Merge pull request 'refactor' (#1) from refactor into main

Reviewed-on: #1
This commit is contained in:
leonv 2024-06-16 15:35:34 +02:00
commit bef753f3ac
3 changed files with 157 additions and 272 deletions

View file

@ -70,7 +70,8 @@ library
-- Other library packages from which modules are imported. -- Other library packages from which modules are imported.
build-depends: base ^>=4.18.2.0, build-depends: base ^>=4.18.2.0,
vector ^>=0.13.1.0, vector ^>=0.13.1.0,
mtl ^>=2.3.1 mtl ^>=2.3.1,
split ^>=0.2.2
-- Directories containing source files. -- Directories containing source files.
hs-source-dirs: src hs-source-dirs: src

View file

@ -1,63 +1,89 @@
module Main where module Main where
import Control.Monad.State (evalState) import Data.Char (digitToInt)
import Data.Maybe (fromJust, fromMaybe, isJust, mapMaybe)
import qualified Data.Vector as V import qualified Data.Vector as V
import Types import Types
( Grid (Grid),
allCells,
colView,
count,
getCell,
initGrid,
mapGrid,
printGrid,
putCell,
rowView,
squareView,
)
main :: IO () main :: IO ()
main = do main = do
-- putStrLn $ evalState (insert 5 (2, 5) >> showCandidates3) dummyState putStr $ printSudoku dummyGrid
print $ isValidGrid dummyGrid
-- print $ evalState (getBoxRange 1) dummyState putStr . printGrid . fromJust $ solve dummyGrid
-- print $ evalState (getBoxRange 2) dummyState
-- print $ evalState (getBoxRange 3) dummyState
-- print $ evalState (getBoxRange 4) dummyState
-- print $ evalState (getBoxRange 5) dummyState
-- print $ evalState (getBoxRange 6) dummyState
-- print $ evalState (getBoxRange 7) dummyState
-- print $ evalState (getBoxRange 8) dummyState
-- print $ evalState (getBoxRange 9) dummyState
-- print $ evalState (getBox (1, 4)) dummyState
let sudoku = read test :: Sudoku
putStrLn "Reading:"
print sudoku
putStrLn "Pretty Printing:"
putStrLn $ pretty sudoku
putStrLn "Candidates:"
putStrLn $ evalState (insertAll sudoku >> showCandidates3) initState
test :: String test :: String
test = "070000043040009610800634900094052000358460020000800530080070091902100005007040802" test = "070000043040009610800634900094052000358460020000800530080070091902100005007040802"
{- dummyGrid :: Grid (Maybe Int)
070 000 043 dummyGrid = initGrid 3 (map toMaybeInt test)
040 009 610 where
800 634 900 toMaybeInt :: Char -> Maybe Int
094 052 000 toMaybeInt c = if int == 0 then Nothing else Just int
358 460 020 where
000 800 530 int = digitToInt c
080 070 091
902 100 005
007 040 802
-}
dummyState :: SudokuState
dummyState =
SudokuState
{ dimension = 3,
grid = V.replicate 81 0,
idxs = V.fromList [(x, y) | x <- [1 .. 9], y <- [1 .. 9]],
candidates = V.replicate 81 (V.replicate 9 True)
}
initState :: SudokuState printSudoku :: Grid (Maybe Int) -> String
initState = printSudoku gr = printGrid mappedGrid
SudokuState where
{ dimension = 0, mappedGrid :: Grid Int
grid = V.empty, mappedGrid = mapGrid (fromMaybe 0) gr
idxs = V.empty,
candidates = V.empty isValidGrid :: Grid (Maybe Int) -> Bool
} isValidGrid gr@(Grid _ d) =
all isValidRow [0 .. d * d - 1]
&& all isValidCol [0 .. d * d - 1]
&& all isValidSquare [0 .. d * d - 1]
where
validView :: V.Vector (Maybe Int) -> Bool
validView v = V.foldl (\drag (e, c) -> case e of Nothing -> drag; Just _ -> (c < 2) && drag) True counts
where
counts = V.map (\e -> (e, count v e)) v
isValidRow :: Int -> Bool
isValidRow y = validView $ rowView gr y
isValidCol :: Int -> Bool
isValidCol x = validView $ colView gr x
isValidSquare :: Int -> Bool
isValidSquare n = validView $ squareView gr n
isFull :: Grid (Maybe Int) -> Bool
isFull gr = allCells gr isJust
isSolved :: Grid (Maybe Int) -> Bool
isSolved gr = isValidGrid gr && isFull gr
extractSolution :: Grid (Maybe Int) -> Grid Int
extractSolution gr =
if not (isSolved gr)
then error "trying to extract solution from unsolved grid"
else mapGrid (fromMaybe 0) gr
solveHelper :: Grid (Maybe Int) -> (Int, Int) -> Maybe (Grid Int)
solveHelper gr@(Grid _ d) (x, y)
| not (isValidGrid gr) = Nothing
| isSolved gr = Just (extractSolution gr)
| otherwise = case cell of
Nothing -> if not (null solvedGrids) then head solvedGrids else Nothing
Just _ -> solveHelper gr nextCoord
where
placeAndSolve :: Int -> Maybe (Grid Int)
placeAndSolve n = solveHelper newGrid nextCoord
where
newGrid = putCell gr (x, y) (Just n)
solvedGrids = map Just (mapMaybe placeAndSolve [1 .. d * d])
cell = getCell gr (x, y)
nextCoord = if x < d * d - 1 then (x + 1, y) else (0, y + 1)
solve :: Grid (Maybe Int) -> Maybe (Grid Int)
solve gr = solveHelper gr (0, 0)

