Implemented Parser

This commit is contained in:
reijix 2023-06-07 11:04:00 +02:00
parent 69f576b054
commit eb5269d90e
5 changed files with 265 additions and 65 deletions

32
app/FOLSyntax.hs Normal file
View file

@ -0,0 +1,32 @@
module FOLSyntax where
data Term = Var String | Fun String [Term] deriving (Eq, Ord)
data Formula
= Pred String [Term]
| Neg Formula
| Conj Formula Formula
| Disj Formula Formula
| Impl Formula Formula
| All String Formula
| Exists String Formula
| T
| F
deriving (Eq, Ord)
instance Show Term where
show (Var x) = x
show (Fun f []) = f
show (Fun f (x : xs)) = f ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
instance Show Formula where
show (Pred p []) = p
show (Pred p (x : xs)) = p ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
show (Neg f) = "!(" ++ show f ++ ")"
show (Conj f1 f2) = "(" ++ show f1 ++ " /\\ " ++ show f2 ++ ")"
show (Disj f1 f2) = "(" ++ show f1 ++ " \\/ " ++ show f2 ++ ")"
show (Impl f1 f2) = "(" ++ show f1 ++ " -> " ++ show f2 ++ ")"
show (All x f) = "(forall " ++ x ++ ". " ++ show f ++ ")"
show (Exists x f) = "(exists " ++ x ++ ". " ++ show f ++ ")"
show T = "true"
show F = "false"

48
app/Lexer.hs Normal file
View file

@ -0,0 +1,48 @@
{-# LANGUAGE ImportQualifiedPost #-}
module Lexer where
import Text.Parsec.Char (alphaNum, letter, oneOf)
import Text.Parsec.Language (emptyDef)
import Text.Parsec.String (Parser)
import Text.Parsec.Token qualified as Tok
lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where
ops = ["/\\", "\\/", "->", "!"]
names = ["forall", "exists"]
style =
emptyDef
{ Tok.commentLine = ""
, Tok.reservedOpNames = ops
, Tok.reservedNames = names
, Tok.opStart = oneOf "\\/-"
, Tok.opLetter = oneOf "\\/>"
, Tok.identStart = letter
, Tok.identLetter = alphaNum
}
parens :: Parser a -> Parser a
parens = Tok.parens lexer
dot :: Parser String
dot = Tok.dot lexer
comma :: Parser String
comma = Tok.comma lexer
semi :: Parser String
semi = Tok.semi lexer
identifier :: Parser String
identifier = Tok.identifier lexer
reserved :: String -> Parser ()
reserved = Tok.reserved lexer
reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer
whiteSpace :: Parser ()
whiteSpace = Tok.whiteSpace lexer

