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1 Introduction

This is a summary of the course “Algebra des Programmierens” taught by Prof. Dr. Stefan
Milius in the winter term 2023/2024 at the FAU 1. The course is based on [2] with [1] as a
reference for category theory.

Goal of the course is to develop a mathematical theory for semantics of data types and their
accompanying proof principles. The chosen environment is the field of category theory.

1.1 Functions

A function 𝑓 ∶ 𝑋 → 𝑌 is a mapping from the set 𝑋 (the domain of 𝑓) to the set 𝑌 (the codomain
of 𝑓). More concretely 𝑓 is a relation 𝑓 ⊆ 𝑋 × 𝑌 which is

• left-total, i.e. for all 𝑥 ∈ 𝑋 exists some 𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑓 ;

• right-unique, i.e. any (𝑥, 𝑦), (𝑥, 𝑦′) ∈ 𝑓 imply 𝑦 = 𝑦′.
Often, one is also interested in the symmetrical properties, a function is called

• injective or left-unique if for every 𝑥, 𝑥′ ∈ 𝑋 the implication 𝑓(𝑥) = 𝑓(𝑥′) → 𝑥 = 𝑥′ holds;

• surjective or right-total if for every 𝑦 ∈ 𝑌 there exists an 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦;

• bijective if it is injective and surjective.

Example 1.1.1. 1. The identity function 𝑖𝑑𝐴 ∶ 𝐴 → 𝐴, 𝑖𝑑𝐴(𝑥) = 𝑥
2. The constant function 𝑏! ∶ 𝐴 → 𝐵 for 𝑏 ∈ 𝐵 defined by 𝑏!(𝑥) = 𝑏
3. The inclusion function 𝑖𝐴 ∶ 𝐴 → 𝐵 for 𝐴 ⊆ 𝐵 defined by 𝑖𝐴(𝑥) = 𝑥
4. Constants 𝑏 ∶ 1 → 𝐵, where 1 ∶= ∗. The function 𝑏 is in bijection with the set 𝐵.

5. Composition of function 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 called 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 defined by
(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).

6. The empty function ¡ ∶ ∅ → 𝐵
7. The singleton function ! ∶ 𝐴 → 1

1.2 Data Types

Programs work with data that should ideally be organized in a useful manner. A useful repre-
sentation for data in functional programming is by means of algebraic data types. Some basic
data types (written in Haskell notation) are

1 data Bool = True | False
2 data Nat = Zero | Succ Nat

1Friedrich-Alexander-Universität Erlangen-Nürnberg
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1 Introduction

These data types are declared by means of constructors, yielding concrete descriptions how
inhabitants of these types are created. Parametric data types are additionally parametrized by
another data type, e.g.

1 data Maybe a = Nothing | Just a
2 data Either a b = Left a | Right b
3 data List a = Nil | Cons a (List a)

Such data types (parametric or non-parametric) usually come with a principle for defining
functions called recursion and in richer type systems (e.g. in a dependently typed setting) with
a principle for proving facts about recursive functions called induction. Equivalently, every
function defined by recursion can be defined via a fold-function which satisfies an identity and
fusion law, which replace the induction principle. Let us now consider two examples of data
types and illustrate this.

1.2.1 Natural Numbers

The type of natural numbers comes with a fold function 𝑓𝑜𝑙𝑑𝑛 ∶ 𝐶 → (𝑁𝑎𝑡 → 𝐶) → 𝑁𝑎𝑡 → 𝐶
for every 𝐶, defined by

𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑧𝑒𝑟𝑜 = 𝑐
𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ (𝑠𝑢𝑐 𝑛) = ℎ (𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑛)

Example 1.2.1. Let us now consider some functions defined in terms of 𝑓𝑜𝑙𝑑𝑛.

• 𝑖𝑠𝑧𝑒𝑟𝑜 ∶ 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙 is defined by

𝑖𝑠𝑧𝑒𝑟𝑜 = 𝑓𝑜𝑙𝑑𝑛 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒!

• 𝑝𝑙𝑢𝑠 ∶ 𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝑁𝑎𝑡 is defined by

𝑝𝑙𝑢𝑠 = 𝑓𝑜𝑙𝑑𝑛 𝑖𝑑 (𝑠𝑢𝑐𝑐 ∘ 𝑒𝑣𝑎𝑙)
where 𝑒𝑣𝑎𝑙 ∶ (𝐴 → 𝐵) → 𝐴 → 𝐵 is defined by

𝑒𝑣𝑎𝑙 𝑓 𝑎 = 𝑓 𝑎

Proposition 1.2.2. 𝑓𝑜𝑙𝑑𝑛 satisfies the following two rules

1. Identity: 𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 = 𝑖𝑑𝑁𝑎𝑡

2. Fusion: for all 𝑐 ∶ 𝐶, ℎ, ℎ′ ∶ 𝑁𝑎𝑡 → 𝐶 and 𝑘 ∶ 𝐶 → 𝐶′ with 𝑘𝑐 = 𝑐′ and 𝑘ℎ = ℎ′𝑘 follows
𝑘 ∘ 𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ = 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′, or diagrammatically:

1 𝐶 𝐶

𝐶′ 𝐶′

𝑐

𝑘𝑐′

ℎ

ℎ′

𝑘

implies
𝑁𝑎𝑡 𝐶

𝐶′

𝑘

𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ

𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′
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1.2.1 Natural Numbers

Proof. Both follow by induction over an argument 𝑛 ∶ 𝑁𝑎𝑡:
1. Identity:

Case 1. 𝑛 = 𝑧𝑒𝑟𝑜
𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 𝑧𝑒𝑟𝑜 = 𝑧𝑒𝑟𝑜 = 𝑖𝑑 𝑧𝑒𝑟𝑜

Case 2. 𝑛 = 𝑠𝑢𝑐𝑐 𝑚

𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 (𝑠𝑢𝑐𝑐 𝑚) = 𝑠𝑢𝑐𝑐(𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐 𝑚)
= 𝑠𝑢𝑐𝑐 𝑚 (IH)
= 𝑖𝑑(𝑠𝑢𝑐𝑐 𝑚)

2. Fusion:

Case 1. 𝑛 = 𝑧𝑒𝑟𝑜

𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑧𝑒𝑟𝑜) = 𝑘 𝑐 = 𝑐′ = 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ 𝑧𝑒𝑟𝑜

Case 2. 𝑛 = 𝑠𝑢𝑐𝑐 𝑚

𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ (𝑠𝑢𝑐𝑐 𝑚)) = 𝑘(ℎ(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑚))
= ℎ′(𝑘(𝑓𝑜𝑙𝑑𝑛 𝑐 ℎ 𝑚))
= ℎ′(𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ 𝑚) (IH)
= 𝑓𝑜𝑙𝑑𝑛 𝑐′ ℎ′ (𝑠𝑢𝑐𝑐 𝑚)

Example 1.2.3. The identity and fusion laws can in turn be used to prove the following
induction principle:

For any predicate 𝑝 ∶ 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙,
1. 𝑝 𝑧𝑒𝑟𝑜 = 𝑡𝑟𝑢𝑒 and

2. 𝑝 ∘ 𝑠𝑢𝑐𝑐 = 𝑝
implies 𝑝 = 𝑡𝑟𝑢𝑒!. This follows by

𝑝
= 𝑝 ∘ (𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐) (Identity)
= 𝑓𝑜𝑙𝑑𝑛 𝑡𝑟𝑢𝑒 𝑖𝑑 (Fusion)
= 𝑡𝑟𝑢𝑒! ∘ (𝑓𝑜𝑙𝑑𝑛 𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐) (Fusion)
= 𝑡𝑟𝑢𝑒!. (Identity)

Where the first application of Fusion is justified, since the diagram

1 𝑁𝑎𝑡 𝑁𝑎𝑡

𝐵𝑜𝑜𝑙 𝐵𝑜𝑜𝑙

𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐

𝑝𝑝

𝑖𝑑

𝑡𝑟𝑢𝑒
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1 Introduction

commutes by the requisite properties of 𝑝, and the second application of Fusion is justified,
since the diagram

1 𝑁𝑎𝑡 𝑁𝑎𝑡

𝐵𝑜𝑜𝑙 𝐵𝑜𝑜𝑙

𝑧𝑒𝑟𝑜 𝑠𝑢𝑐𝑐

𝑡𝑟𝑢𝑒!𝑡𝑟𝑢𝑒!

