Add agda code from previous repo
This commit is contained in:
parent
89923c10c2
commit
98c38160ff
5 changed files with 1014 additions and 0 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -305,3 +305,4 @@ TSWLatexianTemp*
|
|||
*.agdai
|
||||
MAlonzo/**
|
||||
|
||||
*.html
|
||||
|
|
467
agda/Agda.css
Normal file
467
agda/Agda.css
Normal file
File diff suppressed because one or more lines are too long
25
agda/Makefile
Normal file
25
agda/Makefile
Normal file
|
@ -0,0 +1,25 @@
|
|||
.PHONY: all clean
|
||||
|
||||
all: agda
|
||||
make pandoc
|
||||
|
||||
open:
|
||||
firefox ./public/algebra.html
|
||||
|
||||
agda: Everything.agda
|
||||
agda --html --html-dir=public algebra.lagda.md --html-highlight=auto -i.
|
||||
rm -f public/Agda.css
|
||||
cp Agda.css public/Agda.css
|
||||
|
||||
pandoc: public/*.md
|
||||
@$(foreach file,$^, \
|
||||
pandoc $(file) -s --to=html+TEX_MATH_DOLLARS --mathjax -c Agda.css -o $(file:.md=.html) ; \
|
||||
)
|
||||
|
||||
clean:
|
||||
rm -f Everything.agda
|
||||
rm -rf public/*
|
||||
find . -name '*.agdai' -exec rm \{\} \;
|
||||
|
||||
Everything.agda:
|
||||
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda
|
486
agda/algebra.lagda.md
Normal file
486
agda/algebra.lagda.md
Normal file
|
@ -0,0 +1,486 @@
|
|||
```agda
|
||||
open import equality
|
||||
module algebra where
|
||||
```
|
||||
|
||||
# Algebra of programming
|
||||
|
||||
## Preliminaries (Types, Lemmas, Functions)
|
||||
|
||||
```agda
|
||||
id : ∀ {A : Set} → A → A
|
||||
id a = a
|
||||
|
||||
_! : ∀ {A B : Set} → (b : B) → A → B
|
||||
(b !) _ = b
|
||||
```
|
||||
|
||||
We will need functional extensionality
|
||||
|
||||
```agda
|
||||
postulate
|
||||
extensionality : ∀ {A B : Set} (f g : A → B) → (∀ (x : A) → f x ≡ g x) → f ≡ g
|
||||
|
||||
ext-rev : ∀ {A B : Set} {f g : A → B} → f ≡ g → (∀ (x : A) → f x ≡ g x)
|
||||
ext-rev {A} {B} {f} {g} refl x = refl
|
||||
```
|
||||
|
||||
Function composition and some facts about it
|
||||
|
||||
```agda
|
||||
infixr 9 _∘_
|
||||
_∘_ : ∀ {A B C : Set} (g : B → C) (f : A → B) → A → C
|
||||
(g ∘ f) x = g (f x)
|
||||
{-# INLINE _∘_ #-}
|
||||
|
||||
identityʳ : ∀ {A B : Set} {f : A → B} → f ∘ id ≡ f
|
||||
identityʳ {f} = refl
|
||||
|
||||
identityˡ : ∀ {A B : Set} {f : A → B} → id ∘ f ≡ f
|
||||
identityˡ {f} = refl
|
||||
|
||||
_⟩∘⟨_ : ∀ {A B C : Set} {g i : B → C} {f h : A → B} → g ≡ i → f ≡ h → g ∘ f ≡ i ∘ h
|
||||
refl ⟩∘⟨ refl = refl
|
||||
|
||||
introˡ : ∀ {A B : Set} {f : A → B} {h : B → B} → h ≡ id → f ≡ h ∘ f
|
||||
introˡ {f} {h} eq = trans (sym identityˡ) (sym eq ⟩∘⟨ refl)
|
||||
|
||||
introʳ : ∀ {A B : Set} {f : A → B} {h : A → A} → h ≡ id → f ≡ f ∘ h
|
||||
