Add agda code from previous repo

This commit is contained in:
Leon Vatthauer 2024-03-20 15:43:45 +01:00
parent 89923c10c2
commit 98c38160ff
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
5 changed files with 1014 additions and 0 deletions

1
.gitignore vendored
View file

@ -305,3 +305,4 @@ TSWLatexianTemp*
*.agdai
MAlonzo/**
*.html

467
agda/Agda.css Normal file

File diff suppressed because one or more lines are too long

25
agda/Makefile Normal file
View file

@ -0,0 +1,25 @@
.PHONY: all clean
all: agda
make pandoc
open:
firefox ./public/algebra.html
agda: Everything.agda
agda --html --html-dir=public algebra.lagda.md --html-highlight=auto -i.
rm -f public/Agda.css
cp Agda.css public/Agda.css
pandoc: public/*.md
@$(foreach file,$^, \
pandoc $(file) -s --to=html+TEX_MATH_DOLLARS --mathjax -c Agda.css -o $(file:.md=.html) ; \
)
clean:
rm -f Everything.agda
rm -rf public/*
find . -name '*.agdai' -exec rm \{\} \;
Everything.agda:
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda

486
agda/algebra.lagda.md Normal file
View file

@ -0,0 +1,486 @@
```agda
open import equality
module algebra where
```
# Algebra of programming
## Preliminaries (Types, Lemmas, Functions)
```agda
id : ∀ {A : Set} → A → A
id a = a
_! : ∀ {A B : Set} → (b : B) → A → B
(b !) _ = b
```
We will need functional extensionality
```agda
postulate
extensionality : ∀ {A B : Set} (f g : A → B) → (∀ (x : A) → f x ≡ g x) → f ≡ g
ext-rev : ∀ {A B : Set} {f g : A → B} → f ≡ g → (∀ (x : A) → f x ≡ g x)
ext-rev {A} {B} {f} {g} refl x = refl
```
Function composition and some facts about it
```agda
infixr 9 _∘_
_∘_ : ∀ {A B C : Set} (g : B → C) (f : A → B) → A → C
(g ∘ f) x = g (f x)
{-# INLINE _∘_ #-}
identityʳ : ∀ {A B : Set} {f : A → B} → f ∘ id ≡ f
identityʳ {f} = refl
identityˡ : ∀ {A B : Set} {f : A → B} → id ∘ f ≡ f
identityˡ {f} = refl
_⟩∘⟨_ : ∀ {A B C : Set} {g i : B → C} {f h : A → B} → g ≡ i → f ≡ h → g ∘ f ≡ i ∘ h
refl ⟩∘⟨ refl = refl
introˡ : ∀ {A B : Set} {f : A → B} {h : B → B} → h ≡ id → f ≡ h ∘ f
introˡ {f} {h} eq = trans (sym identityˡ) (sym eq ⟩∘⟨ refl)
introʳ : ∀ {A B : Set} {f : A → B} {h : A → A} → h ≡ id → f ≡ f ∘ h
introʳ {f} {h} eq = trans (sym identityʳ) (refl ⟩∘⟨ sym eq)
```
## Unit and void type
```agda
data : Set where
unit :
data ⊥ : Set where
¡ : ∀ {B : Set} → ⊥ → B
¡ ()
¡-unique : ∀ {B : Set} → (f : ⊥ → B) → f ≡ ¡
¡-unique f = extensionality f ¡ (λ ())
```
## Products
```agda
infixr 8 _×_
infixr 7 _×₁_
record _×_ (A B : Set) : Set where
