram. The limit $1 \in \obj{\CC}$ is thus the terminal object, since for any $C \in \obj{\CC}$ there is a unique morphism $\bang : C \to 1$. \end{definition} -\begin{definition}[Product (as limit)] +\begin{definition}[Product (as Limit)] Let $\CD$ be the discrete category with 2 elements. Diagrams $D$ are pairs $(A,B)$ of objects of $\CC$, cones are pairs of morphisms % https://q.uiver.app/#q=WzAsMyxbMSwwLCJDIl0sWzAsMSwiQSJdLFsyLDEsIkIiXSxbMCwxLCJmIiwyXSxbMCwyLCJnIl1d \[\begin{tikzcd} @@ -1167,11 +1167,16 @@ The notion of limit can be instantiated to many interesting notions: A category $\CC$ is called \emph{complete} if every diagram in $\CC$ has a limit. \end{definition} -\begin{proposition} - $\CC$ is complete iff $\CC$ has all products and equalizers, i.e.\ using products and equalizer one can construct arbitrary limits. -\end{proposition} +\begin{theorem} + The following are equivalent: + \begin{enumerate} + \item $\CC$ is complete + \item $\CC$ has (all) products and equalizers + \item $\CC$ has products and pullbacks + \end{enumerate} +\end{theorem} \begin{proof} - % TODO proof that complete iff products and eq + % TODO \end{proof} \begin{definition}[Finitely Complete Category] @@ -1193,4 +1198,157 @@ The notion of limit can be instantiated to many interesting notions: \section{Colimits} -% TODO colimits \ No newline at end of file +Dual to the notion of limit is the notion of \emph{colimit}. + +\begin{definition}[Colimit] + Again, we will need a preliminary notion. + \begin{enumerate} + \item A \emph{cocone} of a diagram $D : \CD \to CC$ consists of + \begin{itemize} + \item an object $C \in \obj{\CC}$ that we call the \emph{foot} and + \item a family of morphisms ${(f_d : Dd \to C)}_{d \in \obj{\CD}}$ such that + % https://q.uiver.app/#q=WzAsMyxbMSwyLCJDIl0sWzAsMCwiRGQiXSxbMiwwLCJEZCciXSxbMSwwLCJmX2QiLDJdLFsyLDAsImZfe2QnfSJdLFsxLDIsIkR1Il1d + \[\begin{tikzcd} + Dd && {Dd'} \\ + \\ + & C + \arrow["{f_d}"', from=1-1, to=3-2] + \arrow["{f_{d'}}", from=1-3, to=3-2] + \arrow["Du", from=1-1, to=1-3] + \end{tikzcd}\] + commutes for every $u : d \to d'$. + \end{itemize} + \item A \emph{colimit} of a diagram $D$ is an initial cocone, i.e.\ a cocone $(L, in_d)$ such that for every cocone $(C, f_d)$ there exists a unique morphism $h : L \to C$ such that $h \comp in_d = f_d$ for all $d \in \obj{\CD}$: + % https://q.uiver.app/#q=WzAsMyxbMiwyLCJMIl0sWzEsMCwiRGQiXSxbMCwyLCJDIl0sWzEsMCwie2lufV9kIl0sWzAsMiwiXFxleGlzdHMhaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDIsImZfZCIsMl1d + \[\begin{tikzcd} + & Dd \\ + \\ + C && L + \arrow["{{in}_d}", from=1-2, to=3-3] + \arrow["{\exists!h}"', dashed, from=3-3, to=3-1] + \arrow["{f_d}"', from=1-2, to=3-1] + \end{tikzcd}\] + \end{enumerate} +\end{definition} +Now we can instantiate the notion of colimit to the dual notions of \autoref{sec:limit}. + +\begin{definition}[Initial Object (as Colimit)] + Let $\CD$ be the empty category $\emptyset$. + Diagrams of $\CD$ are empty and thus cocones of these diagrams are equal to the cones, which consist of a single object. + The colimit $0 \in \obj{\CC}$ of such a diagram is thus the initial object, since for any $C\in\obj{\CC}$ there is a unique morphism $\cobang : 0 \to C$. +\end{definition} + +\begin{definition}[Coproduct (as Colimit)] + Let $\CD$ be the discrete category with 2 elements. Cocones are pairs of morphisms: + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJBIl0sWzIsMCwiQiJdLFsxLDEsIkMiXSxbMCwyLCJmIiwyXSxbMSwyLCJnIl1d + \[\begin{tikzcd} + A && B \\ + & C + \arrow["f"', from=1-1, to=2-2] + \arrow["g", from=1-3, to=2-2] + \end{tikzcd}\] + and