View file

@ -2,42 +2,13 @@ module Main where
import Data.List
import Data.Maybe
import Debug.Trace
import qualified Data.Set as Set
import FOLSyntax
import Parser
{-
First we define first order predicate logic
-}
data Term = Var String | Fun String [Term] deriving (Eq)
data Formula
= Pred String [Term]
| Neg Formula
| Conj Formula Formula
| Disj Formula Formula
| Impl Formula Formula
| All String Formula
| Exists String Formula
| T
| F
deriving (Eq)
instance Show Term where
show (Var x) = x
show (Fun f []) = f
show (Fun f (x : xs)) = f ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
instance Show Formula where
show (Pred p []) = p
show (Pred p (x : xs)) = p ++ "(" ++ show x ++ foldr ((++) . (", "++) . show) ")" xs
show (Neg f) = "!(" ++ show f ++ ")"
show (Conj f1 f2) = show f1 ++ " /\\ " ++ show f2
show (Disj f1 f2) = show f1 ++ " \\/ " ++ show f2
show (Impl f1 f2) = "(" ++ show f1 ++ " -> " ++ show f2 ++ ")"
show (All x f) = "forall " ++ x ++ ". " ++ show f
show (Exists x f) = "exists " ++ x ++ ". " ++ show f
show T = "true"
show F = "false"
fromRight :: Either a b -> b
fromRight (Left _) = error "fromRight called on left value!"
fromRight (Right b) = b
-- free variables of a term
termFreeVars :: Term -> [String]
@ -162,19 +133,19 @@ renameBinders f = fst $ go f []
-- prenex normalform
-- TODO make it so that forall has higher priority to be moved left (makes skolem functions smaller)
makePNF :: Formula -> Formula
makePNF form = go $ renameBinders . makeNNF $ form
makePNF form = go form
where
go f = let f' = pnfStep f in
if f == f' then f else go f'
-- swapping rules
pnfStep (Conj phi (All x psi)) = All x (Conj phi psi)
pnfStep (Disj phi (All x psi)) = All x (Disj phi psi)
pnfStep (Conj (All x psi) phi) = All x (Conj psi phi)
pnfStep (Disj (All x psi) phi) = All x (Disj psi phi)
pnfStep (Conj phi (Exists x psi)) = Exists x (Conj phi psi)
pnfStep (Disj phi (Exists x psi)) = Exists x (Disj phi psi)
pnfStep (Conj (Exists x psi) phi) = Exists x (Conj psi phi)
pnfStep (Disj (Exists x psi) phi) = Exists x (Disj psi phi)
pnfStep (Conj phi (All x psi)) = All x (Conj phi psi)
pnfStep (Disj phi (All x psi)) = All x (Disj phi psi)
pnfStep (Conj (All x psi) phi) = All x (Conj psi phi)
pnfStep (Disj (All x psi) phi) = All x (Disj psi phi)
{-
pnfStep (Conj phi (Exists x psi)) = Exists x (Conj phi psi)
pnfStep (Conj phi (All x psi)) = All x (Conj phi psi)
@ -214,7 +185,7 @@ usedFunctions _ = []
-- skolem form of a formula
makeSkolem :: Formula -> Formula
makeSkolem form = go (makePNF form) [] []
makeSkolem form = go form [] []
where
substTermInFormula :: Formula -> String -> Term -> Formula
substTermInFormula (Pred p ts) x s = Pred p $ map (\t -> termSubst t x s) ts
@ -232,21 +203,21 @@ makeSkolem form = go (makePNF form) [] []
-- conjunctive normalform, removes all quantors, so its ready for resolution
makeCNF :: Formula -> Formula
makeCNF form = go $ makeSkolem form
makeCNF form = go form
where
go f = let f' = cnfStep f in
if f == f' then f else go f'
cnfStep (Conj phi psi) = Conj (makeCNF phi) (makeCNF psi)
cnfStep (Disj (Conj phi psi) xi) = Conj (makeCNF $ Disj phi xi) (makeCNF $ Disj psi xi)
cnfStep (Disj xi (Conj phi psi)) = Conj (makeCNF $ Disj xi phi) (makeCNF $ Disj xi psi)
cnfStep (All _ f) = makeCNF f
cnfStep (Exists _ f) = makeCNF f
cnfStep (Conj phi psi) = Conj (cnfStep phi) (cnfStep psi)
cnfStep (Disj (Conj phi psi) xi) = Conj (Disj phi xi) (Disj psi xi)
cnfStep (Disj xi (Conj phi psi)) = Conj (Disj xi phi) (Disj xi psi)
cnfStep (All _ f) = cnfStep f
cnfStep (Exists _ f) = cnfStep f
cnfStep f = f
-- create the list of clauses from a formula
