Added some printing for resolution and implemented alphaEq on clauses

This commit is contained in:
reijix 2023-06-08 11:30:41 +02:00
parent 7b773c4605
commit 876a9c9c63
2 changed files with 90 additions and 16 deletions

View file

@ -88,6 +88,6 @@ main = do
Left _ -> putStrLn "Success!"
Right _ -> return ()
putStrLn $ "Now Proving formula by resolution: " ++ show formula6
case proveFormula formula6 of
case proveFormula (Neg formula6) of
Left _ -> putStrLn "Success!"
Right _ -> return ()

View file

@ -1,3 +1,4 @@
{-# LANGUAGE TupleSections #-}
module Resolution where
import Data.Set (Set)
import qualified Data.Set as Set
@ -8,16 +9,34 @@ import FOLSyntax
termFreeVars,
termSubst,
findFresh )
import Data.List.Extra ( intersect )
import Data.Maybe ( mapMaybe )
import Data.List
import Control.Monad (zipWithM)
type CNF = Set Clause
type Clause = Set Literal
type Literal = Formula
type Unifier = [(Term, Term)]
-- alpha equality on clauses, a clause [S(x), P(y)] is equal to [S(y), P(x)]
-- 1. get all permutations of both clauses
-- 2. build the crossproduct of permutations of c1 and c2
-- 3. unify each clause pair
-- 4. collect mgus where variables are only mapped to variables (meaning they are alpha eq)
-- 5. check if any such mgu exists
alphaEq :: Clause -> Clause -> Bool
alphaEq c1 c2 = any (uncurry unifyLiteralList) permutationPairs
where
permutationPairs = [(c1', c2') | c1' <- permutations $ Set.toList c1, c2' <- permutations $ Set.toList c2]
set1 :: Clause
set1 = Set.fromList [Pred "S" [Var "x"], Pred "P" [Var "y"]]
set2 :: Clause
set2 = Set.fromList [Pred "P" [Var "z"], Pred "S" [Var "y"]]
-- unification algorithm of martelli montanari
unify :: [(Term, Term)] -> Maybe [(Term, Term)]
unify :: [(Term, Term)] -> Maybe Unifier
unify [] = Just []
-- (delete)
unify ((Var x, Var y) : rest) | x == y = unify rest
@ -36,6 +55,20 @@ unify ((t, s) : rest) = do
rest' <- unify rest
return $ (t, s) : rest'
unifyLiteralList :: [Literal] -> [Literal] -> Bool
unifyLiteralList ls1 ls2 = case zipWithM unifyLiterals ls1 ls2 of
Nothing -> False
Just mgus -> all checkSimpleMgu mgus
where
checkSimpleMgu :: Unifier -> Bool
checkSimpleMgu [] = True
checkSimpleMgu ((Var _, Var _) : _) = True
checkSimpleMgu _ = False
unifyLiterals :: Literal -> Literal -> Maybe Unifier
unifyLiterals (Neg f) (Neg g) = unifyLiterals f g
unifyLiterals (Pred p ts1) (Pred s ts2) | p == s && length ts1 == length ts2 = unify $ zip ts1 ts2
unifyLiterals _ _ = Nothing
-- unifies predicates, e.g. P(x,y) == P(f(a), z)
unifyPredicates :: Literal -> Literal -> Maybe Unifier
unifyPredicates (Pred p1 ts1) (Neg (Pred p2 ts2)) | p1 == p2 && length p1 == length p2 = unify $ zip ts1 ts2
@ -44,14 +77,6 @@ unifyPredicates _ _ = Nothing
setConcat :: Ord a => [Set a] -> Set a
setConcat = foldr Set.union Set.empty
-- a single resolution step as described in gloin
resolveStep :: CNF -> Either () CNF
resolveStep clauses = if Set.empty `Set.member` clauses then Left () else Right $ clauses `Set.union` newClauses
where
-- rename all variables
zippedClauses = [(c1, c2) | c1 <- Set.toList clauses, c2 <- Set.toList clauses, c1 /= c2]
newClauses = setConcat $ map (uncurry resolveClauses) zippedClauses
-- applies an mgu to a given formula, asserts that the formula contains no quantifiers
applyMgu :: Formula -> [(Term, Term)] -> Formula
applyMgu (Pred p ts) mgu = Pred p $ map (`applyMguTerm` mgu) ts
@ -67,7 +92,7 @@ applyMguTerm (Var x) ((Var y, t) : rest) = if x == y then t else applyMguTerm (V
applyMguTerm (Fun f ts) mgu = Fun f $ map (`applyMguTerm` mgu) ts