constructor _,_
field
outl : A
outr : B
open _×_
×-cong : ∀ {A B : Set} {x y : A} {u v : B} → x ≡ y → u ≡ v → (x , u) ≡ (y , v)
×-cong refl refl = refl
⟨_,_⟩ : {A B C : Set} → (A → B) → (A → C) → A → B × C
⟨ f , g ⟩ x = (f x) , (g x)
project₁ : ∀ {A B C : Set} (f : A → B) (g : A → C) → outl ∘ ⟨ f , g ⟩ ≡ f
project₁ _ _ = refl
project₂ : ∀ {A B C : Set} (f : A → B) (g : A → C) → outr ∘ ⟨ f , g ⟩ ≡ g
project₂ _ _ = refl
⟨⟩-cong : {A B C : Set} → (f g : A → B) → (h i : A → C) → f ≡ g → h ≡ i → ⟨ f , h ⟩ ≡ ⟨ g , i ⟩
⟨⟩-cong f g h i refl refl = refl
⟨⟩-unique : ∀ {A B C : Set} (f : A → B) (g : A → C) (h : A → B × C) → outl ∘ h ≡ f → outr ∘ h ≡ g → h ≡ ⟨ f , g ⟩
⟨⟩-unique f g h refl refl = refl
_×₁_ : ∀ {A B C D : Set} (f : A → C) (g : B → D) → A × B → C × D
_×₁_ f g (x , y) = f x , g y
```
Composition as function on products
```agda
comp : ∀ {A B C : Set} → ((A → B) × (B → C)) → A → C
comp (f , g) x = g (f x)
```
curry, uncurry, eval
```agda
curry : ∀ {A B C : Set} → (A × B → C) → (A → B → C)
curry f a b = f (a , b)
uncurry : ∀ {A B C : Set} → (A → B → C) → (A × B → C)
uncurry f (a , b) = f a b
ev : ∀ {A B : Set} → (A → B) × A → B
ev (f , a) = f a
```
**HOMEWORK 1**
```agda
curry-uncurry : ∀ {A B C : Set} → curry ∘ uncurry {A} {B} {C} ≡ id
curry-uncurry = extensionality (curry ∘ uncurry) id λ _ → refl
uncurry-curry : ∀ {A B C : Set} → uncurry ∘ curry {A} {B} {C} ≡ id
uncurry-curry = extensionality (uncurry ∘ curry) id λ _ → refl
```
## Naturals
```agda
data : Set where
zero :
succ :
{-# BUILTIN NATURAL #-}
data 𝔹 : Set where
true : 𝔹
false : 𝔹
{-# BUILTIN BOOL 𝔹 #-}
succ-inj : ∀ {x y : } → succ x ≡ succ y → x ≡ y
succ-inj refl = refl
-- todo rewrite foldn to use ugly cartesian product...
foldn : ∀ {C : Set} → (C × (C → C)) → → C
foldn (c , h) zero = c
foldn (c , h) (succ n) = h (foldn (c , h) n)
foldn-id : foldn (zero , succ) ≡ id {}
foldn-id = extensionality (foldn (zero , succ)) id helper
where
helper : (x : ) → foldn (zero , succ) x ≡ id x
helper zero = refl
helper (succ n) rewrite helper n = refl
foldn-fusion : ∀ {C C' : Set} (c : C) (h : C → C) (k : C → C') (c' : C') (h' : C' → C') → k c ≡ c' → k ∘ h ≡ h' ∘ k → k ∘ foldn (c , h) ≡ foldn (c' , h')
foldn-fusion {C} {C'} c h k c' h' refl eq = extensionality (k ∘ foldn (c , h)) (foldn (k c , h')) helper
where
helper : (x : ) → (k ∘ foldn (c , h)) x ≡ foldn (k c , h') x
helper zero = refl
helper (succ x) = begin
(k ∘ h) (foldn (c , h) x) ≡⟨ ext-rev eq (foldn (c , h) x) ⟩