-- TODO not working correctly for `makeCNFList formula5`
makeCNFList :: Formula -> [[Formula]]
makeCNFList form = go $ makeCNF form
makeCNFList form = go form
where
go (Conj f1 f2) = go f1 ++ go f2
go (Disj f1 f2) = [collectDisjs f1 ++ collectDisjs f2]
@ -280,22 +251,36 @@ applyMguTerm (Var x) ((Var y, t) : rest) = if x == y then t else applyMguTerm (V
applyMguTerm (Fun f ts) mgu = Fun f $ map (`applyMguTerm` mgu) ts
applyMguTerm t _ = t
-- a single resolution step as described in gloin
rifStep :: [[Formula]] -> Either () [[Formula]]
rifStep clauses | trace (show clauses) True = if [] `elem` clauses then Left () else Right newClauses
-- replace every fresh variable in a formula with a new name, this is only correct in our resolution context!!
makeVariablesDisjunct :: [[Formula]] -> [[Formula]]
makeVariablesDisjunct form = snd $ foldr (\clause (used', clauses') -> let (used'', clause') = makeClauseDisjunct used' clause in (used'', clause' : clauses')) ([], []) form
makeClauseDisjunct :: [String] -> [Formula] -> ([String], [Formula])
makeClauseDisjunct used clause = (concatMap formulaVars newClause ++ newUsed, newClause)
where
criticalVars = used `intersect` concatMap formulaVars clause
(newUsed, newClause) = foldr foldFun (used, clause) criticalVars
where
foldFun oldVar (used', clause') = (v' : used', map (\f -> renameFormula f oldVar v') clause')
where
v' = findFresh used'
-- a single resolution step as described in gloin
-- TODO before each step, rename every clause so that variable names are disjunct!
rifStep :: [[Formula]] -> Either () [[Formula]]
rifStep clauses = if [] `elem` clauses then Left () else Right newClauses
where
-- rename all variables
clauses' = makeVariablesDisjunct clauses
resolveClauses :: [Formula] -> [Formula] -> [(([Formula], [Formula]), [(Term, Term)])]
resolveClauses c1 c2 = let zippedElems = [((e1, c1), (e2, c2)) | e1 <- c1, e2 <- c2] in mapMaybe (uncurry unifyPredicates) zippedElems
zippedClauses = [(c1, c2) | c1 <- clauses, c2 <- clauses, c1 /= c2]
zippedClauses = [(c1, c2) | c1 <- clauses', c2 <- clauses', c1 /= c2]
clausesWithMgus = concatMap (uncurry resolveClauses) zippedClauses
newClauses = clauses ++ map (\((f1, f2), mgu) -> map (`applyMgu` mgu) f1 ++ map (`applyMgu` mgu) f2) clausesWithMgus
rifStep _ = undefined
newClauses = Set.toList . Set.fromList $ clauses' ++ map (\((f1, f2), mgu) -> map (`applyMgu` mgu) f1 ++ map (`applyMgu` mgu) f2) clausesWithMgus
-- do resolution until we have proven unfulfillability of formula set
doResolution :: [[Formula]] -> Either () [[Formula]]
doResolution f= do
doResolution f = do
f' <- rifStep f
-- TODO after every resolution step make variable names of clauses disjunct
doResolution f'
{-
@ -305,7 +290,34 @@ To prove a formula we:
3. doResolution on clause list
-}
proveFormula :: Formula -> Either () [[Formula]]
proveFormula form = doResolution $ makeCNFList (Neg form)
proveFormula form = doResolution . makeCNFList . makeCNF . makeSkolem . makePNF . renameBinders . makeNNF $ Neg form
proveFormulaIO :: Formula -> IO ()
proveFormulaIO f = do
let f' = makeNNF (Neg f)
print f'
putStrLn ""
let f'' = renameBinders f'
print f''
putStrLn ""
let f''' = makePNF f''
print f'''
putStrLn ""
let f'''' = makeSkolem f'''
print f''''
putStrLn ""
let g = makeCNF f''''
print g
putStrLn ""
let g' = makeCNFList g
print g'
case doResolution g' of
Left _ -> putStrLn "Success!!"
_ -> return ()
-- unification examples
terma1 :: Term
@ -326,14 +338,14 @@ formula1 :: Formula
formula1 = Neg (Conj (Disj (Pred "A" []) (Neg $ Pred "B" [])) (Pred "C" []))
-- PNF and skolem example from gloin