applyMguTerm t _ = t
-- takes two clauses and makes the variables these clauses disjunct
-- takes two clauses and makes the variables of these clauses disjunct
makeVariablesDisjunct :: Clause -> Clause -> (Clause, Clause)
makeVariablesDisjunct c1 c2 = (c1', c2')
where
@ -102,22 +127,71 @@ renameFormula f' _ _ = f'
-- takes two clauses and tries to unify every literal in a crossproduct, returns the set of all clauses resulting from this resolution step
resolveClauses :: Clause -> Clause -> Set Clause
resolveClauses c1 c2 = Set.fromList newClauses
resolveClauses c1 c2 = newClauses
where
-- first make variables in both clauses disjunct
(c1', c2') = makeVariablesDisjunct c1 c2
zippedLiterals = [(lit1, lit2) | lit1 <- Set.toList c1', lit2 <- Set.toList c2']
newClauses = concat $ mapMaybe (\(l1, l2) -> do
newClauses = Set.fromList $ mapMaybe (\(l1, l2) -> do
-- first calculate mgu
mgu <- unifyPredicates l1 l2
-- now apply mgu to clauses without l1 and l2
let c1'' = Set.map (`applyMgu` mgu) (c1' `Set.difference` Set.singleton l1)
let c2'' = Set.map (`applyMgu` mgu) (c2' `Set.difference` Set.singleton l2)
return [c1'', c2'']
return $ c1'' `Set.union` c2''
) zippedLiterals
-- a single resolution step as described in gloin
resolveStep :: CNF -> Either () CNF
resolveStep clauses = if Set.empty `Set.member` clauses then Left () else Right $ clauses `Set.union` newClauses
where
-- cross product of clauses
zippedClauses = [(c1, c2) | c1 <- Set.toList clauses, c2 <- Set.toList clauses, c1 /= c2]
-- after resolveStep add every clause that can be gained through resolution to clauseSet
newClauses = setConcat $ map (uncurry resolveClauses) zippedClauses
resolveStepVerbose :: Set ([Clause], Clause) -> Either (Set ([Clause], Clause)) (Set ([Clause], Clause))
resolveStepVerbose clauses = if Set.empty `inRight` clauses then Left clauses else Right $ clauses `Set.union` newClauses
where
inRight clause set = clause `Set.member` Set.map snd set
-- cross product of clauses
zippedClauses = [(c1, c2) | c1 <- Set.toList (Set.map snd clauses), c2 <- Set.toList (Set.map snd clauses), c1 /= c2]
-- after resolveStep add every clause that can be gained through resolution to clauseSet
newClauses = setConcat' $ map (\(c1, c2) -> ([c1, c2], resolveClauses c1 c2)) zippedClauses
setConcat' :: [([Clause], Set Clause)] -> Set ([Clause], Clause)
setConcat' [] = Set.empty
setConcat' ((cs, clauses) : rest) = Set.map (cs,) clauses `Set.union` setConcat' rest
-- do resolution until we have proven unfulfillability of formula set
doResolution :: CNF -> Either () CNF
doResolution f = do
f' <- resolveStep f
doResolution f'
doResolution f'
doResolutionIO :: CNF -> IO (Either () (Set ([Clause], Clause)))
doResolutionIO cnf = do
let preparedCNF = Set.map ([], ) cnf
resolutionHelper preparedCNF 1
where
resolutionHelper :: Set ([Clause], Clause) -> Int -> IO (Either () (Set ([Clause], Clause)))
resolutionHelper set n = do
let setE = resolveStepVerbose set
case setE of
Left _ -> do
putStrLn "Resolved to empty clause, so formula is proven!"
return $ Left ()
Right set' -> do
putStrLn $ "Resolution iteration " ++ show n ++ ":\n"
printResolvents (Set.toList $ set' `Set.difference` set)
putStrLn ""
resolutionHelper set' (n + 1)
printResolvents :: [([Clause], Clause)] -> IO ()
printResolvents (([c1, c2], c) : rest) = do
putStrLn $ "Resolving " ++ showClause c1 ++ " and " ++ showClause c2 ++ "\n-> " ++ showClause c
printResolvents rest
printResolvents _ = return ()
showClause :: Clause -> String
showClause c = "[" ++ intercalate ", " (map show (Set.toList c)) ++ "]"