(h' ∘ k) (foldn (c , h) x) ≡⟨ cong h' (helper x) ⟩
h' (foldn (k c , h') x) ∎
```
### proving with the fusion law
```agda
add :
add zero n = n
add (succ m) n = succ (add m n)
plus :
plus n = foldn (n , succ)
plus' :
plus' = foldn (id , (comp ∘ ⟨ id , succ ! ⟩))
plus-test1 : plus 13 19 ≡ 32
plus-test1 = refl
+ : ×
+ = uncurry (foldn (id , (comp ∘ ⟨ id , succ ! ⟩)))
+-test1 : + (3 , 5) ≡ 8
+-test1 = refl
+-test2 : + (0 , 100) ≡ 100
+-test2 = refl
+-test3 : + (100 , 0) ≡ 100
+-test3 = refl
+0 : ∀ (n : ) → + (n , 0) ≡ n
+0 zero = refl
+0 (succ n) rewrite +0 n = refl
-- TODO define with fusion la
plus-succˡ : ∀ {m n : } → succ (plus m n) ≡ plus (succ m) n
plus-succˡ {m} {zero} = refl
plus-succˡ {m} {succ n} rewrite plus-succˡ {m} {n} = refl
plus-comm : ∀ {m n : } → plus m n ≡ plus n m
plus-comm {zero} {n} = ext-rev foldn-id n
plus-comm {succ m} {n} rewrite plus-comm {n} {m} = sym (plus-succˡ {m} {n})
plus-comm' : ∀ {m n : } → (plus m) ∘ (plus n) ≡ (plus n) ∘ (plus m)
plus-comm' {m} {n} = begin
(plus m) ∘ (foldn (n , succ)) ≡⟨ commute₁ ⟩
foldn ((plus m n) , succ) ≡⟨ extensionality (foldn ((plus m n) , succ)) (foldn ((plus n m) , succ)) helper ⟩
foldn ((plus n m) , succ) ≡⟨ sym commute₂ ⟩
(plus n) ∘ (foldn (m , succ)) ∎
where
helper : (x : ) → foldn ((plus m n) , succ) x ≡ foldn ((plus n m) , succ) x
helper x rewrite plus-comm {m} {n} = refl
commute₁ = foldn-fusion n succ (plus m) (plus m n) succ refl refl
commute₂ = foldn-fusion m succ (plus n) (plus n m) succ refl refl
```
**HOMEWORK 2**
```agda
mul :
mul zero n = zero
mul (succ m) n = plus n (mul m n)
mul-test1 : mul 0 3 ≡ 0
mul-test1 = refl
mul-test2 : mul 3 15 ≡ 45
mul-test2 = refl
mult : (m : ) →
mult m = foldn (zero , (plus m))
times : ( × ) →
times = uncurry times'
where
times' :
times' = foldn ((zero !) , (comp ∘ ⟨ curry ⟨ outr , ev ⟩ , + ! ⟩))
times-test1 : times (1 , 1) ≡ 1
times-test1 = refl
times-test2 : times (123 , 15) ≡ 1845
times-test2 = refl
times-test3 : times (5 , 0) ≡ 0
times-test3 = refl
```
**HOMEWORK 3**
```agda
fac2 :
fac2 zero = 1
fac2 (succ n) = times (n , fac2 n)
fac :
fac = outr ∘ fac'
where
fac' : → ( × )
fac' = foldn ((zero , succ zero) , ⟨ succ ∘ outl , times ∘ (succ ×₁ id) ⟩)
fac-test1 : fac 5 ≡ 120
fac-test1 = refl
fac-test2 : fac 0 ≡ 1
fac-test2 = refl
```
Proofs from the script
```agda
distrib : ∀ (m n x : ) → mult m (plus n x) ≡ plus (mult m n) (mult m x)
distrib m n x = begin
mult m (plus n x) ≡⟨ refl ⟩
mult m (foldn (n , succ) x) ≡⟨ ext-rev commute₁ x ⟩