introʳ {f} {h} eq = trans (sym identityʳ) (refl ⟩∘⟨ sym eq)
|
||||
```
|
||||
|
||||
## Unit and void type
|
||||
|
||||
```agda
|
||||
data ⊤ : Set where
|
||||
unit : ⊤
|
||||
|
||||
data ⊥ : Set where
|
||||
|
||||
¡ : ∀ {B : Set} → ⊥ → B
|
||||
¡ ()
|
||||
|
||||
¡-unique : ∀ {B : Set} → (f : ⊥ → B) → f ≡ ¡
|
||||
¡-unique f = extensionality f ¡ (λ ())
|
||||
```
|
||||
|
||||
## Products
|
||||
|
||||
```agda
|
||||
infixr 8 _×_
|
||||
infixr 7 _×₁_
|
||||
record _×_ (A B : Set) : Set where
|
||||
constructor _,_
|
||||
field
|
||||
outl : A
|
||||
outr : B
|
||||
open _×_
|
||||
|
||||
×-cong : ∀ {A B : Set} {x y : A} {u v : B} → x ≡ y → u ≡ v → (x , u) ≡ (y , v)
|
||||
×-cong refl refl = refl
|
||||
|
||||
⟨_,_⟩ : {A B C : Set} → (A → B) → (A → C) → A → B × C
|
||||
⟨ f , g ⟩ x = (f x) , (g x)
|
||||
project₁ : ∀ {A B C : Set} (f : A → B) (g : A → C) → outl ∘ ⟨ f , g ⟩ ≡ f
|
||||
project₁ _ _ = refl
|
||||
project₂ : ∀ {A B C : Set} (f : A → B) (g : A → C) → outr ∘ ⟨ f , g ⟩ ≡ g
|
||||
project₂ _ _ = refl
|
||||
|
||||
⟨⟩-cong : {A B C : Set} → (f g : A → B) → (h i : A → C) → f ≡ g → h ≡ i → ⟨ f , h ⟩ ≡ ⟨ g , i ⟩
|
||||
⟨⟩-cong f g h i refl refl = refl
|
||||
|
||||
⟨⟩-unique : ∀ {A B C : Set} (f : A → B) (g : A → C) (h : A → B × C) → outl ∘ h ≡ f → outr ∘ h ≡ g → h ≡ ⟨ f , g ⟩
|
||||
⟨⟩-unique f g h refl refl = refl
|
||||
|
||||
_×₁_ : ∀ {A B C D : Set} (f : A → C) (g : B → D) → A × B → C × D
|
||||
_×₁_ f g (x , y) = f x , g y
|
||||
```
|
||||
|
||||
Composition as function on products
|
||||
|
||||
```agda
|
||||
comp : ∀ {A B C : Set} → ((A → B) × (B → C)) → A → C
|
||||
comp (f , g) x = g (f x)
|
||||
```
|
||||
|
||||
curry, uncurry, eval
|
||||
|
||||
```agda
|
||||
curry : ∀ {A B C : Set} → (A × B → C) → (A → B → C)
|
||||
curry f a b = f (a , b)
|
||||
|
||||
uncurry : ∀ {A B C : Set} → (A → B → C) → (A × B → C)
|
||||
uncurry f (a , b) = f a b
|
||||
|
||||
ev : ∀ {A B : Set} → (A → B) × A → B
|
||||
ev (f , a) = f a
|
||||
```
|
||||
|
||||
**HOMEWORK 1**
|
||||
|
||||
```agda
|
||||
curry-uncurry : ∀ {A B C : Set} → curry ∘ uncurry {A} {B} {C} ≡ id
|
||||
curry-uncurry = extensionality (curry ∘ uncurry) id λ _ → refl
|
||||
|
||||
uncurry-curry : ∀ {A B C : Set} → uncurry ∘ curry {A} {B} {C} ≡ id
|
||||
uncurry-curry = extensionality (uncurry ∘ curry) id λ _ → refl
|
||||
```
|
||||
|
||||
## Naturals
|
||||
|
||||
```agda
|
||||
data ℕ : Set where
|
||||
zero : ℕ
|
||||
succ : ℕ → ℕ
|
||||
{-# BUILTIN NATURAL ℕ #-}
|
||||
|
||||
data 𝔹 : Set where
|
||||
true : 𝔹
|
||||
false : 𝔹
|
||||
{-# BUILTIN BOOL 𝔹 #-}
|
||||
|
||||
succ-inj : ∀ {x y : ℕ} → succ x ≡ succ y → x ≡ y
|
||||
succ-inj refl = refl
|
||||
|
||||
-- todo rewrite foldn to use ugly cartesian product...