𝑖𝑑

𝑡𝑟𝑢𝑒

trivially commutes.

1.2.2 Lists

We will now look at the 𝐿𝑖𝑠𝑡 type and examine it for similar properties. Let us start with the
fold function 𝑓𝑜𝑙𝑑𝑟 ∶ 𝐶 → (𝐴 → 𝐶 → 𝐶) → 𝐿𝑖𝑠𝑡 𝐴 → 𝐶, which is defined by

𝑓𝑜𝑙𝑑𝑟 𝑐 ℎ 𝑛𝑖𝑙 = 𝑐
𝑓𝑜𝑙𝑑𝑟 𝑐 ℎ (𝑐𝑜𝑛𝑠 𝑥 𝑥𝑠) = ℎ 𝑎 (𝑓𝑜𝑙𝑑𝑟 𝑐 ℎ 𝑥𝑠)

Example 1.2.4. Again, let us define some functions using 𝑓𝑜𝑙𝑑𝑟.
• 𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → 𝑁𝑎𝑡 is defined by

𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓𝑜𝑙𝑑𝑟 𝑧𝑒𝑟𝑜 (𝑠𝑢𝑐𝑐!)

• For 𝑓 ∶ 𝐴 → 𝐵 we can define 𝐿𝑖𝑠𝑡-mapping function 𝐿𝑖𝑠𝑡 𝑓 ∶ 𝐿𝑖𝑠𝑡 𝐴 → 𝐿𝑖𝑠𝑡 𝐵 by

𝐿𝑖𝑠𝑡 𝑓 = 𝑓𝑜𝑙𝑑𝑟 𝑛𝑖𝑙 (𝑐𝑜𝑛𝑠 ∘ 𝑓)

Proposition 1.2.5. 𝑓𝑜𝑙𝑑𝑟 satisfies the following two rules

1. Identity: 𝑓𝑜𝑙𝑑𝑟 𝑛𝑖𝑙 𝑐𝑜𝑛𝑠 = 𝑖𝑑𝐿𝑖𝑠𝑡 𝐴

2. Fusion: for all 𝑐 ∶ 𝐶, ℎ, ℎ′ ∶ 𝑁𝑎𝑡
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2 Category Theory

Categories consist of objects and morphisms between those objects, that can be composed in
a coherent way. This yields a framework for abstraction of many mathematical concepts that
enables us to reason on a very abstract level.

Definition 2.0.1 (Category). A category 𝒞 consists of

• a class of objects denoted |𝒞 |,
• for every pair of objects 𝐴,𝐵 ∈ |𝒞 | a set of morphisms 𝒞 (𝐴,𝐵) called the hom-set,

• a morphism 𝑖𝑑𝐴 ∶ 𝐴 → 𝐴 for every 𝐴 ∈ |𝒞 |
• a composition operator (--) ∘ (--) ∶ 𝒞 (𝐵,𝐶) → 𝒞 (𝐴,𝐵) → 𝒞 (𝐴,𝐶) for every 𝐴,𝐵,𝐶 ∈ |𝒞 |

additionally the composition must be associative and 𝑓 ∘ 𝑖𝑑𝐴 = 𝑓 = 𝑖𝑑𝐵 ∘ 𝑓 for any 𝑓 ∶ 𝐴 → 𝐵.

Example 2.0.2. Some standard examples of categories and their objects and morphisms in-
clude:

Category Objects Morphisms
Set Sets Functions
Par Sets Partial functions
Rel Sets Binary relations
Gra Directed Graphs Graph homomorphisms
Pos Partially ordered sets Monotone mappings
Mon Monoids Monoid homomorphisms
Monoid (𝑀, ⋅, 𝑒) A single object ∗ 𝑥 ∶ ∗ → ∗ for every 𝑥 ∈ 𝑀
Poset (𝑋,≤) Elements of 𝑋 𝑥 ≤ 𝑦 ⟺ ∃!𝑓 ∶ 𝑥 → 𝑦

2.1 Special Objects

Special objects play an important role in category theory. In this chapter we will characterize
(finite) products and coproducts, as well as special morphisms such as isomorphisms, monomor-
phisms and epimorphisms.

2.2 Initial and Terminal Objects

Definition 2.2.1 (Initial and Terminal Objects). The following is the categorical abstraction
of “empty set” and “singleton set” respectively.

1. An object 0 ∈ |C| is called initial if for every 𝐵 ∈ |𝐶| there is a unique morphism ¡ ∶ 0 → 𝐵.

2. An object 1 ∈ |𝒞 | is called terminal if for every 𝐴 ∈ |𝐶| there is a unique morphism
! ∶ 𝐴 → 1.

7



2 Category Theory

Example 2.2.2. Oftentimes the initial object is an empty structure and the terminal object a
singleton structure, some examples are:

Category Initial Object Terminal Object
Set ∅ ∗
Pos ∅ ∗
Gra Empty graph Singleton graph
Poset (𝑋,≤) ⊥ ∈ 𝑋 such that ∀𝑥 ∈ 𝑋.⊥ ≤ 𝑥 ⊤ ∈ 𝑋 such that ∀𝑥 ∈ 𝑋.𝑥 ≤ ⊤

2.3 Special Morphisms

Now let us characterize special morphisms.

Definition 2.3.1 (Special Morphisms). Let 𝑓 ∶ 𝐴 → 𝐵 be a morphism. 𝑓 is called

• an isomorphism (iso), if there exists an inverse 𝑓−1 ∶ 𝐵 → 𝐴 such that 𝑓 ∘ 𝑔 = 𝑖𝑑𝐵 and
𝑔 ∘ 𝑓 = 𝑖𝑑𝐴;

• a monomorphism (mono), if for all 𝑔, ℎ ∶ 𝐶 → 𝐴 the implication 𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ ⇒ 𝑔 = ℎ
holds;

• an epimorphism (epi), if for all 𝑔, ℎ ∶ 𝐵 → 𝐶 the implication 𝑔 ∘ 𝑓 = ℎ ∘ 𝑓 ⇒ 𝑔 = ℎ holds.

Example 2.3.2. Let us consider what these notions instantiate to in concrete categories.

Category Monomorphisms Epimorphisms Isomorphisms
Set injective functions surjective functions bijective functions
Pos, Gra injective morphisms surjective morphisms bijective morphisms
Poset (𝑋,≤) all all all
Monoid (𝑀, ⋅, 𝑒) left cancellative 𝑎 ∈ 𝑀 right cancellative 𝑎 ∈ 𝑀 invertible 𝑎 ∈ 𝑀

Proposition 2.3.3. Every isomorphism is a monomorphism and an epimorphism.

Proof. Let 𝑓 be an isomorphism.

• 𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ implies 𝑔 = 𝑓−1 ∘ 𝑓 ∘ 𝑔 = 𝑓−1 ∘ 𝑓 ∘ ℎ = ℎ, thus 𝑓 is a monomorphism.

• 𝑔 ∘ 𝑓 = ℎ ∘ 𝑓 implies 𝑔 = 𝑔 ∘ 𝑓 ∘ 𝑓−1 = ℎ ∘ 𝑓 ∘ 𝑓−1 = ℎ, thus 𝑓 is an epimorphism.

Proposition 2.3.4. If 𝑓 ∘ 𝑚 is a monomorphism then 𝑚 is also a monomorphism.

Proof. Let 𝑚∘𝑔 = 𝑚∘ℎ. To show that 𝑔 = ℎ it suffices to show that 𝑓 ∘𝑚∘ 𝑔 = 𝑓 ∘𝑚∘ℎ, which
indeed follows by assumption.

Proposition 2.3.5. If 𝑒 ∘ 𝑓 is an epimorphism then 𝑒 is also an epimorphism.