foldn ((mult m n) , (plus m)) x ≡⟨ sym (ext-rev commute₂ x) ⟩
plus (mult m n) (foldn (zero , (plus m)) x) ≡⟨ refl ⟩
plus (mult m n) (mult m x) ∎
where
commute₁ : (mult m) ∘ (foldn (n , succ)) ≡ foldn ((mult m n) , (plus m))
commute₁ = foldn-fusion n succ (mult m) (mult m n) (plus m) kc kh
where
kc : mult m n ≡ mult m n
kc = refl
kh : mult m ∘ succ ≡ plus m ∘ mult m
kh = refl
commute₂ : (plus (mult m n)) ∘ (foldn (zero , (plus m))) ≡ foldn ((mult m n) , (plus m))
commute₂ = foldn-fusion zero (plus m) (plus (mult m n)) (mult m n) (plus m) kc (kh m n)
where
kc : plus (mult m n) zero ≡ mult m n
kc = refl
kh : ∀ (m n : ) → (plus (mult m n)) ∘ (plus m) ≡ (plus m) ∘ (plus (mult m n))
kh zero zero = refl
kh (succ m) zero = plus-comm'
kh m (succ n) = plus-comm'
induction : ∀ (p : 𝔹) → p zero ≡ true → (∀ (n : ) → p (succ n) ≡ p n) → p ≡ true !
induction p IS IH = begin
p ≡⟨ introʳ foldn-id ⟩
p ∘ foldn (zero , succ) ≡⟨ commute₁ ⟩
foldn (true , id) ≡⟨ sym commute₂ ⟩
(true !) ∘ foldn (zero , succ) ≡⟨ identityʳ ⟩
true ! ∎
where
commute₁ = foldn-fusion zero succ p true id IS (extensionality (p ∘ succ) p IH)
commute₂ = foldn-fusion zero succ (true !) true id refl refl
```
## Lists
```agda
data 𝕃 (A : Set) : Set where
nil : 𝕃 A
cons : (A × 𝕃 A) → 𝕃 A
foldr : ∀ {A C : Set} → (C × (A × C → C)) → 𝕃 A → C
foldr (c , h) nil = c
foldr (c , h) (cons (x , xs)) = h (x , foldr (c , h) xs)
foldr-id : ∀ {A : Set} → foldr (nil , cons) ≡ id {𝕃 A}
foldr-id {A} = extensionality (foldr (nil , cons)) id helper
where
helper : ∀ (x : 𝕃 A) → foldr (nil , cons) x ≡ id x
helper nil = refl
helper (cons (x , xs)) rewrite helper xs = refl
foldr-fusion : ∀ {A B B' : Set} (c : B) (h : A × B → B) (k : B → B') (c' : B') (h' : A × B' → B')
→ k c ≡ c'
→ k ∘ h ≡ h' ∘ (id ×₁ k)
→ k ∘ foldr (c , h) ≡ foldr (c' , h')
foldr-fusion {A} c h k c' h' kc kh = extensionality (k ∘ foldr (c , h)) (foldr (c' , h')) helper
where
helper : ∀ (x : 𝕃 A) → k (foldr (c , h) x) ≡ foldr (c' , h') x
helper nil = kc
helper (cons (x , xs)) rewrite ext-rev kh (x , foldr (c , h) xs) | helper xs = refl
length : ∀ {A : Set} → 𝕃 A →
length {A} = foldr (zero , h)
where
h : A ×
h = succ ∘ outr
isempty? : ∀ {A : Set} → 𝕃 A → 𝔹
isempty? = foldr (true , (false !))
cat : ∀ {A : Set} → 𝕃 A × 𝕃 A → 𝕃 A
cat = uncurry (foldr (id , curry (cons ∘ ⟨ outl ∘ outl , ev ∘ (outr ×₁ id) ⟩)))
sum : 𝕃
sum = foldr (0 , +)
```
**HOMEWORK 4**
```agda
take : ∀ {A : Set} → 𝕃 A → 𝕃 A
take zero = nil !