|
||||
foldn : ∀ {C : Set} → (C × (C → C)) → ℕ → C
|
||||
foldn (c , h) zero = c
|
||||
foldn (c , h) (succ n) = h (foldn (c , h) n)
|
||||
|
||||
foldn-id : foldn (zero , succ) ≡ id {ℕ}
|
||||
foldn-id = extensionality (foldn (zero , succ)) id helper
|
||||
where
|
||||
helper : (x : ℕ) → foldn (zero , succ) x ≡ id x
|
||||
helper zero = refl
|
||||
helper (succ n) rewrite helper n = refl
|
||||
|
||||
foldn-fusion : ∀ {C C' : Set} (c : C) (h : C → C) (k : C → C') (c' : C') (h' : C' → C') → k c ≡ c' → k ∘ h ≡ h' ∘ k → k ∘ foldn (c , h) ≡ foldn (c' , h')
|
||||
foldn-fusion {C} {C'} c h k c' h' refl eq = extensionality (k ∘ foldn (c , h)) (foldn (k c , h')) helper
|
||||
where
|
||||
helper : (x : ℕ) → (k ∘ foldn (c , h)) x ≡ foldn (k c , h') x
|
||||
helper zero = refl
|
||||
helper (succ x) = begin
|
||||
(k ∘ h) (foldn (c , h) x) ≡⟨ ext-rev eq (foldn (c , h) x) ⟩
|
||||
(h' ∘ k) (foldn (c , h) x) ≡⟨ cong h' (helper x) ⟩
|
||||
h' (foldn (k c , h') x) ∎
|
||||
```
|
||||
|
||||
### proving with the fusion law
|
||||
|
||||
```agda
|
||||
add : ℕ → ℕ → ℕ
|
||||
add zero n = n
|
||||
add (succ m) n = succ (add m n)
|
||||
|
||||
plus : ℕ → ℕ → ℕ
|
||||
plus n = foldn (n , succ)
|
||||
plus' : ℕ → ℕ → ℕ
|
||||
plus' = foldn (id , (comp ∘ ⟨ id , succ ! ⟩))
|
||||
plus-test1 : plus 13 19 ≡ 32
|
||||
plus-test1 = refl
|
||||
|
||||
+ : ℕ × ℕ → ℕ
|
||||
+ = uncurry (foldn (id , (comp ∘ ⟨ id , succ ! ⟩)))
|
||||
+-test1 : + (3 , 5) ≡ 8
|
||||
+-test1 = refl
|
||||
+-test2 : + (0 , 100) ≡ 100
|
||||
+-test2 = refl
|
||||
+-test3 : + (100 , 0) ≡ 100
|
||||
+-test3 = refl
|
||||
|
||||
+0 : ∀ (n : ℕ) → + (n , 0) ≡ n
|
||||
+0 zero = refl
|
||||
+0 (succ n) rewrite +0 n = refl
|
||||
|
||||
-- TODO define with fusion la
|
||||
plus-succˡ : ∀ {m n : ℕ} → succ (plus m n) ≡ plus (succ m) n
|
||||
plus-succˡ {m} {zero} = refl
|
||||
plus-succˡ {m} {succ n} rewrite plus-succˡ {m} {n} = refl
|
||||
plus-comm : ∀ {m n : ℕ} → plus m n ≡ plus n m
|
||||
plus-comm {zero} {n} = ext-rev foldn-id n
|
||||
plus-comm {succ m} {n} rewrite plus-comm {n} {m} = sym (plus-succˡ {m} {n})
|
||||
|
||||
plus-comm' : ∀ {m n : ℕ} → (plus m) ∘ (plus n) ≡ (plus n) ∘ (plus m)
|
||||
plus-comm' {m} {n} = begin
|
||||
(plus m) ∘ (foldn (n , succ)) ≡⟨ commute₁ ⟩
|
||||