Proof. Let 𝑔 ∘ 𝑒 = ℎ ∘ 𝑒. To show that 𝑔 = ℎ it suffices to show that 𝑔 ∘ 𝑒 ∘ 𝑓 = ℎ ∘ 𝑒 ∘ 𝑓 , which
again follows by assumption.
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2.4 Duality

Categorical structures like initial objects are usually not uniquely identified, there might be
multiple initial objects in a category. However, all initial objects in a category are isomorphic,
we call this “unique up to isomorphism”.

Proposition 2.3.6. Initial objects are unique up to isomorphism.

Proof. Let 0, 0′ ∈ |𝒞 | be two initial objects of 𝒞 with the unique morphisms ¡𝐴 ∶ 0 → 𝐴 and
¡′𝐴 ∶ 0′ → 𝐴. The isomorphism is:

0 0′¡′0

¡0′

Note that by uniqueness ¡0′ ∘ ¡′0 = ¡′0′ = 𝑖𝑑0′ and ¡′0 ∘ ¡0′ = ¡0 = 𝑖𝑑0.

Proposition 2.3.7. Terminal objects are unique up to isomorphism.

Proof. Let 1, 1′ ∈ |𝒞 | be two terminal objects of 𝒞 with the unique morphisms !𝐴 ∶ 𝐴 → 1 and
!′𝐴 ∶ 𝐴 → 1′. The isomorphism is:

1 1′
!′1

!1′

Note that by uniqueness !′1∘!1′ = !′1′ = 𝑖𝑑1′ and !1′ ∘ !′1 =!1 = 𝑖𝑑1.

2.4 Duality

Notice how similar the proofs of Proposition 2.3.4 and Proposition 2.3.5 as well as Proposi-
tion 2.3.6 and Proposition 2.3.7 are to each other. It seems that we should somehow be able
to construct one proof from the other, such that the work required would be halved. This is
actually the case, we can for example say that Proposition 2.3.5 follows from Proposition 2.3.4
by duality.

Definition 2.4.1 (Dual Category). Every category 𝒞 has a dual category 𝒞 𝑜𝑝 defined by

• |𝒞 𝑜𝑝| = |𝒞 |
• 𝒞 𝑜𝑝(𝐴,𝐵) = 𝒞 (𝐵,𝐴)

Example 2.4.2. Examples are:

1. In a poset the order relation gets reversed.

2. 𝑅𝑒𝑙𝑜𝑝 is isomorphic to Rel, since subsets of 𝐴×𝐵 are in bijection with subsets of 𝐵 ×𝐴
3. (𝒞 𝑜𝑝)𝑜𝑝 = 𝒞

Every categorical notion can thus be dualized by viewing it in the dual category, some examples
include:

Notion Dual Notion
Initial Object Terminal Object
Monomorphism Epimorphism
Isomorphism Isomorphism

9



2 Category Theory

This yields a proof principle “by duality”, where every theorem yields another theorem by
duality.

2.5 Products and Coproducts

The categorical abstraction of Cartesian products is:

Definition 2.5.1 (Product). The product of two objects 𝐴,𝐵 ∈ |𝒞 | is an object that we call
𝐴×𝐵 together with morphisms 𝜋1 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋2 ∶ 𝐴 × 𝐵 → 𝐵 (the projections), where
the following property holds:

𝐶

𝐴 𝐴×𝐵 𝐵𝜋1 𝜋2

𝑓 𝑔∃!⟨𝑓,𝑔⟩

Example 2.5.2. Some examples include:

1. Set: The product of two sets 𝐴 and 𝐵 is the Cartesian product 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈
𝐴, 𝑏 ∈ 𝐵}.

2. Gra: The product of two graphs has as vertices the Cartesian product of the vertices of
both graphs and an edge (𝑣1, 𝑢1) → (𝑣2, 𝑢2) iff there exists edges 𝑣1 → 𝑣2 and 𝑢1 → 𝑢2.

3. Pos: Given two posets (𝐴,≤), (𝐵,≤), the product is the Cartesian product of 𝐴 and 𝐵
where (𝑎, 𝑏) ≤ (𝑎′, 𝑏′) ⟺ 𝑎 ≤ 𝑎′ ∧ 𝑏 ≤ 𝑏′.

4. Let (𝑋,≤) be a poset, the product of 𝑎, 𝑏 ∈ 𝑋 is the greatest lower bound of 𝑎 and 𝑏.

Dual to products are:

Definition 2.5.3 (Coproduct). The coproduct of two objects 𝐴,𝐵 ∈ |𝒞 | is an object that we
call 𝐴+𝐵 together with morphisms i1 ∶ 𝐴 → 𝐴+𝐵 and i2 ∶ 𝐵 → 𝐴+𝐵 (the injections), where
the following property holds:

𝐴 𝐴+𝐵 𝐵

𝐶

i1 i2

𝑓 𝑔∃![𝑓,𝑔]

Example 2.5.4. Examples include:

1. Set: The coproduct of two sets 𝐴 and 𝐵 is the disjoint union 𝐴 + 𝐵 = {(𝑎, 0) | 𝑎 ∈
𝐴} ∪ {(𝑏, 1)|𝑏 ∈ 𝐵}.

2. Pos: The coproduct of ordered sets (𝐴,≤) and (𝐵,≤) is the disjoint union 𝐴 + 𝐵 where
𝑧 ≤ 𝑧′ iff 𝑧, 𝑧′ ∈ 𝐴 and 𝑧 ≤ 𝑧′ or 𝑧, 𝑧′ ∈ 𝐵 and 𝑧 ≤ 𝑧′.

3. Gra: Analogous to Pos.
4. Let (𝑋,≤) be a poset, the coproduct of 𝑎, 𝑏 ∈ 𝑋 is the least upper bound of 𝑎 and 𝑏.
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2.5 Products and Coproducts

5. Rel: Analogous to Set the coproduct is the disjoint union. Since Rel≅Rel𝑜𝑝 we know that
the product is also the disjoint union.

Proposition 2.5.5. Products are unique up to isomorphism.

Proof. The usual proof is somewhat analogous to the proof of Proposition 2.3.7. Instead, we
will prove it like this:

Consider the category span𝒞 (𝐴,𝐵) where objects are triples 𝐴
𝑓
← 𝐶

𝑔
→ 𝐵 and morphisms

(𝐶, 𝑓, 𝑔) → (𝐶′, 𝑓 ′, 𝑔′) are morphisms 𝑘 ∶ 𝐶 → 𝐶′ in 𝒞 such that

𝐶

𝐴 𝐵

𝐶′

𝑓 𝑔

𝑓′ 𝑔′

𝑘

commutes. Products of 𝐴 and 𝐵 are the final objects in span𝒞 (𝐴,𝐵) and are thus unique up
to isomorphism.

By duality, we get:

Proposition 2.5.6. Coproducts are unique up to isomorphism.

We can now characterize products (and later dually coproducts) as a commutative monoid:

Proposition 2.5.7. 1 is a unit of ×, i.e. 𝐴≅𝐴× 1 for any 𝐴 ∈ |𝒞 |.

Proof. Take ⟨𝑖𝑑𝐴, !𝐴⟩ ∶ 𝐴 → 𝐴×1 and 𝜋1 ∶ 𝐴× 1 → 𝐴, this indeed constitutes an isomorphism,
since

𝜋1 ∘ ⟨𝑖𝑑𝐴, !𝐴⟩ = 𝑖𝑑𝐴
by definition and

⟨𝑖𝑑𝐴, !𝐴⟩ ∘ 𝜋1 = ⟨𝜋1, !𝐴⟩ = ⟨𝜋1, 𝜋2⟩ = 𝑖𝑑𝐴×1,
because 𝜋2 =!𝐴 ∶ 𝐴 × 1 → 1 by uniqueness of !𝐴.

Proposition 2.5.8. × is associative, i.e. 𝐴× (𝐵 × 𝐶) ≅ (𝐴 × 𝐵) × 𝐶 for any 𝐴,𝐵,𝐶 ∈ |𝒞 |.

