Implemented unification and resolution
This commit is contained in:
commit
30b63499bf
5 changed files with 487 additions and 0 deletions
23
.gitignore
vendored
Normal file
23
.gitignore
vendored
Normal file
|
@ -0,0 +1,23 @@
|
|||
dist
|
||||
dist-*
|
||||
cabal-dev
|
||||
*.o
|
||||
*.hi
|
||||
*.hie
|
||||
*.chi
|
||||
*.chs.h
|
||||
*.dyn_o
|
||||
*.dyn_hi
|
||||
.hpc
|
||||
.hsenv
|
||||
.cabal-sandbox/
|
||||
cabal.sandbox.config
|
||||
*.prof
|
||||
*.aux
|
||||
*.hp
|
||||
*.eventlog
|
||||
.stack-work/
|
||||
cabal.project.local
|
||||
cabal.project.local~
|
||||
.HTF/
|
||||
.ghc.environment.*
|
20
LICENSE
Normal file
20
LICENSE
Normal file
|
@ -0,0 +1,20 @@
|
|||
Copyright (c) 2023 Leon Vatthauer
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
BIN
app/Main
Executable file
BIN
app/Main
Executable file
Binary file not shown.
369
app/Main.hs
Normal file
369
app/Main.hs
Normal file
|
@ -0,0 +1,369 @@
|
|||
module Main where
|
||||
|
||||
import Data.List
|
||||
import Data.Maybe
|
||||
import Debug.Trace
|
||||
|
||||
{-
|
||||
First we define first order predicate logic
|
||||
-}
|
||||
|
||||
data Term = Var String | Fun String [Term] deriving (Eq)
|
||||
data Formula
|
||||
= Pred String [Term]
|
||||
| Neg Formula
|
||||
| Conj Formula Formula
|
||||
| Disj Formula Formula
|
||||
| Impl Formula Formula
|
||||
| All String Formula
|
||||
| Exists String Formula
|
||||
| T
|
||||
| F
|
||||
deriving (Eq)
|
||||
|
||||
|
||||
instance Show Term where
|
||||
show (Var x) = x
|
||||
show (Fun f []) = f
|
||||
show (Fun f (x : xs)) = f ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
|
||||
|
||||
instance Show Formula where
|
||||
show (Pred p []) = p
|
||||
show (Pred p (x : xs)) = p ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
|
||||
show (Neg f) = "!(" ++ show f ++ ")"
|
||||
show (Conj f1 f2) = show f1 ++ " /\\ " ++ show f2
|
||||
show (Disj f1 f2) = show f1 ++ " \\/ " ++ show f2
|
||||
show (Impl f1 f2) = "(" ++ show f1 ++ " -> " ++ show f2 ++ ")"
|
||||
show (All x f) = "forall " ++ x ++ ". " ++ show f
|
||||
show (Exists x f) = "exists " ++ x ++ ". " ++ show f
|
||||
show T = "true"
|
||||
show F = "false"
|
||||
|
||||
-- free variables of a term
|
||||
termFreeVars :: Term -> [String]
|
||||
termFreeVars (Var x) = [x]
|
||||
termFreeVars (Fun _ ts) = concatMap termFreeVars ts
|
||||
|
||||
-- substitution on terms
|
||||
termSubst :: Term -> String -> Term -> Term
|
||||
termSubst t@(Var x) y s = if x == y then s else t
|
||||
termSubst (Fun f ts) y s = Fun f $ map (\t' -> termSubst t' y s) ts
|
||||
|
||||
-- unification algorithm of martelli montanari
|
||||
unify :: [(Term, Term)] -> Maybe [(Term, Term)]
|
||||
unify [] = Just []
|
||||
-- (delete)
|
||||
unify ((Var x, Var y) : rest) | x == y = unify rest
|
||||
-- (decomp)
|
||||
unify ((Fun f es, Fun g ds) : rest) | f == g && length es == length ds = unify $ zip es ds ++ rest
