initial
This commit is contained in:
commit
12e3092a17
3 changed files with 33 additions and 0 deletions
28
Algebra/GSet.agda
Normal file
28
Algebra/GSet.agda
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
open import Algebra.Bundles
|
||||||
|
open import Level
|
||||||
|
open import Data.Product
|
||||||
|
open import Relation.Binary.PropositionalEquality
|
||||||
|
|
||||||
|
module GSet {c ℓ : Level} where
|
||||||
|
open Group using () renaming (Carrier to ∣_∣)
|
||||||
|
record G-Set (G : Group c ℓ) : Set (suc (c ⊔ ℓ)) where
|
||||||
|
open Group G using (ε; _∙_)
|
||||||
|
field
|
||||||
|
X : Set c
|
||||||
|
_⊳_ : ∣ G ∣ → X → X
|
||||||
|
field
|
||||||
|
ε⊳ : ∀ {x : X} → ε ⊳ x ≡ x
|
||||||
|
∘⊳ : ∀ {g h : ∣ G ∣} {x : X} → (g ∙ h) ⊳ x ≡ (g ⊳ (h ⊳ x))
|
||||||
|
|
||||||
|
open G-Set using () renaming (X to ∣_∣)
|
||||||
|
|
||||||
|
isEquivariant : ∀ {G : Group c ℓ} (X Y : G-Set G) (f : ∣ X ∣ → ∣ Y ∣) → Set c
|
||||||
|
isEquivariant {G} X Y f = ∀ {g : ∣ G ∣} {x : ∣ X ∣} → f (g ⊳ˣ x) ≡ g ⊳ʸ (f x)
|
||||||
|
where
|
||||||
|
open G-Set X using () renaming (_⊳_ to _⊳ˣ_)
|
||||||
|
open G-Set Y using () renaming (_⊳_ to _⊳ʸ_)
|
||||||
|
|
||||||
|
record G-Set-Morphism (G : Group c ℓ) (X Y : G-Set G) : Set (suc (c ⊔ ℓ)) where
|
||||||
|
field
|
||||||
|
f : ∣ X ∣ → ∣ Y ∣
|
||||||
|
isEqui : isEquivariant X Y f
|
2
Category/GSets.agda
Normal file
2
Category/GSets.agda
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
open import Algebra.Bundles
|
||||||
|
open import Level
|
3
gset.agda-lib
Normal file
3
gset.agda-lib
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
name: gset
|
||||||
|
include: .
|
||||||
|
depend: agda-categories standard-library
|
Loading…
Reference in a new issue