Proof. Take
𝛼 = ⟨⟨𝜋1, 𝜋1 ∘ 𝜋2⟩, 𝜋2 ∘ 𝜋2⟩ ∶ 𝐴 × (𝐵 × 𝐶) → (𝐴 ×𝐵) × 𝐶

and
𝛼−1 = ⟨𝜋1 ∘ 𝜋1, ⟨𝜋2 ∘ 𝜋1, 𝜋2⟩⟩ ∶ (𝐴 × 𝐵) × 𝐶 → 𝐴× (𝐵 × 𝐶).

The rest of the proof then amounts to simply rewriting.

Proposition 2.5.9. × is commutative, i.e. 𝐴×𝐵 ≅𝐵 ×𝐴 for any 𝐴,𝐵 ∈ |𝒞 |.

11



2 Category Theory

Proof. Take
⟨𝜋2, 𝜋1⟩ ∶ 𝐴 × 𝐵 → 𝐵 ×𝐴

and
⟨𝜋2, 𝜋1⟩ ∶ 𝐵 × 𝐴 → 𝐴×𝐵.

Indeed, ⟨𝜋2, 𝜋1⟩ ∘ ⟨𝜋2, 𝜋1⟩ = ⟨𝜋2 ∘ ⟨𝜋2, 𝜋1⟩, 𝜋1 ∘ ⟨𝜋2, 𝜋1⟩⟩ = ⟨𝜋1, 𝜋2⟩ = 𝑖𝑑.

Duality instantly yields the commutative monoid structure of coproducts:

Proposition 2.5.10. 0 is the unit of +, i.e. 𝐴≅𝐴+ 0 for any 𝐴 ∈ |𝒞 |.

Proposition 2.5.11. + is associative, i.e. 𝐴+ (𝐵 +𝐶) ≅ (𝐴 +𝐵) + 𝐶 for any 𝐴,𝐵,𝐶 ∈ |𝒞 |.

Proposition 2.5.12. + is commutative, i.e. 𝐴+𝐵 ≅𝐵 +𝐴 for any 𝐴,𝐵 ∈ |𝒞 |.

Remark 2.5.13. If a category has a terminal object and binary products one can form arbitrary
n-ary products (finite products), such a category is called Cartesian. Dually a category with
an initial object and binary coproducts is called Cocartesian.

2.6 Functors

Functors are morphisms between categories, concretely:

Definition 2.6.1 (Functor). A functor 𝐹 ∶ 𝒞 → 𝒟 consists of

• a mapping 𝐹 ∶ |𝒞 | → |𝒟 | on objects and

• a mapping 𝐹 ∶ 𝒞 (𝐴,𝐵) → 𝒞 (𝐹𝐴, 𝐹𝐵) on morphisms,

such that 𝐹(𝑖𝑑𝐴) = 𝑖𝑑𝐹𝐴 and 𝐹(𝑔 ∘ 𝑓) = 𝐹𝑔 ∘ 𝐹𝑓 .

Example 2.6.2. Usual examples of functors include

1. Constant functors mapping to a single object: 𝐷! ∶ 𝒞 → 𝒟 , 𝐷 ∈ |𝒟 | with

𝐷!(𝐶) = 𝐷, 𝐷!(𝑓) = 𝑖𝑑𝐷.

2. Identity functor: Id 𝒞 ∶ 𝒞 → 𝒞 with

Id 𝒞 (𝐶) = 𝐶, Id 𝒞 (𝑓) = 𝑓.

3. Composition of functors: (𝐹𝐺)(𝑋) = 𝐹(𝐺𝑋), (𝐹𝐺)(𝑓) = 𝐹(𝐺𝑓)
4. Square functor on Set: 𝑄 ∶ Set → Set with

𝑄𝑋 = 𝑋 ×𝑋, 𝑄𝑓 = 𝑓 × 𝑓.

5. 𝑙𝑖𝑠𝑡 ∶ 𝑆𝑒𝑡 → 𝑆𝑒𝑡, see subsection 1.2.2.

6. For 𝐴 ∈ |𝒞 | there is the hom-functor 𝒞 (𝐴, --) ∶ 𝒞 → 𝑆𝑒𝑡 given by

𝒞 (𝐴,𝐵), 𝒞 (𝐴, 𝑓 ∶ 𝐵 → 𝐵′)(ℎ ∶ 𝐴 → 𝐵) = 𝑓 ∘ ℎ ∶ 𝒞 (𝐴,𝐵′).

7. Functors between posets are monotonous maps, which in turn are the morphisms in Pos.
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8. Functors between monoids are monoid homomorphisms, which in turn are the morphisms
in Mon.

9. The power set functor 𝒫 ∶ Set → Set defined by

𝒫𝑋 = {𝑌 | 𝑌 ⊆ 𝑋}
(𝒫𝑓)𝑌 = 𝑓[𝑌 ] ⊆ 𝑋′, for 𝑌 ⊆ 𝑋.

10. If 𝒞 is a category that adds some structure to sets (like Mon or Pos) one usually can
construct a forgetful functor 𝑈 ∶ 𝒞 → Set, e.g.

𝑈Pos ∶ Pos → Set; (𝑋,≤) ↦ 𝑋
𝑈Mon ∶ Mon → Set; (𝑀, ⋅, 𝑒) ↦ 𝑀

Using functors as morphisms, one can almost build a category CAT of all categories, however
the collection of all categories is not a class (as required) but a conglomerate, thus CAT is called
a quasi-category. The small categories (i.e. where the collection of objects is a set) form a ‘real’
category Cat.

We can however consider structures like products and isomorphisms in the quasi-category CAT:

Definition 2.6.3 (Products of Categories). The product of two categories 𝒞 ,𝒟 consists of

• |𝒞 × 𝒟 | = |𝒞 | × |𝒟 |,
• (𝒞 × 𝒟 )((𝐴1, 𝐴2), (𝐵1, 𝐵2)) = 𝒞 (𝐴1, 𝐵1) × 𝐷(𝐴2, 𝐵2),

with projection functors 𝜋1 ∶ 𝒞 × 𝒟 → 𝒞 , 𝜋2 ∶ 𝒞 × 𝒟 → 𝒟 .

Example 2.6.4. More examples of functors include:

11. The Cartesian product functor: −×− ∶ Set × Set → Set.
12. The binary hom-functor 𝒞 (--, --) ∶ 𝒞 𝑜𝑝 × 𝒞 → Set with

𝒞 (𝐴,𝐵), 𝒞 (𝑔 ∶ 𝑋′ → 𝑋, 𝑓 ∶ 𝑌 → 𝑌 ′)(ℎ ∶ 𝑋 → 𝑌 ) = 𝑓 ∘ ℎ ∘ 𝑔 ∶ 𝒞 (𝑋′, 𝑌 ′).

Definition 2.6.5 (Covariant and Contravariant Functors). A functor 𝐹 ∶ 𝒞 𝑜𝑝 → 𝒟 is called a
contravariant functor 𝒞 → 𝒟 . For differentiation, we call ‘normal’ functors 𝒞 → 𝒟 covariant.

Example 2.6.6. Examples of contravariant functors include:

13. For every 𝑌 ∈ |𝒞 | there is a contravariant hom-functor 𝒞 (--, 𝑌 ) ∶ 𝒞 𝑜𝑝 → Set given by

𝒞 (𝑋, 𝑌 ), 𝒞 (𝑓 ∶ 𝑋′ → 𝑋,𝑌 )(ℎ ∶ 𝑋 → 𝑌 ) = ℎ ∘ 𝑓 ∶ 𝒞 (𝑋′, 𝑌 ).

14. 2(--) ∶ Set𝑜𝑝 → Set where
2𝑋 = {𝑓 ∶ 𝑋 → 2} ≅ 𝒫𝑋

and
2(𝑓∶𝑋→𝑌 ) ∶ 2𝑌 → 2𝑋 ≅ 𝒫𝑌 → 𝒫𝑋, 𝑍 ↦ {𝑥 | 𝑓𝑥 ∈ 𝑍} = 𝑓−1[𝑍] ⊆ 𝑋.