formula2 :: Formula
formula2 = All "x" $ Impl (All "y" $ Pred "L" [Var "y", Var "x"]) (Exists "y" $ Pred "M" [Var "x", Var "y"])
formula2 :: String
formula2 = "forall x. (forall y. L(y,x)) -> exists y.M(x,y)"
-- Resolution example from gloin script
formula3 :: Formula
formula3 = Impl (Conj (Pred "P" [Fun "a" []]) (All "x" $ Impl (Pred "P" [Var "x"]) (Pred "P" [Fun "f" [Var "x"]]))) (Exists "x" $ Pred "P" [Fun "f" [Fun "f" [Var "x"]]])
-- Resolution example from gloin exercises
-- Resolution example from gloin exercises (already in cnf)
formula4 :: Formula
formula4 = Conj (Disj (Pred "P" [Fun "f" [Var "x"], Var "y"]) (Disj (Pred "S" [Var "y", Var "z"]) (Pred "P" [Var "y"]))) (Conj (Neg $ Pred "S" [Fun "f" [Fun "f" [Var "x"]], Var "x"]) (Neg $ Pred "P" [Fun "f" [Var "z"]]))
@ -353,13 +365,13 @@ formula5 = Impl (Conj (Conj phi1 phi2) phi3) psi'
-- exercise 2: Ärzte und Quacksalber
formula6 :: [[Formula]]
formula6 = [
[Neg $ Pred "D" [Var "x1"], Pred "L" [Fun "f" [Var "x1"], Var "x1"]],
[Neg $ Pred "D" [Var "x1"], Pred "L" [Fun "f" [Var "x1"], Var "x1"]],
[Pred "P" [Fun "f" [Var "x2"]], Neg $ Pred "L" [Fun "f" [Var "x2"], Var "x2"]],
[Neg $ Pred "P" [Var "x3"], Neg $ Pred "Q" [Var "y3"], Neg $ Pred "L" [Var "x3", Var "y3"]],
[Pred "D" [Fun "a" []]],
[Pred "Q" [Fun "a" []]]]
-- Drogenschmuggel but already as clauses
-- Drogenschmuggel but already as clauses, fifth clause is wrong, arguments to S need to be swapped!!
formula7 :: [[Formula]]
formula7 = [
[Neg $ Pred "E" [Var "x2"], Pred "I" [Var "x2"], Pred "Z" [Fun "f" [Var "x2"]]],
@ -371,14 +383,33 @@ formula7 = [
[Neg $ Pred "Z" [Var "x5"], Neg $ Pred "D" [Var "x5"]]
]
formula8 :: [[Formula]]
formula8 = [
[Neg $ Pred "E" [Var "x2"], Pred "I" [Var "x2"], Pred "Z" [Fun "f" [Var "x21", Var "x22", Var "x2"]]],
[Neg $ Pred "E" [Var "x3"], Pred "I" [Var "x3"], Pred "S" [Var "x3", Fun "f" [Var "x31", Var "x32", Var "x3"]]],
[Pred "D" [Fun "c" [Var "x5", Var "x4"]]],
[Pred "E" [Fun "c" [Var "x5'", Var "x4'"]]],
[Neg $ Pred "S" [Fun "c" [Var "x5''", Var "x4''"], Var "y"], Pred "D" [Var "y"]],
[Neg $ Pred "I" [Var "x44"], Neg $ Pred "D" [Var "x44"]],
[Neg $ Pred "Z" [Var "x55"], Neg $ Pred "D" [Var "x55"]]
]
-- aerzte und quacksalber v2
formula9 :: Formula
formula9 = Impl (Conj psi1 psi2) psi3
where
psi1 = All "x" $ Impl (Pred "D" [Var "x"]) (Exists "y" $ Conj (Pred "P" [Var "y"]) (Pred "L" [Var "y", Var "x"]))
psi2 = All "x" $ Impl (Pred "P" [Var "x"]) (All "y" $ Impl (Pred "Q" [Var "y"]) (Neg $ Pred "L" [Var "x", Var "y"]))
psi3 = All "x" $ Impl (Pred "D" [Var "x"]) (Neg $ Pred "Q" [Var "x"])
main :: IO ()
main = do
putStrLn $ "Now making NNF of formula: " ++ show formula1
print $ makeNNF formula1
putStrLn $ "Now making PNF of formula: " ++ show formula2
print $ makePNF formula2
print $ makePNF (fromRight $ parseFormula formula2)
putStrLn $ "Now making Skolemform of formula: " ++ show formula2
print $ makeSkolem formula2
print $ makeSkolem (fromRight $ parseFormula formula2)
putStrLn $ "Now proving formula by resolution: " ++ show formula3
case proveFormula formula3 of
Left _ -> putStrLn "Success!"
@ -389,5 +420,13 @@ main = do
Right _ -> return ()
putStrLn $ "Now Proving formula by resolution: " ++ show formula6
case doResolution formula6 of
Left _ -> putStrLn "Success!"
Right _ -> return ()
putStrLn $ "Now Proving formula by resolution: " ++ show (Neg formula5)
case proveFormula (Neg formula5) of
Left _ -> putStrLn "Success!"
Right _ -> return ()
putStrLn $ "Now proving formula by resolution: " ++ show formula7
case doResolution formula7 of
Left _ -> putStrLn "Success!"
Right _ -> return ()

