work on gsets category
This commit is contained in:
parent
12e3092a17
commit
e5cdeaee38
2 changed files with 34 additions and 3 deletions
|
@ -3,7 +3,7 @@ open import Level
|
|||
open import Data.Product
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
|
||||
module GSet {c ℓ : Level} where
|
||||
module Algebra.GSet {c ℓ : Level} where
|
||||
open Group using () renaming (Carrier to ∣_∣)
|
||||
record G-Set (G : Group c ℓ) : Set (suc (c ⊔ ℓ)) where
|
||||
open Group G using (ε; _∙_)
|
||||
|
@ -24,5 +24,5 @@ module GSet {c ℓ : Level} where
|
|||
|
||||
record G-Set-Morphism (G : Group c ℓ) (X Y : G-Set G) : Set (suc (c ⊔ ℓ)) where
|
||||
field
|
||||
f : ∣ X ∣ → ∣ Y ∣
|
||||
isEqui : isEquivariant X Y f
|
||||
u : ∣ X ∣ → ∣ Y ∣ -- u for underlying
|
||||
isEqui : isEquivariant X Y u
|
||||
|
|
|
@ -1,2 +1,33 @@
|
|||
open import Algebra.Bundles
|
||||
open import Algebra.GSet
|
||||
open import Categories.Category.Core
|
||||
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
|
||||
open import Level
|
||||
|
||||
module Category.GSets {c ℓ : Level} where
|
||||
open Category
|
||||
G-Sets : Group c ℓ → Category (suc (c ⊔ ℓ)) (suc c ⊔ suc ℓ) c
|
||||
G-Sets G .Obj = G-Set G
|
||||
G-Sets G ._⇒_ = G-Set-Morphism G
|
||||
G-Sets G ._≈_ f g = ∀ {x} → f.u x ≡ g.u x
|
||||
where
|
||||
module f = G-Set-Morphism f
|
||||
module g = G-Set-Morphism g
|
||||
G-Sets G .id = record { u = λ x → x ; isEqui = ≡.refl }
|
||||
G-Sets G ._∘_ f g .G-Set-Morphism.u x = f.u (g.u x)
|
||||
where
|
||||
module f = G-Set-Morphism f
|
||||
module g = G-Set-Morphism g
|
||||
-- TODO without rewrite
|
||||
G-Sets G ._∘_ {X} {Y} {Z} f g .G-Set-Morphism.isEqui {h} {x} rewrite G-Set-Morphism.isEqui g {h} {x} | G-Set-Morphism.isEqui f {h} {G-Set-Morphism.u g x} = ≡.refl
|
||||
where
|
||||
module f = G-Set-Morphism f
|
||||
module g = G-Set-Morphism g
|
||||
G-Sets G .assoc = ≡.refl
|
||||
G-Sets G .sym-assoc = ≡.refl
|
||||
G-Sets G .identityˡ = ≡.refl
|
||||
G-Sets G .identityʳ = ≡.refl
|
||||
G-Sets G .identity² = ≡.refl
|
||||
G-Sets G .equiv = record { refl = ≡.refl ; sym = λ eq → ≡.sym eq ; trans = λ eq₁ eq₂ → ≡.trans eq₁ eq₂ }
|
||||
G-Sets G .∘-resp-≈ {X} {Y} {Z} {f} {h} {g} {i} f≈h g≈i = ≡.trans f≈h (≡.cong < h > g≈i)
|
||||
where open G-Set-Morphism using () renaming (u to <_>)
|
||||
|
|
Loading…
Reference in a new issue