15. For every functor 𝐹 ∶ 𝒞 → 𝒟 the identical functor 𝐹 𝑜𝑝 ∶ 𝒞 𝑜𝑝 → 𝒟 𝑜𝑝, given by

𝐹 𝑜𝑝𝐶 = 𝐹𝐶, 𝐹 𝑜𝑝𝑓 = 𝐹𝑓.
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2 Category Theory

Isomorphisms of categories are the isomorphisms in the quasi-category CAT, thus a functor is an
isomorphism iff he is bijective on both objects and morphisms. However, oftentimes categories
are not isomorphic but instead equivalent in the following sense:

Definition 2.6.7 (Equivalence Functors). A functor 𝐹 ∶ 𝒞 → 𝒟 is called

• full if every 𝐹 ∶ 𝒞 (𝐴,𝐵) → 𝒟 (𝐹𝐴, 𝐹𝐵) is surjective,

• faithful if every 𝐹 ∶ 𝒞 (𝐴,𝐵) → 𝒟 (𝐹𝐴, 𝐹𝐵) is injective,

• essentially surjective (dense) if for every 𝐷 ∈ 𝒟 there exists a 𝐶 ∈ 𝒞 such that 𝐷≅𝐹𝐶,

• an equivalence if 𝐹 is full, faithful and dense.

Example 2.6.8. Let us consider two examples of equivalent categories:

1. The category Par is equivalent to Set𝑝, which is the category of pointed sets, where objects
are tuples (𝑋, 𝑝), 𝑝 ∈ 𝑋 and morphisms are point-preserving.

2. The product category Set×Set is equivalent to the slice category Set/2, where objects are

maps 𝑋 → 2 and morphisms ℎ ∶ (𝑋
𝑓
→ 2) → (𝑌

𝑔
→ 2) are maps ℎ ∶ 𝑋 → 𝑌 such that

𝑔 ∘ ℎ = 𝑓 .

2.7 Natural Transformations

Natural transformation are morphisms between functors. The definition of “naturality” was
one of the original goals of category theory.

Definition 2.7.1 (Natural Transformation). Given two functors 𝐹,𝐺 ∶ 𝒞 → 𝒟 . A natural
transformation 𝛼 ∶ 𝐹 → 𝐺 between these functors is a family of morphisms

(𝛼𝐶 ∶ 𝐹𝐶 → 𝐺𝐶)𝐶∈|𝒞 |,

such that for any 𝑓 ∶ 𝐴 → 𝐵 the diagram

𝐹𝐴 𝐹𝐵

𝐺𝐴 𝐺𝐵

𝐹𝑓

𝐺𝑓

𝛼𝐴 𝛼𝐵

commutes.

Example 2.7.2. Examples of natural transformations include:

1. The obvious function 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 ∶ 𝑇 𝑟𝑒𝑒 𝐴 → 𝐿𝑖𝑠𝑡 𝐴:

𝑇𝑟𝑒𝑒 𝐴 𝑇𝑟𝑒𝑒 𝐵

𝐿𝑖𝑠𝑡 𝐴 𝐿𝑖𝑠𝑡 𝐵

𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝐴 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝐵

𝑙𝑖𝑠𝑡 𝑓

𝑡𝑟𝑒𝑒 𝑓

2. For Id , 𝑄 ∶ 𝑆𝑒𝑡 → 𝑆𝑒𝑡 we have 𝛿 ∶ Id → 𝑄 given by 𝛿𝑋(𝑥) = (𝑥, 𝑥).
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3. On 𝒫 we can define natural transformations 𝜂 ∶ Id → 𝒫 and 𝜇 ∶ 𝒫𝒫 → 𝒫 by:

𝜂𝑋 ∶ 𝑋 → 𝒫𝑋
𝑥 ↦ {𝑥}

and

𝜇𝑋 ∶ 𝒫𝒫𝑋 → 𝒫𝑋
𝑍 ↦ ⋃𝑍.

4. Between 𝑄 and 𝒫 we can consider 𝛼, 𝛽 ∶ 𝑄 → 𝒫 given by

𝛼𝑋(𝑥, 𝑦) = {𝑥, 𝑦}
𝛽𝑋(𝑥, 𝑦) = {𝑥}.

Functors 𝒞 → 𝒟 together with natural transformations as morphisms form a quasi-category
[𝒞 ,𝒟 ], that is called the functor category. If 𝒞 is small, then [𝒞 ,𝒟 ] is a category, where
identity and composition are defined component wise.

Example 2.7.3. Let us examine concrete examples of functor categories:

1. [2,𝒞 ] ≅𝒞 ×𝒞 , where 2 is the discrete category with two objects, i.e. 2 has no morphisms
besides the identities.

2. Let → be the category with 2 objects and a single non-trivial morphism 𝑚. [→,𝒞 ] is the
category of morphisms of 𝒞 , where morphisms 𝐹𝑚 → 𝐺𝑚 are pairs of morphisms (𝑓, 𝑔)
where

𝐹0 𝐹1

𝐺0 𝐺1

𝐹𝑚

𝐺𝑚

𝑓 𝑔

commutes.

Definition 2.7.4 (Natural Isomorphism). Isomorphisms in [𝒞 ,𝒟 ] are called natural isomor-
phisms.

Proposition 2.7.5. 𝛼 ∶ 𝐹 → 𝐺 is a natural isomorphism iff every 𝛼𝐶 is an isomorphism.

Example 2.7.6. Let us consider some examples of natural isomorphisms:

1. In [Set,Set] is Id ≅ Set(1, --), since of course Id 𝑋 = 𝑋 ≅𝑋1 = Set(1,𝑋).
2. Also in [Set,Set] is 𝑄≅ Set(2, --), similarly is 𝜆𝑋.2 × 𝑋 ≅ 𝜆𝑋.𝑋 +𝑋.

3. The forgetful functor 𝑈 ∶ Pos → Set is naturally isomorphic to Pos(1, --), because the
constant mapping 𝑥 ∶ 1 → 𝑋 is monotonous for every element 𝑥 of a poset.

Proposition 2.7.7 (Yoneda Lemma). Let 𝐴 ∈ |𝒞 | and 𝐺 ∶ 𝒞 → Set. Then the natural
transformations

𝒞 (𝐴, --) → 𝐺
are in bijection with the elements of the set 𝐺𝐴. In other words

[𝒞 ,Set](𝒞 (𝐴, --),𝐺) ≅ 𝐺𝐴
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Proof. The mappings are
𝑍 ∶ 𝐺𝐴 → [𝒞 ,Set](𝒞 (𝐴, --),𝐺)
𝑍 𝑥 ℎ = 𝐺 ℎ 𝑥

and
𝑌 ∶ [𝒞 ,Set](𝒞 (𝐴, --),𝐺) → 𝐺𝐴
𝑌 𝛼 = 𝛼𝐴 𝑖𝑑𝐴.

We are left to check naturality of 𝑍 𝑥 and that indeed 𝑍 and 𝑌 are inverse to each other, all of
which follows by routine rewriting.

Example 2.7.8. Let us consider an application of the Yoneda Lemma: how many natural
transformations Id → 𝑄 are there? Recall that Id ≅ Set(1, --), and by Yoneda there is exactly
|𝑄1| = 1 natural transformation Set(1, --) → 𝑄, thus the number of natural transformations
Id → 𝑄 is 1.

Furthermore, consider the number of natural transformations 𝑄 → 𝑄. Recall that 𝑄≅Set(2, --),
and by Yoneda there are |𝑄2| = 4 natural transformations Set(2, --) → 𝑄, thus the number of
natural transformations 𝑄 → 𝑄 is 4.