79
app/Parser.hs Normal file
View file

@ -0,0 +1,79 @@
module Parser (parseFormula) where
import Lexer
import FOLSyntax
import Text.Parsec
import Text.Parsec.String (Parser)
import Data.Functor
import Prelude hiding (pred, all)
term :: Parser Term
term = try fun <|> var
fun :: Parser Term
fun =
Fun
<$> identifier
<*> parens (term `sepBy` comma)
var :: Parser Term
var = Var <$> identifier
formula :: Parser Formula
formula = neg <|> impl <|> all <|> exists <|> pred <|> true <|> false <?> "formula"
pred :: Parser Formula
pred =
Pred
<$> identifier
<*> parens (term `sepBy` comma)
neg :: Parser Formula
neg =
Neg
<$> (reservedOp "!" *> negFormula)
where negFormula = neg <|> all <|> exists <|> true <|> false <|> parens formula <|> pred <?> "formula under neg"
impl :: Parser Formula
impl = foldr1 Impl <$> implFormula `sepBy` reservedOp "->"
where implFormula = neg <|> disj <|> conj <|> all <|> exists <|> true <|> false <|> parens formula <|> pred <?> "formula under impl"
disj :: Parser Formula
disj = foldr1 Disj <$> disjFormula `sepBy` reservedOp "\\/"
where disjFormula = neg <|> conj <|> all <|> exists <|> true <|> false <|> parens formula <|> pred <?> "formula under disj"
conj :: Parser Formula
conj = foldr1 Conj <$> conjFormula `sepBy` reservedOp "/\\"
where conjFormula = neg <|> all <|> exists <|> true <|> false <|> parens formula <|> pred <?> "formula under conj"
all :: Parser Formula
all =
All
<$> (reserved "forall" *> identifier)
<*> (dot *> formula)
exists :: Parser Formula
exists =
Exists
<$> (reserved "exists" *> identifier)
<*> (dot *> formula)
true :: Parser Formula
true = reserved "true" $> T
false :: Parser Formula
false = reserved "false" $> F
-- runners
contents :: Parser a -> Parser a
contents p = do
whiteSpace
r <- p
eof
return r
parseFormula :: String -> Either ParseError Formula
parseFormula = parse (contents formula) "stdin"

View file

@ -66,10 +66,12 @@ executable resolution
-- other-extensions:
-- Other library packages from which modules are imported.
build-depends: base ^>=4.16.4.0, containers, extra
build-depends: base ^>=4.16.4.0, containers, extra, parsec
-- Directories containing source files.
hs-source-dirs: app
other-modules: Lexer, Parser, FOLSyntax
-- Base language which the package is written in.
default-language: Haskell2010