|
||||
-- (conflict)
|
||||
unify ((Fun _ _, Fun _ _) : _) = Nothing
|
||||
-- (orient)
|
||||
unify ((Fun f ts, Var x) : rest) = unify $ (Var x, Fun f ts) : rest
|
||||
-- (occurs)
|
||||
unify ((Var x, t) : _) | x `elem` termFreeVars t && Var x /= t = Nothing
|
||||
-- (elim)
|
||||
unify ((Var x, t) : rest) | notElem x (termFreeVars t) && x `elem` concatMap (\(t1, t2) -> termFreeVars t1 ++ termFreeVars t2) rest = unify $ (Var x, t) : map (\(t1, t2) -> (termSubst t1 x t, termSubst t2 x t)) rest
|
||||
-- decent
|
||||
unify ((t, s) : rest) = do
|
||||
rest' <- unify rest
|
||||
return $ (t, s) : rest'
|
||||
|
||||
{-
|
||||
Now we define some functions to convert given terms to normalforms
|
||||
i.e. negation normalform, prenex normal, skolemform, conjunctive normalform
|
||||
-}
|
||||
|
||||
-- negation normalform
|
||||
makeNNF :: Formula -> Formula
|
||||
makeNNF form = if form == f' then form else makeNNF f'
|
||||
where
|
||||
f' = nnfStep form
|
||||
nnfStep (Conj f1 f2) = Conj (nnfStep f1) (nnfStep f2)
|
||||
nnfStep (Disj f1 f2) = Disj (nnfStep f1) (nnfStep f2)
|
||||
nnfStep (Impl f1 f2) = Disj (Neg f1) f2
|
||||
nnfStep (All x f) = All x (nnfStep f)
|
||||
nnfStep (Exists x f) = Exists x (nnfStep f)
|
||||
nnfStep (Neg (Conj f1 f2)) = Disj (Neg f1) (Neg f2)
|
||||
nnfStep (Neg (Disj f1 f2)) = Conj (Neg f1) (Neg f2)
|
||||
nnfStep (Neg (Impl f1 f2)) = Conj f1 (Neg f2)
|
||||
nnfStep (Neg (All x f)) = Exists x (Neg f)
|
||||
nnfStep (Neg (Exists x f)) = All x (Neg f)
|
||||
nnfStep (Neg (Neg f)) = f
|
||||
nnfStep (Neg T) = F
|
||||
nnfStep (Neg F) = T
|
||||
nnfStep f = f
|
||||
|
||||
-- infinite list of variable names
|
||||
vars :: [String]
|
||||
vars = ['v' : show n | n <- [(0 :: Int)..]]
|
||||
|
||||
-- return *all* vars in a formula, i.e. bound ones and free ones
|
||||
formulaVars :: Formula -> [String]
|
||||
formulaVars (Pred _ ts) = concatMap termFreeVars ts
|
||||
formulaVars (Neg f) = formulaVars f
|
||||
formulaVars (Conj f1 f2) = formulaVars f1 ++ formulaVars f2
|
||||
formulaVars (Disj f1 f2) = formulaVars f1 ++ formulaVars f2
|
||||
formulaVars (Impl f1 f2) = formulaVars f1 ++ formulaVars f2
|
||||
formulaVars (All x f) = x : formulaVars f
|
||||
formulaVars (Exists x f) = x : formulaVars f
|
||||
formulaVars _ = []
|
||||
|
||||
-- renames all occurences of variable v with v' in a term
|
||||
renameTerm :: Term -> String -> String -> Term
|
||||
renameTerm t@(Var x) v v' = if x == v then Var v' else t
|
||||
renameTerm (Fun g ts) v v' = Fun g (map (\t -> renameTerm t v v') ts)
|
||||
|
||||
-- renames all occurences of free variable v with v' in a formula
|
||||
renameFormula :: Formula -> String -> String -> Formula
|
||||
renameFormula (Pred p ts) v v' = Pred p (map (\t -> renameTerm t v v') ts)
|
||||
renameFormula (Neg f') v v' = Neg $ renameFormula f' v v'
|
||||
renameFormula (Conj f1 f2) v v' = Conj (renameFormula f1 v v') (renameFormula f2 v v')