View file

@ -1,245 +1,103 @@
{-# LANGUAGE InstanceSigs #-}
module Types where module Types where
import Control.Monad (forM_, when) import Data.List (intercalate)
import Control.Monad.State (MonadState (put), State, get, gets, modify) import Data.List.Split (chunksOf, keepDelimsL, split, whenElt)
import Data.Char (digitToInt, intToDigit) import Data.Vector (Vector)
import Data.Vector (Vector, slice)
import qualified Data.Vector as V import qualified Data.Vector as V
import Debug.Trace
-- * Stateful Sudoku Type type Row a = Vector a
data SudokuState = SudokuState data Grid a = Grid
{ dimension :: Int, { grid :: Vector (Row a),
grid :: Vector Int, dimension :: Int
idxs :: Vector (Int, Int),
candidates :: Vector (Vector Bool)
} }
type SudokuMonad = State SudokuState initGrid :: Int -> [a] -> Grid a
initGrid d vs = Grid (V.fromList . map V.fromList $ chunksOf (d * d) vs) d
getField :: (Int, Int) -> SudokuMonad Int getRow :: Grid a -> Int -> Row a
getField (x, y) = do getRow (Grid g d) y =
state <- get if y >= d * d || y < 0
return $ grid state ! (x + y * dimension state) then error ("getRow: y=" ++ show y ++ " is out of dimension=" ++ show d)
else g V.! y
getRow :: (Int, Int) -> SudokuMonad Int putRow :: Grid a -> Row a -> Int -> Grid a
getRow (_, y) = return y putRow (Grid g d) newRow y =
if y >= d * d || y < 0
then error ("putRow: y=" ++ show y ++ " is out of dimension=" ++ show d)
else Grid (g V.// [(y, newRow)]) d
getCol :: (Int, Int) -> SudokuMonad Int updateRow :: Grid a -> (Row a -> Row a) -> Int -> Grid a
getCol (x, _) = return x updateRow gr upd y = putRow gr (upd oldRow) y
getBox :: (Int, Int) -> SudokuMonad Int
getBox (x, y) = do
d <- gets dimension
let xPart = ((x - 1) `div` d) + 1
let yPart = (y - 1) `div` d
return $ xPart + (d * yPart)
getRowRange :: Int -> SudokuMonad [Int]
getRowRange row = do
d <- gets dimension
return [x + ((row - 1) * d * d) | x <- [1 .. d * d]]
getColRange :: Int -> SudokuMonad [Int]
getColRange col = do
d <- gets dimension
return [col + ((x - 1) * d * d) | x <- [1 .. d * d]]
getBoxRange :: Int -> SudokuMonad [Int]
getBoxRange box = do
d <- gets dimension
let (x, y) = getXY box
flatIdx <- flattenIdx (x, y)
return [flatIdx + n + (m * d * d) | m <- [0 .. d - 1], n <- [0 .. d - 1]]
where where
-- \| Maps a box number to its upper left corner oldRow = getRow gr y
getXY :: Int -> (Int, Int)
getXY 1 = (1, 1)
getXY 2 = (4, 1)
getXY 3 = (7, 1)
getXY 4 = (1, 4)
getXY 5 = (4, 4)
getXY 6 = (7, 4)
getXY 7 = (1, 7)
getXY 8 = (4, 7)
getXY 9 = (7, 7)
getXY n = error $ "tried to getXY of box number: " ++ show n
flattenIdx :: (Int, Int) -> SudokuMonad Int putCell :: Grid a -> (Int, Int) -> a -> Grid a
flattenIdx (x, y) = do putCell gs@(Grid _ d) (x, y) v =
d <- gets dimension if x >= d * d || x < 0
return (x + (d * d * (y - 1))) then error "putCell out of bounds"
else updateRow gs (\row -> row V.// [(x, v)]) y
updateVector :: Vector a -> Int -> a -> Vector a getCell :: Grid a -> (Int, Int) -> a
updateVector v idx x = V.update v (V.singleton (idx - 1, x)) getCell gs@(Grid _ d) (x, y) =
if x >= d * d || x < 0
dropCandidate :: Int -> Vector Bool -> Vector Bool then error "getCell: x out of bounds"
dropCandidate n bs = updateVector bs n False else row V.! x
dropAllCandidates :: Vector Bool -> Vector Bool
