agda-gset/Category/G-Sets.agda

38 lines
1.2 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Algebra.Group
open import Algebra.G-Set
open import Categories.Category.Core
open import Relation.Binary.PropositionalEquality as using (_≡_)
open import Level
module Category.G-Sets { : Level} where
open Category
open G-Set-Morphism using () renaming (u to <_>)
G-Sets : Group Category (suc ) (suc )
G-Sets G .Obj = G-Set G
G-Sets G ._⇒_ = G-Set-Morphism G
G-Sets G ._≈_ f g = {x} f.u x g.u x
where
module f = G-Set-Morphism f
module g = G-Set-Morphism g
G-Sets G .id = record
{ u = λ x x
; equivariance = ≡.refl
}
G-Sets G ._∘_ f g = record
{ u = λ x f.u (g.u x)
; equivariance = ≡.trans (≡.cong < f > g.equivariance) f.equivariance
}
where
module f = G-Set-Morphism f
module g = G-Set-Morphism g
G-Sets G .assoc = ≡.refl
G-Sets G .sym-assoc = ≡.refl
G-Sets G .identityˡ = ≡.refl
G-Sets G .identityʳ = ≡.refl
G-Sets G .identity² = ≡.refl
G-Sets G .equiv = record
{ refl = ≡.refl
; sym = λ eq ≡.sym eq
; trans = λ eq₁ eq₂ ≡.trans eq₁ eq₂
}
G-Sets G .∘-resp-≈ {X} {Y} {Z} {f} {h} {g} {i} f≡h g≡i = ≡.trans f≡h (≡.cong < h > g≡i)