2.8 Functor Algebras

Recall the fold functions that we introduced in chapter 1 in the category Set:
𝑓𝑜𝑙𝑑𝑛 ∶ (1 → 𝐶) → (𝐶 → 𝐶) → 𝑁𝑎𝑡 → 𝐶
𝑓𝑜𝑙𝑑𝑟 ∶ (1 → 𝐶) → (𝐴 × 𝐶 → 𝐶) → 𝐿𝑖𝑠𝑡 𝐴 → 𝐶

These are examples of special F-algebras in Set. In this section we will introduce this notion
and examine what makes the fold functions special.

Definition 2.8.1 (F-Algebras). Let 𝐹 ∶ 𝒞 → 𝒞 be an endofunctor on 𝒞 . An F-algebra is a pair
(𝐴 ∈ |𝒞 |, 𝑎 ∶ 𝐹𝐴 → 𝑎). Homomorphisms between F-algebras (𝐴, 𝑎) and (𝐵, 𝑏) are morphisms
𝑓 ∶ 𝐴 → 𝐵 such that

𝐹𝐴 𝐴

𝐹𝐵 𝐵𝑏

𝑎

𝐹𝑓 𝑓

commutes.

Proposition 2.8.2. F-algebras together with their homomorphisms form a category that we call
Alg(𝐹).

Proof. Identities and composition are inherited by the underlying category 𝒞 . We are left to
show that the identities are homomorphisms:

𝐹𝐴 𝐴

↺

𝐹𝐴 𝐴𝑎

𝑎

𝐹𝑖𝑑 𝑖𝑑

16



2.8 Functor Algebras

and that homomorphisms are closed under composition:

𝐹𝐴 𝐴

↺

𝐹𝐵 𝐵

↺

𝐹𝐶 𝐶

𝑏

𝑎

𝐹𝑓 𝑓

𝑐

𝐹𝑔 𝑔

𝐹(𝑔∘𝑓) 𝑔∘𝑓

Example 2.8.3. Let us now consider the structure of the data types Nat and List as F-algebras:

1. Nat: Take 𝒞 = Set and 𝐹𝑋 = 1 + 𝑋, the F-algebras and their morphisms have the
following form:

1 + 𝐴 𝐴

1 + 𝐵 𝐵

[𝑐,ℎ]

[𝑐′,ℎ′]

! +𝑓 𝑓

Which is equivalent to:

1 𝐴 𝐴

𝐵 𝐵

𝑐 ℎ

ℎ′

𝑐′
𝑓 𝑓

2. List A: Take 𝒞 = Set and 𝐹𝑋 = 1 + 𝐴 ×𝑋, where 𝐴 ∈ |Set|. The F-algebras and their
morphisms take the following form:

1 + 𝐴 ×𝑋 𝑋

1 + 𝐴× 𝑌 𝑌

[𝑐,ℎ]

[𝑐,ℎ]

𝑓!+𝑖𝑑×𝑓

Which again is equivalent to

1 𝐴 ×𝑋 𝑋

𝐴× 𝑌 𝑌

ℎ

ℎ

𝑓𝑖𝑑×𝑓

𝑐

𝑐′

17



2 Category Theory

2.8.1 Initial F-algebras

Initial F-algebras (i.e. the initial object in Alg(𝐹)) are of special interest to us. More concretely
an F-algebra (𝐼, 𝑖) is initial if for every (𝐴, 𝑎) there exists a unique L𝑎M ∶ 𝐼 → 𝐴 such that

𝐹𝐼 𝐼

𝐹𝐴 𝐴

𝑖

𝐹 L𝑎M ∃!L𝑎M
𝑎

commutes. We sometimes denote that initial F-algebra as 𝜇𝐹 .

The dual notion of terminal F-algebra is usually not of interest, since it is just inherited from
𝒞 :

𝐹𝐴 𝐴

𝐹1 1!

𝑎

𝐹! !

Example 2.8.4. Important examples of initial F-algebras include:

1. In Example 2.8.3 (1) the data type 𝑁𝑎𝑡 is the initial algebra together with the function
𝑓𝑜𝑙𝑑𝑛 that we defined in the introduction. Where the following diagram expresses the
defining equations for 𝑓𝑜𝑙𝑑𝑛:

1 + 𝑁𝑎𝑡 𝑁𝑎𝑡

1 + 𝐶 𝐶

𝑖𝑑+𝑓𝑜𝑙𝑑𝑛(𝑐,ℎ)

[𝑧𝑒𝑟𝑜,𝑠𝑢𝑐𝑐]

𝑓𝑜𝑙𝑑𝑛(𝑐,ℎ)

[𝑐,ℎ]

2. Similarly, in Example 2.8.3 (2) the data type 𝐿𝑖𝑠𝑡 𝐴 is the initial algebra:

1 + 𝐴 × 𝐿𝑖𝑠𝑡 𝐴 𝐿𝑖𝑠𝑡 𝐴

1 + 𝐴× 𝐶 𝐶

[𝑛𝑖𝑙,𝑐𝑜𝑛𝑠]

[𝑐,ℎ]

𝑓𝑜𝑙𝑑𝑟(𝑐,ℎ)𝑖𝑑+𝑓𝑜𝑙𝑑𝑟(𝑐,ℎ)

We can now abstract the fusion and identity laws that we defined for each data type in sec-
tion 1.2:

Proposition 2.8.5. Let (𝐼, 𝑖) be an initial F-algebra. The following holds:

1. Identity: L𝑖M = 𝑖𝑑𝐼 ∶ 𝐼 → 𝐼,

2. Fusion: Let 𝑓 ∶ (𝐴, 𝑎) → (𝐵, 𝑏) be a homomorphism between F-algebras, then

𝐼 𝐴

𝐵

L𝑎M
𝑓L𝑏M

18



2.8.2 Term Algebras

commutes.

Proof. Both follow by uniqueness of homomorphisms out of the initial object:

1. By uniqueness of homomorphisms (𝐼, 𝑖) → (𝐼, 𝑖)
2. By uniqueness of homomorphisms (𝐼, 𝑖) → (𝐵, 𝑏)

Proposition 2.8.6 (Lambeks Lemma). Let (𝐼, 𝑖) be an initial F-algebra. The F-algebra struc-
ture 𝑖 is an isomorphism.

Proof. Applying 𝐹 on 𝑖 yields another F-algebra (𝐹𝐼, 𝐹 𝑖), which induces a homomorphismL𝐹𝑖M ∶ 𝐼 → 𝐹𝐼 . L𝐹𝐼M is the inverse to 𝑖. Consider

𝐹𝐼 𝐼

↺

𝐹𝐹𝐼 𝐹𝐼

↺

𝐹𝐼 𝐼

𝑖

𝐹𝑖

𝐹 L𝐹𝑖M L𝐹𝑖M

𝑖

𝐹𝑖 𝑖

𝐹(𝑖∘L𝐹𝑖M) 𝑖∘L𝐹𝑖M

from which we can follow that 𝑖∘L𝐹𝑖M = 𝑖𝑑𝐼 ∶ (𝐼, 𝑖) → (𝐼, 𝑖) by uniqueness of the homomorphisms
and thus also L𝐹𝑖M ∘ 𝑖 = 𝐹𝑖 ∘ 𝐹 L𝐹𝑖M = 𝐹(𝑖 ∘ L𝐹𝑖M) = 𝐹𝑖𝑑𝐼 = 𝑖𝑑𝐹𝐼 .

Example 2.8.7. Using Proposition 2.8.6, we can prove that not every functor 𝐹 has an initial
F-algebra. Consider the power set functor 𝒫 ∶ 𝑆𝑒𝑡 → 𝑆𝑒𝑡. If there was an initial algebra
𝑖 ∶ 𝒫𝑋 → 𝑋, then 𝒫𝑋 ≅𝑋, which does not hold, because of Cantor’s Theorem.

2.8.2 Term Algebras

2.8.3 Parametric Data Types

2.9 Functor Coalgebras

Coalgebras describe state based system by observations. Formally they are dual (we soon see
in what sense) to F-algebras:

Definition 2.9.1 (F-Coalgebra). Let 𝐹 ∶ 𝒞 → 𝒞 be an endofunctor. An F-coalgebra is a pair
(𝐶, 𝑐 ∶ 𝐶 → 𝐹𝐶) and a homomorphism between coalgebras ℎ ∶ (𝐵, 𝑏) → (𝐶, 𝑐) is a morphism
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2 Category Theory

𝐵 → 𝐶 such that
𝐵 𝐹𝐵

𝐶 𝐹𝐶

𝑏

𝑐

ℎ 𝐹ℎ

commutes.