dropAllCandidates = V.map (const False)
(!) :: Vector a -> Int -> a
v ! n = v V.! (n - 1)
gridInsert :: Int -> (Int, Int) -> SudokuMonad ()
gridInsert n idx = do
flatIdx <- flattenIdx idx
g <- gets grid
modify (\s -> s {grid = updateVector g flatIdx n})
removeInRow :: Int -> (Int, Int) -> SudokuMonad ()
removeInRow n idx = do
rr <- getRow idx >>= getRowRange
forM_ rr remover
where where
remover :: Int -> SudokuMonad () row = getRow gs y
remover pos = do
cs <- gets candidates
let cand = cs ! pos
let cand' = dropCandidate n cand
modify (\s -> s {candidates = updateVector cs pos cand'})
removeInCol :: Int -> (Int, Int) -> SudokuMonad () printGrid :: (Show a) => Grid a -> String
removeInCol n idx = do printGrid gr@(Grid _ d) = unwords . intercalate ["\n"] . chunksOf 3 . (split . keepDelimsL . whenElt) (== '\n') . unlines $ map printRow [0 .. (d * d) - 1]
cr <- getCol idx >>= getColRange
forM_ cr remover
where where
remover :: Int -> SudokuMonad () printRow :: Int -> String
remover pos = do printRow _y = unwords $ map printSquare [0 .. d - 1]
cs <- gets candidates where
let cand = cs ! pos y = checkDimension d _y
let cand' = dropCandidate n cand row = getRow gr y
modify (\s -> s {candidates = updateVector cs pos cand'}) printSquare :: Int -> String
printSquare n =
if n * d >= d * d || n < 0
then error ("trying to print square " ++ show n ++ " which is out of bounds (dimension: " ++ show d ++ ")")
else concatMap (\m -> show $ row V.! (n * d + m)) [0 .. d - 1]
removeInBox :: Int -> (Int, Int) -> SudokuMonad () checkDimension :: Int -> Int -> Int
removeInBox n idx = do checkDimension d v =
br <- getBox idx >>= getBoxRange if v >= d * d || v < 0
forM_ br remover then error ("value " ++ show v ++ " out of dimension: " ++ show d)
else v
update :: Grid a -> Int -> Int -> a -> Grid a
update (Grid g d) _x _y v = Grid newG d
where where
remover :: Int -> SudokuMonad () x = checkDimension d _x
remover pos = do y = checkDimension d _y
cs <- gets candidates row = g V.! y
let cand = cs ! pos newRow = row V.// [(x, v)]
let cand' = dropCandidate n cand newG = g V.// [(y, newRow)]
modify (\s -> s {candidates = updateVector cs pos cand'})
insert :: Int -> (Int, Int) -> SudokuMonad () allCells :: Grid a -> (a -> Bool) -> Bool
insert n idx = do allCells (Grid g _) test = V.all id rows
gridInsert n idx where
-- traceM $ "inserting " ++ show n rows :: Vector Bool
removeInRow n idx rows = V.map (V.all test) g
removeInCol n idx
removeInBox n idx
-- remove all candidates for this cell
flatIdx <- flattenIdx idx
cs <- gets candidates
let cand = cs ! flatIdx
let cand' = dropAllCandidates cand
modify (\s -> s {candidates = updateVector cs flatIdx cand'})
insertAll :: Sudoku -> SudokuMonad () rowView :: Grid a -> Int -> Row a
insertAll (Sudoku d g) = do rowView = getRow
let coords = [(x, y) | y <- [1 .. d * d], x <- [1 .. d * d]]
let initialState =
SudokuState
{ dimension = d,
grid = V.replicate (d * d * d * d) 0,
idxs = V.fromList coords,
candidates = V.replicate (d * d * d * d) (V.replicate (d * d) True)
}
put initialState
forM_ (zip g coords) (\(n, idx) -> when (n /= 0) (insert n idx))
showCandidates3 :: SudokuMonad String colView :: Grid a -> Int -> Row a
showCandidates3 = do colView gr@(Grid _ d) x = V.generate (d * d) (\y -> getCell gr (x, y))
cs <- gets candidates