foldn ((plus m n) , succ) ≡⟨ extensionality (foldn ((plus m n) , succ)) (foldn ((plus n m) , succ)) helper ⟩
|
||||
foldn ((plus n m) , succ) ≡⟨ sym commute₂ ⟩
|
||||
(plus n) ∘ (foldn (m , succ)) ∎
|
||||
where
|
||||
helper : (x : ℕ) → foldn ((plus m n) , succ) x ≡ foldn ((plus n m) , succ) x
|
||||
helper x rewrite plus-comm {m} {n} = refl
|
||||
commute₁ = foldn-fusion n succ (plus m) (plus m n) succ refl refl
|
||||
commute₂ = foldn-fusion m succ (plus n) (plus n m) succ refl refl
|
||||
```
|
||||
|
||||
**HOMEWORK 2**
|
||||
|
||||
```agda
|
||||
mul : ℕ → ℕ → ℕ
|
||||
mul zero n = zero
|
||||
mul (succ m) n = plus n (mul m n)
|
||||
mul-test1 : mul 0 3 ≡ 0
|
||||
mul-test1 = refl
|
||||
mul-test2 : mul 3 15 ≡ 45
|
||||
mul-test2 = refl
|
||||
|
||||
mult : (m : ℕ) → ℕ → ℕ
|
||||
mult m = foldn (zero , (plus m))
|
||||
|
||||
times : (ℕ × ℕ) → ℕ
|
||||
times = uncurry times'
|
||||
where
|
||||
times' : ℕ → ℕ → ℕ
|
||||
times' = foldn ((zero !) , (comp ∘ ⟨ curry ⟨ outr , ev ⟩ , + ! ⟩))
|
||||
times-test1 : times (1 , 1) ≡ 1
|
||||
times-test1 = refl
|
||||
times-test2 : times (123 , 15) ≡ 1845
|
||||
times-test2 = refl
|
||||
times-test3 : times (5 , 0) ≡ 0
|
||||
times-test3 = refl
|
||||
```
|
||||
|
||||
**HOMEWORK 3**
|
||||
|
||||
```agda
|
||||
fac2 : ℕ → ℕ
|
||||
fac2 zero = 1
|
||||
fac2 (succ n) = times (n , fac2 n)
|
||||
|
||||
fac : ℕ → ℕ
|
||||
fac = outr ∘ fac'
|
||||
where
|
||||
fac' : ℕ → (ℕ × ℕ)
|
||||
fac' = foldn ((zero , succ zero) , ⟨ succ ∘ outl , times ∘ (succ ×₁ id) ⟩)
|
||||
fac-test1 : fac 5 ≡ 120
|
||||
fac-test1 = refl
|
||||
fac-test2 : fac 0 ≡ 1
|
||||
fac-test2 = refl
|
||||
```
|
||||
|
||||
Proofs from the script
|
||||
|
||||
```agda
|
||||
distrib : ∀ (m n x : ℕ) → mult m (plus n x) ≡ plus (mult m n) (mult m x)
|
||||
distrib m n x = begin
|
||||
mult m (plus n x) ≡⟨ refl ⟩
|
||||
mult m (foldn (n , succ) x) ≡⟨ ext-rev commute₁ x ⟩
|
||||
foldn ((mult m n) , (plus m)) x ≡⟨ sym (ext-rev commute₂ x) ⟩
|
||||
plus (mult m n) (foldn (zero , (plus m)) x) ≡⟨ refl ⟩
|
||||
plus (mult m n) (mult m x) ∎
|
||||
where
|
||||
commute₁ : (mult m) ∘ (foldn (n , succ)) ≡ foldn ((mult m n) , (plus m))
|
||||
commute₁ = foldn-fusion n succ (mult m) (mult m n) (plus m) kc kh
|
||||
where
|
||||
kc : mult m n ≡ mult m n
|
||||
kc = refl
|
||||