|
||||
renameFormula (Disj f1 f2) v v' = Disj (renameFormula f1 v v') (renameFormula f2 v v')
|
||||
renameFormula (Impl f1 f2) v v' = Impl (renameFormula f1 v v') (renameFormula f2 v v')
|
||||
renameFormula (All y f') v v' | y /= v = All y $ renameFormula f' v v'
|
||||
renameFormula (Exists y f') v v' | y /= v = Exists y $ renameFormula f' v v'
|
||||
renameFormula f' _ _ = f'
|
||||
|
||||
-- finds a fresh variable i.e. a variable not occuring in vs
|
||||
findFresh :: [String] -> String
|
||||
findFresh vs = fromJust $ find (`notElem` vs) vars
|
||||
|
||||
-- rename every binder in formula to be disjunct
|
||||
renameBinders :: Formula -> Formula
|
||||
renameBinders f = fst $ go f []
|
||||
where
|
||||
go :: Formula -> [String] -> (Formula, [String])
|
||||
go (All x f') vs = (All x' f'', vs')
|
||||
where
|
||||
(f'', vs') = go (renameFormula f' x x') (x' : vs)
|
||||
x' = findFresh (formulaVars f ++ vs)
|
||||
go (Exists x f') vs = (Exists x' f'', vs')
|
||||
where
|
||||
(f'', vs') = go (renameFormula f' x x') (x' : vs)
|
||||
x' = findFresh (formulaVars f ++ vs)
|
||||
go (Neg f') vs = (Neg f'', vs')
|
||||
where
|
||||
(f'', vs') = go f' vs
|
||||
go (Conj f1 f2) vs = (Conj f1' f2', vs'')
|
||||
where
|
||||
(f1', vs') = go f1 vs
|
||||
(f2', vs'') = go f2 vs'
|
||||
go (Disj f1 f2) vs = (Disj f1' f2', vs'')
|
||||
where
|
||||
(f1', vs') = go f1 vs
|
||||
(f2', vs'') = go f2 vs'
|
||||
go (Impl f1 f2) vs = (Impl f1' f2', vs'')
|
||||
where
|
||||
(f1', vs') = go f1 vs
|
||||
(f2', vs'') = go f2 vs'
|
||||
go f' vs = (f', vs)
|
||||
|
||||
-- prenex normalform
|
||||
makePNF :: Formula -> Formula
|
||||
makePNF form = go $ renameBinders . makeNNF $ form
|
||||
where
|
||||
go f = let f' = pnfStep f in
|
||||
if f == f' then f else go f'
|
||||
-- swapping rules
|
||||
pnfStep (Conj phi (Exists x psi)) = Exists x (Conj phi psi)
|
||||
pnfStep (Conj phi (All x psi)) = All x (Conj phi psi)
|
||||
pnfStep (Disj phi (Exists x psi)) = Exists x (Disj phi psi)
|
||||
pnfStep (Disj phi (All x psi)) = All x (Disj phi psi)
|
||||
pnfStep (Conj (Exists x psi) phi) = Exists x (Conj psi phi)
|
||||
pnfStep (Conj (All x psi) phi) = All x (Conj psi phi)
|
||||
pnfStep (Disj (Exists x psi) phi) = Exists x (Disj psi phi)
|
||||
pnfStep (Disj (All x psi) phi) = All x (Disj psi phi)
|
||||
-- descent rules
|
||||
pnfStep (All x f) = All x (pnfStep f)
|
||||
pnfStep (Exists x f) = Exists x (pnfStep f)
|
||||
pnfStep (Conj f1 f2) = Conj (pnfStep f1) (pnfStep f2)
|
||||
pnfStep (Disj f1 f2) = Disj (pnfStep f1) (pnfStep f2)
|
||||
pnfStep (Impl f1 f2) = Impl (pnfStep f1) (pnfStep f2) -- can't happen, gets removed in makeNNF
|
||||
pnfStep (Neg f) = Neg (pnfStep f)
|
||||
pnfStep f = f
|
||||
|
||||
-- infinite function names for skolemizing
|
||||
skolemFuns :: [String]
|
||||
skolemFuns = ["sk" ++ show n | n <- [(0 :: Int)..]]