take (succ n) = foldr (nil , (cons ∘ (id ×₁ take n)))
```
**HOMEWORK 5**
We show that the `list` function is functorial:
```agda
list : ∀ {A B : Set} → (A → B) → 𝕃 A → 𝕃 B
list f = foldr (nil , (cons ∘ (f ×₁ id)))
list-id : ∀ {A : Set} → list id ≡ id {𝕃 A}
list-id = foldr-id
list-homomorphism : ∀ {A B C : Set} (f : A → B) (g : B → C) → (list g) ∘ (list f) ≡ list (g ∘ f)
list-homomorphism {A} {B} {C} f g = foldr-fusion nil (cons ∘ (f ×₁ id)) (list g) nil (cons ∘ ((g ∘ f) ×₁ id)) refl refl
```
**HOMEWORK 6**
Ackermann function:
```agda
ack : ×
ack = uncurry (foldn (succ , h))
where
-- https://arxiv.org/pdf/1602.05010.pdf
-- first look
h' : () →
h' f = foldn (f 1 , f)
-- pointfree
h : () →
h = curry (ev ∘ ((foldn ∘ ⟨ ev ∘ ⟨ id , 1 ! ⟩ , id ⟩) ×₁ id))
-- pointwise definition for comparison
ack' :
ack' 0 = succ
ack' (succ n) zero = ack' n 1
ack' (succ n) (succ m) = ack' n (ack' (succ n) m)
ack-test1 : ack (3 , 3) ≡ ack' 3 3
ack-test1 = refl
ack-test2 : ack (0 , 3) ≡ ack' 0 3
ack-test2 = refl
ack-test3 : ack (3 , 2) ≡ ack' 3 2
ack-test3 = refl
ack-test4 : ack (2 , 2) ≡ ack' 2 2
ack-test4 = refl
```
**HOMEWORK 7**
Trees:
```agda
data 𝕋 (A : Set) : Set where
leaf : A → 𝕋 A
bin : 𝕋 A × 𝕋 A → 𝕋 A
foldt : ∀ {A C : Set} → ((A → C) × ((C × C) → C)) → 𝕋 A → C
foldt (c , h) (leaf a) = c a
foldt (c , h) (bin (s , t)) = h (foldt (c , h) s , foldt (c , h) t)
front : ∀ {A : Set} → 𝕋 A → 𝕃 A
front = foldt ((cons ∘ ⟨ id , nil ! ⟩) , cat)
foldt-id : ∀ {A : Set} → foldt (leaf , bin) ≡ id {𝕋 A}
foldt-id {A} = extensionality (foldt (leaf , bin)) id helper
where
helper : ∀ (x : 𝕋 A) → foldt (leaf , bin) x ≡ id x
helper (leaf x) = refl
helper (bin (x , y)) rewrite helper x | helper y = refl
foldt-fusion : ∀ {A C C' : Set} (c : A → C) (h : C × C → C) (k : C → C') (c' : A → C') (h' : C' × C' → C') → k ∘ c ≡ c' → k ∘ h ≡ h' ∘ (k ×₁ k) → k ∘ foldt (c , h) ≡ foldt (c' , h')
foldt-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality (k ∘ foldt (c , h)) (foldt (c' , h')) helper
where
helper : ∀ (x : 𝕋 A) → k (foldt (c , h) x) ≡ foldt (c' , h') x
helper (leaf x) = ext-rev kc x
helper (bin (s , t)) rewrite ext-rev kh (foldt (c , h) s , foldt (c , h) t) | helper s | helper t = refl
```
**HOMEWORK 8**
```agda
sumt : 𝕋
sumt = foldt (id , +)
front-sum : sumt ≡ sum ∘ front
front-sum = sym (foldt-fusion (cons ∘ ⟨ id , nil ! ⟩) cat sum id + (extensionality _ _ triangle) square)
where
triangle : ∀ x → (sum ∘ (cons ∘ ⟨ id , nil ! ⟩)) x ≡ id x
triangle x rewrite +0 x = refl