kh : mult m ∘ succ ≡ plus m ∘ mult m
|
||||
kh = refl
|
||||
commute₂ : (plus (mult m n)) ∘ (foldn (zero , (plus m))) ≡ foldn ((mult m n) , (plus m))
|
||||
commute₂ = foldn-fusion zero (plus m) (plus (mult m n)) (mult m n) (plus m) kc (kh m n)
|
||||
where
|
||||
kc : plus (mult m n) zero ≡ mult m n
|
||||
kc = refl
|
||||
kh : ∀ (m n : ℕ) → (plus (mult m n)) ∘ (plus m) ≡ (plus m) ∘ (plus (mult m n))
|
||||
kh zero zero = refl
|
||||
kh (succ m) zero = plus-comm'
|
||||
kh m (succ n) = plus-comm'
|
||||
|
||||
induction : ∀ (p : ℕ → 𝔹) → p zero ≡ true → (∀ (n : ℕ) → p (succ n) ≡ p n) → p ≡ true !
|
||||
induction p IS IH = begin
|
||||
p ≡⟨ introʳ foldn-id ⟩
|
||||
p ∘ foldn (zero , succ) ≡⟨ commute₁ ⟩
|
||||
foldn (true , id) ≡⟨ sym commute₂ ⟩
|
||||
(true !) ∘ foldn (zero , succ) ≡⟨ identityʳ ⟩
|
||||
true ! ∎
|
||||
where
|
||||
commute₁ = foldn-fusion zero succ p true id IS (extensionality (p ∘ succ) p IH)
|
||||
commute₂ = foldn-fusion zero succ (true !) true id refl refl
|
||||
```
|
||||
|
||||
## Lists
|
||||
|
||||
```agda
|
||||
data 𝕃 (A : Set) : Set where
|
||||
nil : 𝕃 A
|
||||
cons : (A × 𝕃 A) → 𝕃 A
|
||||
|
||||
foldr : ∀ {A C : Set} → (C × (A × C → C)) → 𝕃 A → C
|
||||
foldr (c , h) nil = c
|
||||
foldr (c , h) (cons (x , xs)) = h (x , foldr (c , h) xs)
|
||||
|
||||
foldr-id : ∀ {A : Set} → foldr (nil , cons) ≡ id {𝕃 A}
|
||||
foldr-id {A} = extensionality (foldr (nil , cons)) id helper
|
||||
where
|
||||
helper : ∀ (x : 𝕃 A) → foldr (nil , cons) x ≡ id x
|
||||
helper nil = refl
|
||||
helper (cons (x , xs)) rewrite helper xs = refl
|
||||
|
||||
foldr-fusion : ∀ {A B B' : Set} (c : B) (h : A × B → B) (k : B → B') (c' : B') (h' : A × B' → B')
|
||||
→ k c ≡ c'
|
||||
→ k ∘ h ≡ h' ∘ (id ×₁ k)
|
||||
→ k ∘ foldr (c , h) ≡ foldr (c' , h')
|
||||
foldr-fusion {A} c h k c' h' kc kh = extensionality (k ∘ foldr (c , h)) (foldr (c' , h')) helper
|
||||
where
|
||||
helper : ∀ (x : 𝕃 A) → k (foldr (c , h) x) ≡ foldr (c' , h') x
|
||||
helper nil = kc
|
||||
helper (cons (x , xs)) rewrite ext-rev kh (x , foldr (c , h) xs) | helper xs = refl
|
||||
|
||||
length : ∀ {A : Set} → 𝕃 A → ℕ
|
||||
length {A} = foldr (zero , h)
|
||||
where
|
||||
h : A × ℕ → ℕ
|
||||
h = succ ∘ outr
|
||||
|
||||
isempty? : ∀ {A : Set} → 𝕃 A → 𝔹
|
||||
isempty? = foldr (true , (false !))