|
||||
|
||||
-- returns all function names in a formula
|
||||
usedFunctions :: Formula -> [String]
|
||||
usedFunctions (Pred _ ts) = concatMap termFunctions ts
|
||||
where
|
||||
termFunctions (Var _) = []
|
||||
termFunctions (Fun f ts') = f : concatMap termFunctions ts'
|
||||
usedFunctions (Neg f) = usedFunctions f
|
||||
usedFunctions (Conj f1 f2) = usedFunctions f1 ++ usedFunctions f2
|
||||
usedFunctions (Disj f1 f2) = usedFunctions f1 ++ usedFunctions f2
|
||||
usedFunctions (Impl f1 f2) = usedFunctions f1 ++ usedFunctions f2
|
||||
usedFunctions (All _ f) = usedFunctions f
|
||||
usedFunctions (Exists _ f) = usedFunctions f
|
||||
usedFunctions _ = []
|
||||
|
||||
-- skolem form of a formula
|
||||
makeSkolem :: Formula -> Formula
|
||||
makeSkolem form = go (makePNF form) [] []
|
||||
where
|
||||
substTermInFormula :: Formula -> String -> Term -> Formula
|
||||
substTermInFormula (Pred p ts) x s = Pred p $ map (\t -> termSubst t x s) ts
|
||||
substTermInFormula (Neg f) x s = Neg $ substTermInFormula f x s
|
||||
substTermInFormula (Conj f1 f2) x s = Conj (substTermInFormula f1 x s) (substTermInFormula f2 x s)
|
||||
substTermInFormula (Disj f1 f2) x s = Disj (substTermInFormula f1 x s) (substTermInFormula f2 x s)
|
||||
substTermInFormula (Impl f1 f2) x s = Impl (substTermInFormula f1 x s) (substTermInFormula f2 x s)
|
||||
substTermInFormula f@(All y f') x s = if x == y then f else All y (substTermInFormula f' x s)
|
||||
substTermInFormula f@(Exists y f') x s = if x == y then f else Exists y (substTermInFormula f' x s)
|
||||
substTermInFormula f _ _ = f
|
||||
go (All x f) vs skolems = All x (go f (Var x : vs) skolems)
|
||||
go (Exists x f) vs skolems = go (substTermInFormula f x (Fun newSkolem vs)) vs (newSkolem : skolems)
|
||||
where newSkolem = fromJust $ find (`notElem` skolems) skolemFuns
|
||||
go f _ _ = f
|
||||
|
||||
-- conjunctive normalform, removes all quantors, so its ready for resolution
|
||||
makeCNF :: Formula -> Formula
|
||||
makeCNF form = go $ makeSkolem form
|
||||
where
|
||||
go f = let f' = cnfStep f in
|
||||
if f == f' then f else go f'
|
||||
cnfStep (Conj phi psi) = Conj (makeCNF phi) (makeCNF psi)
|
||||
cnfStep (Disj (Conj phi psi) xi) = Conj (makeCNF $ Disj phi xi) (makeCNF $ Disj psi xi)
|
||||
--cnfStep (Disj f1 f2) = Disj (makeCNF f1) (makeCNF f2)
|
||||
cnfStep (All _ f) = makeCNF f
|
||||
cnfStep (Exists _ f) = makeCNF f
|
||||
cnfStep f = f
|
||||
|
||||
-- create the list of clauses from a formula
|
||||
makeCNFList :: Formula -> [[Formula]]
|
||||
makeCNFList form = go $ makeCNF form
|
||||
where
|
||||
go (Conj f1 f2) = go f1 ++ go f2
|
||||
go (Disj f1 f2) = [collectDisjs f1 ++ collectDisjs f2]
|
||||
where
|
||||
collectDisjs (Disj f1' f2') = collectDisjs f1' ++ collectDisjs f2'
|
||||
collectDisjs f' = [f']
|
||||
go f = [[f]]
|
||||
|
||||
-- unifies predicates, e.g. P(x,y) == P(f(a), z)
