29 lines
1 KiB
Agda
29 lines
1 KiB
Agda
|
open import Algebra.Bundles
|
|||
|
open import Level
|
|||
|
open import Data.Product
|
|||
|
open import Relation.Binary.PropositionalEquality
|
|||
|
|
|||
|
module GSet {c ℓ : Level} where
|
|||
|
open Group using () renaming (Carrier to ∣_∣)
|
|||
|
record G-Set (G : Group c ℓ) : Set (suc (c ⊔ ℓ)) where
|
|||
|
open Group G using (ε; _∙_)
|
|||
|
field
|
|||
|
X : Set c
|
|||
|
_⊳_ : ∣ G ∣ → X → X
|
|||
|
field
|
|||
|
ε⊳ : ∀ {x : X} → ε ⊳ x ≡ x
|
|||
|
∘⊳ : ∀ {g h : ∣ G ∣} {x : X} → (g ∙ h) ⊳ x ≡ (g ⊳ (h ⊳ x))
|
|||
|
|
|||
|
open G-Set using () renaming (X to ∣_∣)
|
|||
|
|
|||
|
isEquivariant : ∀ {G : Group c ℓ} (X Y : G-Set G) (f : ∣ X ∣ → ∣ Y ∣) → Set c
|
|||
|
isEquivariant {G} X Y f = ∀ {g : ∣ G ∣} {x : ∣ X ∣} → f (g ⊳ˣ x) ≡ g ⊳ʸ (f x)
|
|||
|
where
|
|||
|
open G-Set X using () renaming (_⊳_ to _⊳ˣ_)
|
|||
|
open G-Set Y using () renaming (_⊳_ to _⊳ʸ_)
|
|||
|
|
|||
|
record G-Set-Morphism (G : Group c ℓ) (X Y : G-Set G) : Set (suc (c ⊔ ℓ)) where
|
|||
|
field
|
|||
|
f : ∣ X ∣ → ∣ Y ∣
|
|||
|
isEqui : isEquivariant X Y f
|