|
||||
|
||||
cat : ∀ {A : Set} → 𝕃 A × 𝕃 A → 𝕃 A
|
||||
cat = uncurry (foldr (id , curry (cons ∘ ⟨ outl ∘ outl , ev ∘ (outr ×₁ id) ⟩)))
|
||||
|
||||
sum : 𝕃 ℕ → ℕ
|
||||
sum = foldr (0 , +)
|
||||
```
|
||||
|
||||
**HOMEWORK 4**
|
||||
|
||||
```agda
|
||||
take : ∀ {A : Set} → ℕ → 𝕃 A → 𝕃 A
|
||||
take zero = nil !
|
||||
take (succ n) = foldr (nil , (cons ∘ (id ×₁ take n)))
|
||||
```
|
||||
|
||||
**HOMEWORK 5**
|
||||
|
||||
We show that the `list` function is functorial:
|
||||
|
||||
```agda
|
||||
list : ∀ {A B : Set} → (A → B) → 𝕃 A → 𝕃 B
|
||||
list f = foldr (nil , (cons ∘ (f ×₁ id)))
|
||||
|
||||
list-id : ∀ {A : Set} → list id ≡ id {𝕃 A}
|
||||
list-id = foldr-id
|
||||
|
||||
list-homomorphism : ∀ {A B C : Set} (f : A → B) (g : B → C) → (list g) ∘ (list f) ≡ list (g ∘ f)
|
||||
list-homomorphism {A} {B} {C} f g = foldr-fusion nil (cons ∘ (f ×₁ id)) (list g) nil (cons ∘ ((g ∘ f) ×₁ id)) refl refl
|
||||
```
|
||||
|
||||
**HOMEWORK 6**
|
||||
|
||||
Ackermann function:
|
||||
|
||||
```agda
|
||||
ack : ℕ × ℕ → ℕ
|
||||
ack = uncurry (foldn (succ , h))
|
||||
where
|
||||
-- https://arxiv.org/pdf/1602.05010.pdf
|
||||
-- first look
|
||||
h' : (ℕ → ℕ) → ℕ → ℕ
|
||||
h' f = foldn (f 1 , f)
|
||||
-- pointfree
|
||||
h : (ℕ → ℕ) → ℕ → ℕ
|
||||
h = curry (ev ∘ ((foldn ∘ ⟨ ev ∘ ⟨ id , 1 ! ⟩ , id ⟩) ×₁ id))
|
||||
|
||||
-- pointwise definition for comparison
|
||||
ack' : ℕ → ℕ → ℕ
|
||||
ack' 0 = succ
|
||||
ack' (succ n) zero = ack' n 1
|
||||
ack' (succ n) (succ m) = ack' n (ack' (succ n) m)
|
||||
|
||||
ack-test1 : ack (3 , 3) ≡ ack' 3 3
|
||||
ack-test1 = refl
|
||||
ack-test2 : ack (0 , 3) ≡ ack' 0 3
|
||||
ack-test2 = refl
|
||||
ack-test3 : ack (3 , 2) ≡ ack' 3 2
|
||||
ack-test3 = refl
|
||||
ack-test4 : ack (2 , 2) ≡ ack' 2 2
|
||||
ack-test4 = refl
|
||||
```
|
||||
|
||||
**HOMEWORK 7**
|
||||
|
||||
Trees:
|
||||
|
||||
```agda
|
||||
data 𝕋 (A : Set) : Set where
|
||||
leaf : A → 𝕋 A
|
||||
bin : 𝕋 A × 𝕋 A → 𝕋 A
|
||||
|
||||
foldt : ∀ {A C : Set} → ((A → C) × ((C × C) → C)) → 𝕋 A → C
|
||||
foldt (c , h) (leaf a) = c a
|
||||
foldt (c , h) (bin (s , t)) = h (foldt (c , h) s , foldt (c , h) t)
|
||||
|
||||
front : ∀ {A : Set} → 𝕋 A → 𝕃 A
|
||||