limits are exactly the coproducts: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJBIl0sWzIsMCwiQiJdLFsxLDEsIkErQiJdLFsxLDMsIkMiXSxbMCwyLCJcXGlubCJdLFsxLDIsIlxcaW5yIiwyXSxbMCwzLCJmIiwyLHsiY3VydmUiOjN9XSxbMSwzLCJnIiwwLHsiY3VydmUiOi0zfV0sWzIsMywiXFxleGlzdHMhW2YsZ10iLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0= + \[\begin{tikzcd} + A && B \\ + & {A+B} \\ + \\ + & C + \arrow["\inl", from=1-1, to=2-2] + \arrow["\inr"', from=1-3, to=2-2] + \arrow["f"', curve={height=18pt}, from=1-1, to=4-2] + \arrow["g", curve={height=-18pt}, from=1-3, to=4-2] + \arrow["{\exists![f,g]}"', dashed, from=2-2, to=4-2] + \end{tikzcd}\] +\end{definition} + +\begin{definition}[Coequalizer] + Let $\CD$ be a category with two non-trivial and parallel morphisms $u,v : 1 \to 2$. Cocones are pairs of morphisms: + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJBXzEiXSxbMiwwLCJBXzIiXSxbMSwyLCJDIl0sWzAsMSwiZiIsMCx7Im9mZnNldCI6LTF9XSxbMCwxLCJnIiwyLHsib2Zmc2V0IjoxfV0sWzAsMiwiYyIsMl0sWzEsMiwiZCJdXQ== + \[\begin{tikzcd} + {A_1} && {A_2} \\ + \\ + & C + \arrow["f", shift left, from=1-1, to=1-3] + \arrow["g"', shift right, from=1-1, to=1-3] + \arrow["c"', from=1-1, to=3-2] + \arrow["d", from=1-3, to=3-2] + \end{tikzcd}\] + The initial cocone is called a \emph{coequalizer} of $f$ and $g$: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJBXzEiXSxbMiwwLCJBXzIiXSxbMSwyLCJFIl0sWzEsNCwiQyJdLFswLDEsImYiLDAseyJvZmZzZXQiOi0xfV0sWzAsMSwiZyIsMix7Im9mZnNldCI6MX1dLFswLDJdLFsxLDIsImUiXSxbMCwzLCIiLDAseyJjdXJ2ZSI6M31dLFsxLDMsImMiLDAseyJjdXJ2ZSI6LTN9XSxbMiwzLCJcXGV4aXN0cyFoIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d + \[\begin{tikzcd} + {A_1} && {A_2} \\ + \\ + & E \\ + \\ + & C + \arrow["f", shift left, from=1-1, to=1-3] + \arrow["g"', shift right, from=1-1, to=1-3] + \arrow[from=1-1, to=3-2] + \arrow["e", from=1-3, to=3-2] + \arrow[curve={height=18pt}, from=1-1, to=5-2] + \arrow["c", curve={height=-18pt}, from=1-3, to=5-2] + \arrow["{\exists!h}", dashed, from=3-2, to=5-2] + \end{tikzcd}\] + where the unnamed morphisms are usually omitted. +\end{definition} + +\begin{definition}[Regular Epimorphism] + An epimorphism is called \emph{regular} if it is also a coequalizer. +\end{definition} + +\begin{lemma} + Every coequalizer is an epimorphism and thus a regular epimorphism. +\end{lemma} +\begin{proof} + By duality. +\end{proof} +\begin{proposition} + $e$ is a regular epimorphism and a monomorphism $\iff$ $e$ is an isomorphism. +\end{proposition} +\begin{proof} + By duality. +\end{proof} + +\begin{definition}[Pushout] + % TODO +\end{definition} + +\begin{lemma} + Colimits are unique up to isomorphism. +\end{lemma} +\begin{proof} + By duality. +\end{proof} + +\begin{definition} + A category $\CC$ is called \emph{cocomplete}, if every diagram has a colimit in $\CC$. +\end{definition} + +\begin{theorem} The following are equivalent: + \begin{enumerate} + \item $\CC$ is cocomplete + \item $\CC$ has (all) coproducts and coequalizers + \item $\CC$ has coproducts and pushouts + \end{enumerate} +\end{theorem} +\begin{proof} + % TODO +\end{proof} + +\begin{definition} + A category $\CC$ is called \emph{finitely cocomplete}, if every finite diagram in $\CC$ has a limit. +\end{definition} + +\begin{theorem} + The following are equivalent: + \begin{enumerate} + \item $\CC$ is finitely cocomplete + \item $\CC$ has finite coproducts and coequalizers + \item $\CC$ has finite coproducts and pushouts + \item $\CC$ has an initial object and pushouts + \end{enumerate} +\end{theorem} +\begin{proof} + % TODO +\end{proof} \ No newline at end of file