Coalgebras together with their homomorphisms form a category that we call Coalg(𝐹). F-
coalgebras and F-algebras are dual in the sense that Coalg(𝐹) = Alg(𝐹 𝑜𝑝)𝑜𝑝 ≠ Alg(𝐹)𝑜𝑝, where
𝐹 𝑜𝑝 ∶ 𝒞 𝑜𝑝 → 𝒞 𝑜𝑝.

This time we are interested in terminal F-coalgebras (𝑇 , 𝑡), which are characterized by the fact
that for any coalgebra (𝐶, 𝑐) there exists a unique homomorphism such that

𝐶 𝐹𝐶

𝑇 𝐹𝑇

𝑐

𝑡

〖𝑐〗 𝐹〖𝑐〗

commutes. We sometimes denote the terminal F-algebra as 𝜈𝐹 .

Dual to F-algebras the initial F-coalgebra is trivial:

0 𝐹0

𝐶 𝐹𝐶

¡

¡

𝑐

𝐹 ¡

Example 2.9.2. Let us now consider some examples of (terminal) F-coalgebras. They describe
state systems, thus we will describe the corresponding automaton.

1. Let 𝐹𝑋 = 𝑋 + 1 ∶ Set → Set. Let 𝑄 be the state space, then state transitions of this
system have the form 𝑄 𝑑→ 𝑄 + 1, i.e. an element 𝑞 ∈ 𝑄 either has a next state 𝑑 𝑞 ∈ 𝑄
or terminates, 𝑑 𝑞 ∈ 1.

Homomorphisms are morphisms between state spaces that respect the state transitions 𝑑:

• ℎ 𝑑 𝑞 = 𝑑′ ℎ 𝑞,

• 𝑞 terminates ⟺ ℎ 𝑞 terminates,

which is expressed by the usual diagram:

𝑄 𝑄+ 1

𝑄′ 𝑄′ + 1

ℎ ℎ+!

𝑑

𝑑′

The terminal F-coalgebra is ℕ∞ = ℕ ∪ {∞}, with 𝑡 ∶ ℕ∞ → 1+ℕ∞ defined by

𝑡 𝑥 ∶=
⎧{
⎨{⎩

∞ if 𝑥 = ∞
∗ ∈ 1 if 𝑥 = 0
𝑛 if 𝑥 = 𝑛 + 1
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2.9 Functor Coalgebras

and the unique homomorphism ℎ ∶ (𝑄, 𝑑) → (ℕ∞, 𝑡) returns the number of steps an
element 𝑞 ∈ 𝑄 has to take until it terminates.

2. Let 𝐹𝑋 = 𝐴×𝑋 ∶ Set → Set for some set 𝐴. A coalgebra 𝑄
⟨𝑜,𝑡⟩
⟶ 𝐴×𝑄 returns for every

𝑞 ∈ 𝑄 an output 𝑜 𝑞 ∈ 𝐴 and the next state 𝑡 𝑞 ∈ 𝑄.

Homomorphisms ℎ ∶ (𝑄, ⟨𝑜, 𝑡⟩) → (𝑄′, ⟨𝑜′, 𝑡′⟩) are mappings ℎ ∶ 𝑄 → 𝑄′ such that

• 𝑜 𝑞 = 𝑜′ ℎ 𝑞,

• ℎ 𝑡 𝑞 = 𝑡 ℎ 𝑞.

The terminal F-coalgebra is 𝐴𝜔, i.e. the set of streams over 𝐴 with

𝐴𝜔 ⟨ℎ𝑑,𝑡𝑙⟩
⟶ 𝐴×𝐴𝜔

defined by
(𝑎0, 𝑎1, 𝑎2,…) ↦ (𝑎0, (𝑎1, 𝑎2,…)).

The unique homomorphism ℎ ∶ (𝑄, ⟨𝑜, 𝑡⟩) → (𝐴𝜔, ⟨ℎ𝑑, 𝑡𝑙⟩) maps a state 𝑞 ∈ 𝑄 to the
stream

(𝑜 𝑞, 𝑜(𝑡 𝑞), 𝑜(𝑡(𝑡 𝑞)),…).

3. Recall that deterministic finite automata (DFA) are tuples 𝐴 = (𝑄,𝛴, 𝛿, 𝑞0, 𝐸) where

• 𝑄 is a state space,

• 𝛴 is a finite alphabet,

• 𝛿 ∶ 𝑄 × 𝛴 → 𝑄 is a state transition function,

• 𝑞0 ∈ 𝑄 is the initial state,

• 𝐸 ⊆ 𝑄 is the set of accepting states.

By changing the type of 𝛿 via currying to 𝛿 ∶ 𝑄 → 𝑄𝛴 and representing 𝐸 as a map
𝑓 ∶ 𝑄 → 2, we can represent a DFA (without the initial state) as a map

𝑄
⟨𝑓,𝛿⟩
⟶ 2×𝑄𝛴.

Thus, we can represent DFA as coalgebras for 𝐹𝑋 = 2 × 𝑋𝛴 ∶ Set → Set. A homomor-
phism between automata

ℎ ∶ (𝑄
⟨𝑓,𝛿⟩
⟶ 2×𝑄𝛴) → 𝑄′ ⟨𝑓′,𝛿′⟩

⟶ 2×𝑄′𝛴′

is then a mapping ℎ ∶ 𝑄 → 𝑄′ such that

ℎ(𝛿 (𝑎, 𝑞)) = 𝛿′(𝑎, ℎ 𝑞).

The terminal F-coalgebra is 2𝛴∗ ≅𝒫(𝛴∗), i.e. the set of formal languages over 𝛴 with the
structure ⟨𝜀?, 𝜕⟩ ∶ 𝒫(𝛴∗) → 2 × 𝒫(𝛴∗) defined by

𝜀?(𝐿) = {1 𝜀 ∈ 𝐿
0 else

and
𝜕(𝐿)(𝑎) = 𝑎-1𝐿 = {𝑤 | 𝑎𝑤 ∈ 𝐿}.

Finally, the unique homomorphism ℎ ∶ 𝑄 → 𝒫(𝛴∗) returns for any 𝑞 ∈ 𝑄 the formal
language that is accepted by 𝑞.
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Proposition 2.9.3. Let 𝑇 𝑡⟶ 𝐹𝑇 be a terminal F-coalgebra, then 𝑡 is an isomorphism.

Proof. Follows by duality from Proposition 2.8.6.

2.9.1 Corecursion and Coinduction

Corecursion is a proof principle: each F-coalgebra (𝐶, 𝑐) induces a unique homomorphism
ℎ ∶ (𝐶,𝐶) → (𝜈𝐹 , 𝑡).

Example 2.9.4. Let us consider some functions defined by corecursion:

1. Recall 𝐴𝜔 ⟨ℎ𝑑,𝑡𝑙⟩
⟶ 𝐴×𝐴𝜔, we can define a function 𝑧𝑖𝑝 ∶ 𝐴𝜔 ×𝐴𝜔 → 𝐴𝜔 by

ℎ𝑑(𝑧𝑖𝑝 𝜎 𝜏) = ℎ𝑑 𝜎; 𝑡𝑙(𝑧𝑖𝑝 𝜎 𝜏) = 𝑧𝑖𝑝 𝜏 (𝑡𝑙 𝜎).