front = foldt ((cons ∘ ⟨ id , nil ! ⟩) , cat)
|
||||
|
||||
foldt-id : ∀ {A : Set} → foldt (leaf , bin) ≡ id {𝕋 A}
|
||||
foldt-id {A} = extensionality (foldt (leaf , bin)) id helper
|
||||
where
|
||||
helper : ∀ (x : 𝕋 A) → foldt (leaf , bin) x ≡ id x
|
||||
helper (leaf x) = refl
|
||||
helper (bin (x , y)) rewrite helper x | helper y = refl
|
||||
|
||||
foldt-fusion : ∀ {A C C' : Set} (c : A → C) (h : C × C → C) (k : C → C') (c' : A → C') (h' : C' × C' → C') → k ∘ c ≡ c' → k ∘ h ≡ h' ∘ (k ×₁ k) → k ∘ foldt (c , h) ≡ foldt (c' , h')
|
||||
foldt-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality (k ∘ foldt (c , h)) (foldt (c' , h')) helper
|
||||
where
|
||||
helper : ∀ (x : 𝕋 A) → k (foldt (c , h) x) ≡ foldt (c' , h') x
|
||||
helper (leaf x) = ext-rev kc x
|
||||
helper (bin (s , t)) rewrite ext-rev kh (foldt (c , h) s , foldt (c , h) t) | helper s | helper t = refl
|
||||
|
||||
```
|
||||
|
||||
**HOMEWORK 8**
|
||||
|
||||
```agda
|
||||
sumt : 𝕋 ℕ → ℕ
|
||||
sumt = foldt (id , +)
|
||||
|
||||
front-sum : sumt ≡ sum ∘ front
|
||||
front-sum = sym (foldt-fusion (cons ∘ ⟨ id , nil ! ⟩) cat sum id + (extensionality _ _ triangle) square)
|
||||
where
|
||||
triangle : ∀ x → (sum ∘ (cons ∘ ⟨ id , nil ! ⟩)) x ≡ id x
|
||||
triangle x rewrite +0 x = refl
|
||||
square : sum ∘ cat ≡ + ∘ (sum ×₁ sum)
|
||||
square = extensionality _ _ helper
|
||||
where
|
||||
helper : (x : 𝕃 ℕ × 𝕃 ℕ) → (sum ∘ cat) x ≡ (+ ∘ (sum ×₁ sum)) x
|
||||
helper = {! !}
|
||||
```
|
||||
|
||||
**HOMEWORK 9**
|
||||
|
||||
```agda
|
||||
data 𝕋' (A : Set) : Set where
|
||||
leaf' : A → 𝕋' A
|
||||
bin' : A × 𝕋' A × 𝕋' A → 𝕋' A
|
||||
|
||||
foldb : ∀ {A C : Set} → ((A → C) × (A × C × C → C)) → 𝕋' A → C
|
||||
foldb (c , h) (leaf' x) = c x
|
||||
foldb (c , h) (bin' (x , (s , t))) = h (x , (foldb (c , h) s , foldb (c , h) t))
|
||||
|
||||
foldb-id : ∀ {A : Set} → foldb (leaf' , bin') ≡ id {𝕋' A}
|
||||
foldb-id {A} = extensionality (foldb (leaf' , bin')) id helper
|
||||
where
|
||||
helper : ∀ (x : 𝕋' A) → foldb (leaf' , bin') x ≡ id x
|
||||
helper (leaf' x) = refl
|
||||
helper (bin' (x , (t , s))) rewrite helper t | helper s = refl
|
||||
|
||||
