open import Algebra.Group open import Level open import Data.Product open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) module Algebra.G-Set {ℓ : Level} where open Group using () renaming (Carrier to ∣_∣) record G-Set (G : Group ℓ) : Set (suc ℓ) where open Group G using (ε; _∙_) field X : Set ℓ _⊳_ : ∣ G ∣ → X → X field ε⊳ : ∀ {x : X} → ε ⊳ x ≡ x ∘⊳ : ∀ {g h : ∣ G ∣} {x : X} → (g ∙ h) ⊳ x ≡ (g ⊳ (h ⊳ x)) -- orb : X → Set ℓ -- orb x = Σ[ y ∈ X ] Σ[ g ∈ ∣ G ∣ ] g ⊳ x ≡ y -- Orb : Set ℓ -- Orb = Σ[ x ∈ X ] orb x record orb (x : X) : Set ℓ where constructor orb[_,_,_] field y : X g : ∣ G ∣ .eq : g ⊳ x ≡ y orb-intro : ∀ {x : X} {y z : X} {g h : ∣ G ∣} {eq₁ : g ⊳ x ≡ y} {eq₂ : h ⊳ x ≡ z} (p : y ≡ z) (q : g ≡ h) → ≡.subst₂ (λ y g → g ⊳ x ≡ y) p q eq₁ ≡ eq₂ → orb[ y , g , eq₁ ] ≡ orb[ z , h , eq₂ ] orb-intro ≡.refl ≡.refl ≡.refl = ≡.refl record Orb : Set ℓ where constructor Orb[_,_] field x : X o : orb x Orb-intro : ∀ {x y : X} {o₁ : orb x} {o₂ : orb y} (p : x ≡ y) → ≡.subst (λ x → orb x) p o₁ ≡ o₂ → Orb[ x , o₁ ] ≡ Orb[ y , o₂ ] Orb-intro ≡.refl ≡.refl = ≡.refl open G-Set using () renaming (X to ∣_∣) IsEquivariant : ∀ {G : Group ℓ} (X Y : G-Set G) (f : ∣ X ∣ → ∣ Y ∣) → Set ℓ IsEquivariant {G} X Y f = ∀ {g : ∣ G ∣} {x : ∣ X ∣} → f (g ⊳ˣ x) ≡ g ⊳ʸ (f x) where open G-Set X using () renaming (_⊳_ to _⊳ˣ_) open G-Set Y using () renaming (_⊳_ to _⊳ʸ_) record G-Set-Morphism (G : Group ℓ) (X Y : G-Set G) : Set (suc ℓ) where field u : ∣ X ∣ → ∣ Y ∣ -- u for underlying equivariance : IsEquivariant X Y u