square : sum ∘ cat ≡ + ∘ (sum ×₁ sum)
square = extensionality _ _ helper
where
helper : (x : 𝕃 × 𝕃 ) → (sum ∘ cat) x ≡ (+ ∘ (sum ×₁ sum)) x
helper = {! !}
```
**HOMEWORK 9**
```agda
data 𝕋' (A : Set) : Set where
leaf' : A → 𝕋' A
bin' : A × 𝕋' A × 𝕋' A → 𝕋' A
foldb : ∀ {A C : Set} → ((A → C) × (A × C × C → C)) → 𝕋' A → C
foldb (c , h) (leaf' x) = c x
foldb (c , h) (bin' (x , (s , t))) = h (x , (foldb (c , h) s , foldb (c , h) t))
foldb-id : ∀ {A : Set} → foldb (leaf' , bin') ≡ id {𝕋' A}
foldb-id {A} = extensionality (foldb (leaf' , bin')) id helper
where
helper : ∀ (x : 𝕋' A) → foldb (leaf' , bin') x ≡ id x
helper (leaf' x) = refl
helper (bin' (x , (t , s))) rewrite helper t | helper s = refl
foldb-fusion : ∀ {A C C' : Set} (c : A → C) (h : A × C × C → C) (k : C → C') (c' : A → C') (h' : A × C' × C' → C') → k ∘ c ≡ c' → k ∘ h ≡ h' ∘ (id ×₁ k ×₁ k) → k ∘ foldb (c , h) ≡ foldb (c' , h')
foldb-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality _ _ helper
where
helper : ∀ (x : 𝕋' A) → (k ∘ foldb (c , h)) x ≡ foldb (c' , h') x
helper (leaf' x) = ext-rev kc x
helper (bin' (x , (s , t))) rewrite ext-rev kh (x , (foldb (c , h) s , foldb (c , h) t)) | helper s | helper t = refl
size : ∀ {A : Set} → 𝕋' A →
size = foldb ((1 !) , (succ ∘ + ∘ outr))
flatten : ∀ {A : Set} → 𝕋' A → 𝕃 A
flatten = foldb ((cons ∘ ⟨ id , nil ! ⟩) , (cons ∘ (id ×₁ cat)))
flatten-size : ∀ {A : Set} → length ∘ flatten ≡ size {A}
flatten-size {A} = foldb-fusion (cons ∘ ⟨ id , nil ! ⟩) (cons ∘ (id ×₁ cat)) length (1 !) (succ ∘ + ∘ outr) refl square
where
square : length ∘ (cons ∘ ((id ×₁ cat))) ≡ (succ ∘ + ∘ outr) ∘ (id ×₁ length ×₁ length)
square = {! !}
```

35
agda/equality.agda Normal file
View file

@ -0,0 +1,35 @@
module equality where
-- in this module we define propositional equality and some helper syntax.
infix 4 _≡_
data _≡_ {A : Set} (a : A) : A Set where
instance refl : a a
{-# BUILTIN EQUALITY _≡_ #-}
-- ≡ is a equivalence relation
sym : {A : Set} {x y : A} x y y x
sym refl = refl
trans : {A : Set} {x y z : A} x y y z x z
trans refl refl = refl
cong : {A B : Set} (f : A B) {x y} x y f x f y
cong f refl = refl
-- Equational reasoning
infix 3 _∎
infixr 2 _≡⟨⟩_ step-≡
infix 1 begin_
begin_ : {A : Set} {x y : A} x y x y
begin x = x
_≡⟨⟩_ : {A : Set} (x y : A) x y x y
_ ≡⟨⟩ _ = λ x x
_∎ : {A : Set} (x : A) x x
_ = refl
step-≡ : {A : Set} (x {y z} : A) y z x y x z
step-≡ _ y≡z x≡y = trans x≡y y≡z
syntax step-≡ x eq1 eq2 = x ≡⟨ eq2 eq1