This definition corresponds to the following coalgebra structure:

𝐴𝜔 ×𝐴𝜔 𝐴× (𝐴𝜔 ×𝐴𝜔)

𝐴𝜔 𝐴×𝐴𝜔

𝑧𝑖𝑝

⟨ℎ𝑑,𝑡𝑙⟩

𝑖𝑑×𝑧𝑖𝑝

⟨ℎ𝑑∘𝜋1,⟨𝜋2,𝑡𝑙∘𝜋1⟩⟩

2. Similarly, for 𝑓 ∶ 𝐴 → 𝐵 we can define 𝑚𝑎𝑝 𝑓 ∶ 𝐴𝜔 → 𝐵𝜔 by

ℎ𝑑(𝑚𝑎𝑝 𝑓 𝑎𝑠) = 𝑓(ℎ𝑑 𝑎𝑠); 𝑡𝑙(𝑚𝑎𝑝 𝑓 𝑎𝑠) = 𝑚𝑎𝑝 𝑓 (𝑡𝑙 𝑎𝑠),

which corresponds to the coalgebra structure:

𝐴𝜔 𝐴×𝐴𝜔

𝐵𝜔 𝐵 ×𝐵𝜔

𝑚𝑎𝑝 𝑓

⟨ℎ𝑑,𝑡𝑙⟩

⟨ℎ𝑑,𝑡𝑙⟩

𝑖𝑑×𝑚𝑎𝑝 𝑓

Coinduction is a proof principle for showing behavioral equivalence.

Definition 2.9.5 (Behavioral equivalence). Let 𝐹 ∶ Set → Set. Two elements of coalgebras
𝑥 ∈ (𝐶, 𝑐), 𝑦 ∈ (𝐷, 𝑑) are called behavioral equivalent “𝑥 ∼ 𝑦” if there exist

(𝐶, 𝑐) ℎ⟶ (𝐸, 𝑒) 𝑘⟵ (𝐷, 𝑑),

such that ℎ 𝑥 = 𝑘 𝑦.

Remark 2.9.6. If 𝜈𝐹 exists then

𝑥 ∼ 𝑦 ⟺ ℎ𝑐 𝑥 = ℎ𝑑 𝑦,
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where ℎ𝑐 ∶ (𝐶, 𝑐) → (𝜈𝐹 , 𝑡), ℎ𝑑 ∶ (𝐷, 𝑑) → (𝜈𝐹 , 𝑡) are the unique morphisms into the terminal
coalgebra. The proof of “⇐” is clear, for “⇒” consider the diagram:

(𝐶, 𝑐) (𝐸, 𝑒) (𝐷, 𝑑)

↺ ↺

(𝜈𝐹 , 𝑡)

ℎ 𝑘

ℎ𝑐 ℎ𝑑
ℎ𝑒

Example 2.9.7. As a consequence of the previous remark, we can follow that for 𝐹𝑋 = 2×𝑋𝛴

the following holds:

𝑥 ∼ 𝑦 ⟺ 𝑥, 𝑦𝑎𝑐𝑐𝑒𝑝𝑡𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑓𝑜𝑟𝑚𝑎𝑙𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒.

Definition 2.9.8 (Bisimulation). Let 𝐹 ∶ Set → Set and let (𝐶, 𝑐), (𝐷, 𝑑) be F-coalgebras. A
bisimulation is a relation 𝑅 ⊆ 𝐶 × 𝐶 such that a coalgebra (𝑅, 𝑟) exists where

𝐶 𝑅 𝐷

↺ ↺

𝐹𝐶 𝐹𝑅 𝐹𝐷

𝑐 𝑟 𝑑

𝜋1 𝜋2

𝐹𝜋1 𝐹𝜋2

commutes. Two elements 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷 are called bisimilar if there exists a bisimulation 𝑅 such
that 𝑥𝑅𝑦 holds.

Proposition 2.9.9.
𝑥, 𝑦 bisimilar ⇒ 𝑥 ∼ 𝑦

Example 2.9.10. Let us examine bisimilarity of streams, i.e. consider the functor 𝐹𝑋 = 𝐴×𝑋
and coalgebras

𝐶
⟨ℎ,𝑡⟩
⟶ 𝐴×𝐶; 𝐷

⟨ℎ′,𝑡′⟩
⟶ 𝐴×𝐷.

A relation 𝑅 ⊆ 𝐶 ×𝐷 is a bisimulation if

• ℎ 𝑥 = ℎ′ 𝑦,

• 𝑥𝑅𝑦 ⇒ (𝑡 𝑥)𝑅(𝑡′ 𝑦).

2.10 Limits

Limits are an abstraction of products and many other categorical concepts.

Definition 2.10.1 (Limit). We will need to introduce some related notions first.

1. A diagram in 𝒞 is a functor 𝐷 ∶ 𝒟 → 𝒞 , where 𝒟 is small.

2. A cone of a diagram 𝐷 ∶ 𝒟 → 𝒞 consists of
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• an object 𝐶 ∈ |𝒞 | called the apex and

• a family of morphisms (𝑓𝑑 ∶ 𝐶 → 𝐷𝑑)𝑑∈|𝒟 | such that

𝐶

𝐷𝑑 𝐷𝑑′

𝑓𝑑
𝑓𝑑′

𝑢

commutes for every 𝑢 ∶ 𝑑 → 𝑑′.

3. A limit of a diagram 𝐷 is a universal cone, i.e. a cone (𝐿, 𝑜𝑢𝑡𝑑) such that for every cone
(𝐶, 𝑓𝑑) there exists a unique morphism ℎ ∶ 𝐶 → 𝐿 such that 𝑜𝑢𝑡𝑑 ∘ ℎ = 𝑓𝑑 for all 𝑑 ∈ |𝒟 |:

𝐶 𝐿

𝐷𝑑

𝑜𝑢𝑡𝑑

ℎ

𝑓𝑑

The notion of limit can be instantiated to many interesting notions:

Definition 2.10.2 (Products (as limits)). Let 𝒟 be the discrete category with 2 elements.
Diagrams 𝐷 are pairs (𝐴,𝐵) of objects of 𝒞 , cones are pairs of morphisms

𝐴
𝑓

⟵ 𝐶
𝑔

⟶ 𝐵

and limits of such diagrams are exactly products:

𝐴
𝜋1⟵ 𝐴×𝐵

𝜋2⟶ 𝐵.

Definition 2.10.3 (Equalizer). Let 𝒟 be a category with two non-trivial and parallel mor-
phisms 𝑢, 𝑣 ∶ 1 → 2. Diagrams are parallel morphisms

𝐴1 𝐴2
𝑓
𝑔

and cones are pairs of morphisms 𝑐 ∶ 𝐶 → 𝐴1, 𝑑𝐶 → 𝐴2, such that 𝑓 ∘ 𝑐 = 𝑑 = 𝑔 ∘ 𝑐:

𝐶

𝐴1 𝐴2
𝑓
𝑔

𝑐 𝑑

A limit of such a diagram is called an equalizer of 𝑓 and 𝑔:

𝐶

𝐸 𝐴1 𝐴2
𝑓
𝑔

∀𝑐 𝑑

𝑒

∃!ℎ
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Definition 2.10.4 (Regular Monomorphism). A monomorphism is called regular if it is also
an equalizer.

Proposition 2.10.5. Every equalizer is a monomorphism and thus a regular monomorphism.

Proof.

Proposition 2.10.6. 𝑒 is a regular monomorphism and an epimorphism ⟺ e is an isomor-
phism.

Proof.

Definition 2.10.7 (Pullback).

Proposition 2.10.8. Limits are unique up to isomorphism.

Definition 2.10.9 (Complete Category). A category 𝒞 is called complete if every diagram in
𝒞 has a limit.

Proposition 2.10.10. 𝒞 is complete iff 𝒞 has all products and equalizers, i.e. using products
and equalizer one can construct arbitrary limits.

Definition 2.10.11 (Finitely Complete Category). A category 𝒞 is called finitely complete if
every finite diagram in 𝒞 has a limit.

Proposition 2.10.12. The following are equivalent:

1. 𝒞 is finitely complete

2. 𝒞 has finite products and equalizers

3. 𝒞 has finite products and pullbacks

4. 𝒞 has a terminal object and pullbacks

2.11 Colimits
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3 Constructions

3.1 CPO

3.2 Initial Algebra Construction

3.3 Terminal Coalgebra Construction
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