foldb-fusion : ∀ {A C C' : Set} (c : A → C) (h : A × C × C → C) (k : C → C') (c' : A → C') (h' : A × C' × C' → C') → k ∘ c ≡ c' → k ∘ h ≡ h' ∘ (id ×₁ k ×₁ k) → k ∘ foldb (c , h) ≡ foldb (c' , h')
|
||||
foldb-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality _ _ helper
|
||||
where
|
||||
helper : ∀ (x : 𝕋' A) → (k ∘ foldb (c , h)) x ≡ foldb (c' , h') x
|
||||
helper (leaf' x) = ext-rev kc x
|
||||
helper (bin' (x , (s , t))) rewrite ext-rev kh (x , (foldb (c , h) s , foldb (c , h) t)) | helper s | helper t = refl
|
||||
|
||||
size : ∀ {A : Set} → 𝕋' A → ℕ
|
||||
size = foldb ((1 !) , (succ ∘ + ∘ outr))
|
||||
|
||||
flatten : ∀ {A : Set} → 𝕋' A → 𝕃 A
|
||||
flatten = foldb ((cons ∘ ⟨ id , nil ! ⟩) , (cons ∘ (id ×₁ cat)))
|
||||
|
||||
flatten-size : ∀ {A : Set} → length ∘ flatten ≡ size {A}
|
||||
flatten-size {A} = foldb-fusion (cons ∘ ⟨ id , nil ! ⟩) (cons ∘ (id ×₁ cat)) length (1 !) (succ ∘ + ∘ outr) refl square
|
||||
where
|
||||
square : length ∘ (cons ∘ ((id ×₁ cat))) ≡ (succ ∘ + ∘ outr) ∘ (id ×₁ length ×₁ length)
|
||||
square = {! !}
|
||||
```
|
35
agda/equality.agda
Normal file
35
agda/equality.agda
Normal file
|
@ -0,0 +1,35 @@
|
|||
module equality where
|
||||
-- in this module we define propositional equality and some helper syntax.
|
||||
|
||||
infix 4 _≡_
|
||||
data _≡_ {A : Set} (a : A) : A → Set where
|
||||
instance refl : a ≡ a
|
||||
{-# BUILTIN EQUALITY _≡_ #-}
|
||||
|
||||
-- ≡ is a equivalence relation
|
||||
sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x
|
||||
sym refl = refl
|
||||
|
||||
trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
|
||||
trans refl refl = refl
|
||||
|
||||
cong : ∀ {A B : Set} (f : A → B) {x y} → x ≡ y → f x ≡ f y
|
||||
cong f refl = refl
|
||||
|
||||
-- Equational reasoning
|
||||
infix 3 _∎
|
||||
infixr 2 _≡⟨⟩_ step-≡
|
||||
infix 1 begin_
|
||||
begin_ : ∀ {A : Set} {x y : A} → x ≡ y → x ≡ y
|
||||
begin x = x
|
||||
|
||||
_≡⟨⟩_ : ∀ {A : Set} (x y : A) → x ≡ y → x ≡ y
|
||||
_ ≡⟨⟩ _ = λ x → x
|
||||
|
||||
_∎ : ∀ {A : Set} (x : A) → x ≡ x
|
||||
_ ∎ = refl
|
||||
|
||||
step-≡ : ∀ {A : Set} (x {y z} : A) → y ≡ z → x ≡ y → x ≡ z
|
||||
step-≡ _ y≡z x≡y = trans x≡y y≡z
|
||||
|
||||
syntax step-≡ x eq1 eq2 = x ≡⟨ eq2 ⟩ eq1
|
Loading…
Reference in a new issue