
Algebra of Programming
Lecture notes
Prof. Dr. Stefan Milius

Leon Vatthauer

March 22, 2024

Lecture notes Algebra of Programming

Contents
1 Introduction 2

1.1 Functions . 2
1.2 Data Types . 2

1.2.1 Natural Numbers . 3
1.2.2 Lists . 4

2 Category Theory 5
2.1 Special Objects . 5
2.2 Duality . 5
2.3 Functors . 5
2.4 Natural Transformations . 5
2.5 Functor Algebras . 5
2.6 Functor Coalgebras . 5
2.7 (co)Limits . 5

3 Constructions 6
3.1 CPO . 6
3.2 Initial Algebra Construction . 6
3.3 Terminal Coalgebra Construction . 6

References 7

1

Lecture notes Algebra of Programming

1 Introduction
This is a summary of the course “Algebra des Programmierens” taught by Prof. Dr. Stefan
Milius in the winter term 2023/2024 at the FAU 1. The course is based on [2] with [1] as a
reference for category theory.

Goal of the course is to develop a mathematical theory for semantics of data types and their
accompanying proof principles. The chosen environment is the field of category theory.

1.1 Functions
A function 𝑓 ∶ 𝑋 → 𝑌 is a mapping from the set 𝑋 (the domain of 𝑓) to the set 𝑌 (the codomain
of 𝑓). More concretely 𝑓 is a relation 𝑓 ⊆ 𝑋 × 𝑌 which is

• left-total, i.e. for all 𝑥 ∈ 𝑋 exists some 𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑓 ;

• right-unique, i.e. any (𝑥, 𝑦), (𝑥, 𝑦′) ∈ 𝑓 imply 𝑦 = 𝑦′.

Often, one is also interested in the symmetrical properties, a function is called

• injective or left-unique if for every 𝑥, 𝑥′ ∈ 𝑋 the implication 𝑓(𝑥) = 𝑓(𝑥′) → 𝑥 = 𝑥′ holds;

• surjective or right-total if for every 𝑦 ∈ 𝑌 there exists an 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦;

• bijective if it is injective and surjective.

Example 1.1. 1. The identity function 𝑖𝑑𝐴 ∶ 𝐴 → 𝐴, 𝑖𝑑𝐴(𝑥) = 𝑥

2. The constant function 𝑏! ∶ 𝐴 → 𝐵 for 𝑏 ∈ 𝐵 defined by 𝑏!(𝑥) = 𝑏

3. The inclusion function 𝑖𝐴 ∶ 𝐴 → 𝐵 for 𝐴 ⊆ 𝐵 defined by 𝑖𝐴(𝑥) = 𝑥

4. Constants 𝑏 ∶ 1 → 𝐵, where 1 ∶= ∗. The function 𝑏 is in bijection with the set 𝐵.

5. Composition of function 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 called 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 defined by
(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).

6. The empty function ¡ ∶ ∅ → 𝐵

7. The singleton function ! ∶ 𝐴 → 1

1.2 Data Types
Programs work with data that should ideally be organized in a useful manner. A useful repre-
sentation for data in functional programming is by means of algebraic data types. Some basic
data types (written in Haskell notation) are

1 data Bool = True | False
2 data Nat = Zero | Succ Nat

These data types are declared by means of constructors, yielding concrete descriptions how
inhabitants of these types are created. Parametric data types are additionally parametrized by
another data type, e.g.

1 data Maybe a = Nothing | Just a
2 data Either a b = Left a | Right b
3 data List a = Nil | Cons a (List a)

1Friedrich-Alexander-Universität Erlangen-Nürnberg

2

Lecture notes Algebra of Programming

Such data types (parametric or non-parametric) usually come with a principle for defining
functions called recursion and in richer type systems (e.g. in a dependently typed setting) with
a principle for proving facts about recursive functions called induction. Equivalently, every
function defined by recursion can be defined via a fold-function which satisfies an identity and
fusion law, which replace the induction principle. Let us now consider two examples of data
types and illustrate this.

1.2.1 Natural Numbers

The type of natural numbers comes with a fold function 𝑓𝑜𝑙𝑑𝑛 ∶ 𝐶 → (𝑁𝑎𝑡 → 𝐶) → 𝑁𝑎𝑡 → 𝐶
for every 𝐶, defined by

𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑧𝑒𝑟𝑜 = 𝑐
𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ (𝑠𝑢𝑐 𝑛) = ℎ (𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑛)

Example 1.2. Let us now consider some functions defined in terms of 𝑓𝑜𝑙𝑑𝑛.

• 𝑖𝑠𝑧𝑒𝑟𝑜 ∶ 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙 is defined by

𝑖𝑠𝑧𝑒𝑟𝑜 = 𝑓𝑜𝑙𝑑𝑛 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒!