let cs' = V.map (V.filter (/= 0) . V.imap (\idx b -> if b then idx + 1 else 0)) cs
return $
show (slice 0 9 cs')
++ "\n"
++ show (slice 9 9 cs')
++ "\n"
++ show (slice 18 9 cs')
++ "\n"
++ show (slice 27 9 cs')
++ "\n"
++ show (slice 36 9 cs')
++ "\n"
++ show (slice 45 9 cs')
++ "\n"
++ show (slice 54 9 cs')
++ "\n"
++ show (slice 63 9 cs')
++ "\n"
++ show (slice 72 9 cs')
showGrid :: SudokuMonad String -- returns topleft coords of the square
showGrid = do squareToCoords :: Grid a -> Int -> (Int, Int)
g <- gets grid squareToCoords (Grid _ d) m = ((m `mod` d) * d, (m `div` d) * d)
return $ show g
-- * Stateless Sudoku Type squareView :: Grid a -> Int -> Row a
squareView gr@(Grid _ d) n = V.concat (map (\y -> V.generate d (\x -> getCell gr (x + xoff, y + yoff))) [0 .. d - 1])
where
(xoff, yoff) = squareToCoords gr n
-- count :: (Eq a) => Vector a -> a -> Int
count v a = V.foldl (\c b -> if a == b then c + 1 else c) 0 v
-- $statelessFlattened mapGrid :: (a -> b) -> Grid a -> Grid b
-- mapGrid f (Grid g d) = Grid (V.map (V.map f) g) d
-- Here we define a simpler Sudoku type that would be very inneficient to work with
-- but is suitable for pretty printing and reading
-- | Contains metadata concerning a Sudoku field
data Sudoku = Sudoku
{ -- | The dim of the Sudoku, e.g. a 9x9 Sudoku field has dim 3
dim :: Int,
-- | The Sudoku field as a flattened list
grd :: [Int]
}
instance Show Sudoku where
show :: Sudoku -> String
show = map intToDigit . grd
instance Read Sudoku where
readsPrec :: Int -> ReadS Sudoku
readsPrec _ s =
if isInt dimDouble
then [(Sudoku (floor dimDouble) (map digitToInt s), "")]
else error ("Trying to parse malformed sudoku (number of digits [" ++ show (length s) ++ "] is not a quadratic root):\n" ++ s)
where
isInt x = x == fromInteger (round x)
dimDouble = sqrt . sqrt $ (fromIntegral (length s) :: Double)
-- | Pretty printing of values. Analogous to the `Show` class, but does not harmonize with `Read`.
class Pretty a where
-- | Works like `show`, but is not inverse to `read`.
pretty :: a -> String
-- TODO improve pretty printer, this is kind of a mess
instance Pretty Sudoku where
pretty :: Sudoku -> String
pretty s = prettyHelper (dim s - 1, dim s, grd s)
where
-- prettyBlock (isLast, n, list)
prettyBlock :: (Bool, Int, [Int]) -> String
prettyBlock (_, _, []) = ""
prettyBlock (True, n, _) | n == 0 = ""
prettyBlock (False, n, _) | n == 0 = "|"
prettyBlock (b, n, x : xs) = intToDigit x : ' ' : prettyBlock (b, n - 1, xs)
-- prettyRow (n, d, list)
prettyRow :: (Int, Int, [Int]) -> String
prettyRow (n, d, xs) | n == 0 = prettyBlock (True, d, xs)
prettyRow (n, d, xs) = prettyBlock (False, d, xs) ++ (' ' : prettyRow (n - 1, d, drop d xs))
-- prettyCol (isLast, n, d, list)
prettyCol :: (Bool, Int, Int, [Int]) -> String
prettyCol (True, n, _, _) | n == 0 = ""
prettyCol (False, n, d, _) | n == 0 = replicate (2 * d * d - 1 + 2 * (d - 1)) '-'
prettyCol (_, _, _, []) = ""
prettyCol (b, n, d, xs) = prettyRow (d - 1, d, xs) ++ ('\n' : prettyCol (b, n - 1, d, drop (d * d) xs))
-- prettyHelper (n, d, list)
prettyHelper :: (Int, Int, [Int]) -> String
prettyHelper (n, d, xs) | n == 0 = prettyCol (True, d, d, xs)
prettyHelper (n, d, xs) = prettyCol (False, d, d, xs) ++ ('\n' : prettyHelper (n - 1, d, drop (d * d * d) xs))