open import Algebra.Bundles open import Level open import Data.Product open import Relation.Binary.PropositionalEquality module Algebra.GSet {c ℓ : Level} where open Group using () renaming (Carrier to ∣_∣) record G-Set (G : Group c ℓ) : Set (suc (c ⊔ ℓ)) where open Group G using (ε; _∙_) field X : Set c _⊳_ : ∣ G ∣ → X → X field ε⊳ : ∀ {x : X} → ε ⊳ x ≡ x ∘⊳ : ∀ {g h : ∣ G ∣} {x : X} → (g ∙ h) ⊳ x ≡ (g ⊳ (h ⊳ x)) open G-Set using () renaming (X to ∣_∣) isEquivariant : ∀ {G : Group c ℓ} (X Y : G-Set G) (f : ∣ X ∣ → ∣ Y ∣) → Set c isEquivariant {G} X Y f = ∀ {g : ∣ G ∣} {x : ∣ X ∣} → f (g ⊳ˣ x) ≡ g ⊳ʸ (f x) where open G-Set X using () renaming (_⊳_ to _⊳ˣ_) open G-Set Y using () renaming (_⊳_ to _⊳ʸ_) record G-Set-Morphism (G : Group c ℓ) (X Y : G-Set G) : Set (suc (c ⊔ ℓ)) where field u : ∣ X ∣ → ∣ Y ∣ -- u for underlying isEqui : isEquivariant X Y u