|
||||
unifyPredicates :: (Formula, [Formula]) -> (Formula, [Formula]) -> Maybe (([Formula], [Formula]), [(Term, Term)])
|
||||
unifyPredicates (e1@(Pred p1 ts1), c1) (e2@(Neg (Pred p2 ts2)), c2) | p1 == p2 && length p1 == length p2 = do
|
||||
mgu <- unify $ zip ts1 ts2
|
||||
return ((c1', c2'), mgu)
|
||||
where
|
||||
c1' = filter (/= e1) c1
|
||||
c2' = filter (/= e2) c2
|
||||
unifyPredicates _ _ = Nothing
|
||||
|
||||
-- applies an mgu to a given formula, asserts that the formula contains no quantifiers
|
||||
applyMgu :: Formula -> [(Term, Term)] -> Formula
|
||||
applyMgu (Pred p ts) mgu = Pred p $ map (`applyMguTerm` mgu) ts
|
||||
applyMgu (Neg f) mgu = Neg $ applyMgu f mgu
|
||||
applyMgu (Conj f1 f2) mgu = Conj (applyMgu f1 mgu) (applyMgu f2 mgu)
|
||||
applyMgu (Disj f1 f2) mgu = Disj (applyMgu f1 mgu) (applyMgu f2 mgu)
|
||||
applyMgu (Impl f1 f2) mgu = Impl (applyMgu f1 mgu) (applyMgu f2 mgu)
|
||||
applyMgu f _ = f
|
||||
-- applies mgu to term
|
||||
applyMguTerm :: Term -> [(Term, Term)] -> Term
|
||||
applyMguTerm (Var x) [] = Var x
|
||||
applyMguTerm (Var x) ((Var y, t) : rest) = if x == y then t else applyMguTerm (Var x) rest
|
||||
applyMguTerm (Fun f ts) mgu = Fun f $ map (`applyMguTerm` mgu) ts
|
||||
applyMguTerm t _ = t
|
||||
|
||||
-- a single resolution step as described in gloin
|
||||
rifStep :: [[Formula]] -> Either () [[Formula]]
|
||||
rifStep clauses | trace (show clauses) True = if [] `elem` clauses then Left () else Right newClauses
|
||||
where
|
||||
resolveClauses :: [Formula] -> [Formula] -> [(([Formula], [Formula]), [(Term, Term)])]
|
||||
resolveClauses c1 c2 = let zippedElems = [((e1, c1), (e2, c2)) | e1 <- c1, e2 <- c2] in mapMaybe (uncurry unifyPredicates) zippedElems
|
||||
zippedClauses = [(c1, c2) | c1 <- clauses, c2 <- clauses, c1 /= c2]
|
||||
clausesWithMgus = concatMap (uncurry resolveClauses) zippedClauses
|
||||
newClauses = clauses ++ map (\((f1, f2), mgu) -> map (`applyMgu` mgu) f1 ++ map (`applyMgu` mgu) f2) clausesWithMgus
|
||||
rifStep _ = undefined
|
||||
|
||||
-- do resolution until we have proven unfulfillability of formula set
|
||||
doResolution :: [[Formula]] -> Either () [[Formula]]
|
||||
doResolution f= do
|
||||
f' <- rifStep f
|
||||
-- TODO after every resolution step make variable names of clauses disjunct
|
||||
doResolution f'
|
||||
|
||||
{-
|
||||
To prove a formula we:
|
||||
1. Construct `Neg phi`
|
||||
2. Transform `Neg phi` to a clause list
|
||||
3. doResolution on clause list
|
||||
-}
|
||||
proveFormula :: Formula -> Either () [[Formula]]
|
||||
proveFormula form = doResolution $ makeCNFList (Neg form)
|
||||
|
||||
-- unification examples
|
||||
terma1 :: Term
|
||||
terma1 = Fun "f" [Var "x", Fun "g" [Var "y"]]
|
||||
termb1 :: Term
|
||||
termb1 = Fun "f" [Fun "g" [Var "z"], Var "z"]
|
||||
terma2 :: Term
|
||||