• 𝑝𝑙𝑢𝑠 ∶ 𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝑁𝑎𝑡 is defined by

𝑝𝑙𝑢𝑠 = 𝑓𝑜𝑙𝑑𝑛 𝑖𝑑(𝜆𝑓 𝑛.𝑠𝑢𝑐𝑐(𝑓 𝑛))

Proposition 1.3. 𝑓𝑜𝑙𝑑𝑛 satisfies the following two rules

1. Identity: 𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 = 𝑖𝑑𝑁𝑎𝑡

2. Fusion: for all 𝑐 ∶ 𝐶, ℎ, ℎ′ ∶ 𝑁𝑎𝑡 → 𝐶 and 𝑘 ∶ 𝐶 → 𝐶′ with 𝑘𝑐 = 𝑐′ and 𝑘ℎ = ℎ′𝑘 follows
𝑘 ∘ 𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ = 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′, or diagrammatically:

1 𝐶 𝐶

𝐶′ 𝐶′

𝑐

𝑘𝑐′

ℎ

ℎ′

𝑘

implies
𝑁𝑎𝑡 𝐶

𝐶′

𝑘

𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ

𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′

Proof. Both follow by induction over an argument 𝑛 ∶ 𝑁𝑎𝑡:
1. Identity:

Case 1. 𝑛 = 𝑧𝑒𝑟𝑜
𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 𝑧𝑒𝑟𝑜 = 𝑧𝑒𝑟𝑜 = 𝑖𝑑 𝑧𝑒𝑟𝑜

Case 2. 𝑛 = 𝑠𝑢𝑐𝑐 𝑚
𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 (𝑠𝑢𝑐𝑐 𝑚) = 𝑠𝑢𝑐𝑐(𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 𝑚)

= 𝑠𝑢𝑐𝑐 𝑚 (IH)
= 𝑖𝑑(𝑠𝑢𝑐𝑐 𝑚)

3

Lecture notes Algebra of Programming

2. Fusion:
Case 1. 𝑛 = 𝑧𝑒𝑟𝑜

𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑧𝑒𝑟𝑜) = 𝑘 𝑐 = 𝑐′ = 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ 𝑧𝑒𝑟𝑜

Case 2. 𝑛 = 𝑠𝑢𝑐𝑐 𝑚

𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ (𝑠𝑢𝑐𝑐 𝑚)) = 𝑘(ℎ(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑚))
= ℎ′(𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑚))
= ℎ′(𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ 𝑚) (IH)
= 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ (𝑠𝑢𝑐𝑐 𝑚)

Example 1.4. The identity and fusion laws can in turn be used to prove the following induction
principle:

For any predicate 𝑝 ∶ 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙,

1. 𝑝 𝑧𝑒𝑟𝑜 = 𝑡𝑟𝑢𝑒 and

2. 𝑝 ∘ 𝑠𝑢𝑐𝑐 = 𝑝

implies 𝑝 = 𝑡𝑟𝑢𝑒!. This follows by

𝑝
= 𝑝 ∘ (𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐) (Identity)
= 𝑓𝑜𝑙𝑑𝑛 𝑡𝑟𝑢𝑒 𝑖𝑑 (Fusion)
= 𝑡𝑟𝑢𝑒! ∘ (𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐) (Fusion)
= 𝑡𝑟𝑢𝑒!. (Identity)

Where the first application of Fusion is justified, since the diagram

1 𝑁𝑎𝑡 𝑁𝑎𝑡

𝐵𝑜𝑜𝑙 𝐵𝑜𝑜𝑙

𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐

𝑝𝑝

𝑖𝑑

𝑡𝑟𝑢𝑒

commutes by the requisite properties of 𝑝, and the second application of Fusion is justified,
since the diagram

1 𝑁𝑎𝑡 𝑁𝑎𝑡

𝐵𝑜𝑜𝑙 𝐵𝑜𝑜𝑙

𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐

𝑡𝑟𝑢𝑒!𝑡𝑟𝑢𝑒!

𝑖𝑑

𝑡𝑟𝑢𝑒

trivially commutes.

1.2.2 Lists

4

Lecture notes Algebra of Programming

2 Category Theory
2.1 Special Objects
2.2 Duality
2.3 Functors
2.4 Natural Transformations
2.5 Functor Algebras
2.6 Functor Coalgebras
2.7 (co)Limits

5

Lecture notes Algebra of Programming

3 Constructions
3.1 CPO
3.2 Initial Algebra Construction
3.3 Terminal Coalgebra Construction

6

Lecture notes Algebra of Programming

References
[1] J. Adámek, H. Herrlich, and G. Strecker, Abstract and concrete categories. Wiley-

Interscience, 1990.
[2] E. Poll and S. Thompson, ‘Algebra of programming by richard bird and oege de moor,

prentice hall, 1996 (dated 1997).,’ Journal of Functional Programming, vol. 9, no. 3, pp. 347–
354, 1999.

7

	Introduction
	Functions
	Data Types
	Natural Numbers
	Lists

	Category Theory
	Special Objects
	Duality
	Functors
	Natural Transformations
	Functor Algebras
	Functor Coalgebras
	(co)Limits

	Constructions
	CPO
	Initial Algebra Construction
	Terminal Coalgebra Construction

	References