terma2 = Fun "f" [Var "x", Fun "g" [Var "x"], Fun "h" [Var "y"]]
|
||||
termb2 :: Term
|
||||
termb2 = Fun "f" [Fun "k" [Var "y"], Fun "g" [Var "z"], Var "z"]
|
||||
terma3 :: Term
|
||||
terma3 = Fun "f" [Var "x", Fun "g" [Var "x"]]
|
||||
termb3 :: Term
|
||||
termb3 = Fun "f" [Var "z", Var "z"]
|
||||
|
||||
-- NNF example from gloin
|
||||
formula1 :: Formula
|
||||
formula1 = Neg (Conj (Disj (Pred "A" []) (Neg $ Pred "B" [])) (Pred "C" []))
|
||||
|
||||
-- PNF and skolem example from gloin
|
||||
formula2 :: Formula
|
||||
formula2 = All "x" $ Impl (All "y" $ Pred "L" [Var "y", Var "x"]) (Exists "y" $ Pred "M" [Var "x", Var "y"])
|
||||
|
||||
-- Resolution example from gloin script
|
||||
formula3 :: Formula
|
||||
formula3 = Impl (Conj (Pred "P" [Fun "a" []]) (All "x" $ Impl (Pred "P" [Var "x"]) (Pred "P" [Fun "f" [Var "x"]]))) (Exists "x" $ Pred "P" [Fun "f" [Fun "f" [Var "x"]]])
|
||||
|
||||
-- Resolution example from gloin exercises
|
||||
formula4 :: Formula
|
||||
formula4 = Conj (Disj (Pred "P" [Fun "f" [Var "x"], Var "y"]) (Disj (Pred "S" [Var "y", Var "z"]) (Pred "P" [Var "y"]))) (Conj (Neg $ Pred "S" [Fun "f" [Fun "f" [Var "x"]], Var "x"]) (Neg $ Pred "P" [Fun "f" [Var "z"]]))
|
||||
|
||||
-- now a big example, sheet 11, exercise 6: Drogenschmuggel, this doesn't work yet but I'm sure its just the exercise thats wrong...
|
||||
phi1 :: Formula
|
||||
phi1 = All "x" $ Impl (Conj (Pred "E" [Var "x"]) (Neg $ Pred "I" [Var "x"])) (Exists "y" $ Conj (Pred "Z" [Var "y"]) (Pred "S" [Var "y", Var "x"]))
|
||||
phi2 :: Formula
|
||||
phi2 = Exists "x" $ Conj (Conj (Pred "D" [Var "x"]) (Pred "E" [Var "x"])) (All "y" $ Impl (Pred "S" [Var "y", Var "x"]) (Pred "D" [Var "y"]))
|
||||
phi3 :: Formula
|
||||
phi3 = All "x" $ Impl (Pred "I" [Var "x"]) (Neg $ Pred "D" [Var "x"])
|
||||
psi' :: Formula
|
||||
psi' = Exists "x" $ Conj (Pred "Z" [Var "x"]) (Pred "D" [Var "x"])
|
||||
|
||||
formula5 :: Formula
|
||||
formula5 = Impl (Conj (Conj phi1 phi2) phi3) psi'
|
||||
|
||||
-- exercise 2: Ärzte und Quacksalber
|
||||
formula6 :: [[Formula]]
|
||||
formula6 = [
|
||||
[Neg $ Pred "D" [Var "x1"], Pred "L" [Fun "f" [Var "x1"], Var "x1"]],
|
||||
[Pred "P" [Fun "f" [Var "x2"]], Neg $ Pred "L" [Fun "f" [Var "x2"], Var "x2"]],
|
||||
[Neg $ Pred "P" [Var "x3"], Neg $ Pred "Q" [Var "y3"], Neg $ Pred "L" [Var "x3", Var "y3"]],
|
||||
[Pred "D" [Fun "a" []]],
|
||||
[Pred "Q" [Fun "a" []]]]
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
putStrLn $ "Now making NNF of formula: " ++ show formula1
|
||||
print $ makeNNF formula1
|
||||
putStrLn $ "Now making PNF of formula: " ++ show formula2
|
||||
print $ makePNF formula2
|
||||
putStrLn $ "Now making Skolemform of formula: " ++ show formula2
|
||||
print $ makeSkolem formula2
|
||||
putStrLn $ "Now proving formula by resolution: " ++ show formula3
|
||||
case proveFormula formula3 of
|
||||
Left _ -> putStrLn "Success!"
|
||||
Right _ -> return ()
|
||||
putStrLn $ "Now Proving formula by resolution: " ++ show formula4
|
||||
case doResolution $ makeCNFList formula4 of
|
||||
Left _ -> putStrLn "Success!"
|
||||
Right _ -> return ()
|
||||
putStrLn $ "Now Proving formula by resolution: " ++ show formula6
|
||||
case doResolution formula6 of
|
||||
Left _ -> putStrLn "Success!"
|
||||
Right _ -> return ()
|
75
unification.cabal
Normal file
75
unification.cabal
Normal file
|
@ -0,0 +1,75 @@
|
|||
cabal-version: 3.0
|
||||
-- The cabal-version field refers to the version of the .cabal specification,
|
||||
-- and can be different from the cabal-install (the tool) version and the
|
||||
-- Cabal (the library) version you are using. As such, the Cabal (the library)
|
||||
-- version used must be equal or greater than the version stated in this field.
|
||||
-- Starting from the specification version 2.2, the cabal-version field must be
|
||||
-- the first thing in the cabal file.
|
||||
|
||||
-- Initial package description 'unification' generated by
|
||||
-- 'cabal init'. For further documentation, see:
|
||||
-- http://haskell.org/cabal/users-guide/
|
||||
--
|
||||
-- The name of the package.
|
||||
name: unification
|
||||
|
||||
-- The package version.
|
||||
-- See the Haskell package versioning policy (PVP) for standards
|
||||
-- guiding when and how versions should be incremented.
|
||||
-- https://pvp.haskell.org
|
||||
-- PVP summary: +-+------- breaking API changes
|
||||
-- | | +----- non-breaking API additions
|
||||
-- | | | +--- code changes with no API change
|
||||
version: 0.1.0.0
|
||||
|
||||
-- A short (one-line) description of the package.
|
||||
synopsis:
|
||||
A implementation of the unifcation algorithm by martelli montanari
|
||||
|
||||
-- A longer description of the package.
|
||||
-- description:
|
||||
|
||||
-- The license under which the package is released.
|
||||
license: MIT
|
||||
|
||||
-- The file containing the license text.
|
||||
license-file: LICENSE
|
||||
|
||||
-- The package author(s).
|
||||
author: Leon Vatthauer
|
||||
|
||||
-- An email address to which users can send suggestions, bug reports, and patches.
|
||||
maintainer: leon.vatthauer@fau.de
|
||||
|
||||
-- A copyright notice.
|
||||
-- copyright:
|
||||
category: Development
|
||||
build-type: Simple
|
||||
|
||||
-- Extra source files to be distributed with the package, such as examples, or a tutorial module.
|
||||
-- extra-source-files:
|
||||
|
||||
common warnings
|
||||
ghc-options: -Wall
|
||||
|
||||
executable unification
|
||||
-- Import common warning flags.
|
||||
import: warnings
|
||||
|
||||
-- .hs or .lhs file containing the Main module.
|
||||
main-is: Main.hs
|
||||
|
||||
-- Modules included in this executable, other than Main.
|
||||
-- other-modules:
|
||||
|
||||
-- LANGUAGE extensions used by modules in this package.
|
||||
-- other-extensions:
|
||||
|
||||
-- Other library packages from which modules are imported.
|
||||
build-depends: base ^>=4.16.4.0, containers, extra
|
||||
|
||||
-- Directories containing source files.
|
||||
hs-source-dirs: app
|
||||
|
||||
-- Base language which the package is written in.
|
||||
default-language: Haskell2010
|
Loading…
Reference in a new issue