agda-gset/Category/G-Sets/Properties/A4.agda
2024-05-06 16:24:49 +02:00

70 lines
2.7 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --irrelevant-projections #-}
open import Algebra.G-Set
open import Algebra.Group
open import Category.G-Sets
open import Categories.Category.Instance.Sets
open import Categories.Functor.Core
open import Categories.Category.Core
open import Relation.Binary.PropositionalEquality as using (_≡_)
open import Relation.Binary.PropositionalEquality.Properties
open import Relation.Binary.PropositionalEquality.WithK
open import Axiom.UniquenessOfIdentityProofs.WithK
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.Dependent.WithK
open import Data.Product.Relation.Binary.Pointwise.Dependent
open import Data.Product.Properties renaming (Σ-≡,≡→≡ to peq)
open import Level
module Category.G-Sets.Properties.A4 {} (G : Group ) where
open Functor
open G-Set-Morphism using () renaming (u to <_>)
D : Functor (Sets ) (G-Sets G)
D .F₀ S = record
{ X = S
; _⊳_ = λ _ s s
; ε⊳ = ≡.refl
; ∘⊳ = ≡.refl
}
D .F₁ {A} {B} f = record
{ u = f
; equivariance = ≡.refl
}
D .identity = ≡.refl
D .homomorphism = ≡.refl
D .F-resp-≈ f≡g = f≡g
V : Functor (G-Sets G) (Sets )
V .F₀ GS = Orb
where
open G-Set GS
V .F₁ {A} {B} f O = Orb[ < f > O.x , G-Set.orb[ (< f > o.y) , o.g , (≡.trans (≡.sym f.equivariance) (≡.cong < f > o.eq)) ] ]
-- V .F₁ {A} {B} f (x , (y , (g , eq))) = (< f > x , (< f > y , (g , ≡.trans (≡.sym f.equivariance) (≡.cong < f > eq))))
where
open G-Set A using () renaming (Orb to OrbA; orb to orbA; Orb[_,_] to OrbA[_,_])
open G-Set B using (Orb[_,_]; orb[_,_,_]) renaming (Orb to OrbB; orb to orbB)
module f = G-Set-Morphism f
module O = OrbA O
module o = orbA O.o
V .identity {GS} {O} = Orb-intro ≡.refl ≡.refl
where
open G-Set GS
-- V .identity {GS} {(x , (y , (g , ≡.refl)))} = ≡.refl
V .homomorphism {X} {Y} {Z} {f} {g} {O} = Orb-intro ≡.refl ≡.refl
where
open G-Set Z
-- TODO needs something like subst-application, but for orb...
V .F-resp-≈ {A} {B} {f} {g} eq {O} = {!!}
-- V .F-resp-≈ {A} {B} {f} {g} eq {(x , (y , (h , ≡.refl)))} = peq ((eq {x}) , {!!})
where
module f = G-Set-Morphism f hiding (u)
module g = G-Set-Morphism g hiding (u)
module A = G-Set A
open G-Set A using () renaming (Orb to OrbA; orb to orbA)
open G-Set B using () renaming (Orb[_,_] to OrbB[_,_]; orb[_,_,_] to orbB[_,_,_]; Orb-intro to Orb-introB; orb-intro to orb-introB)
module O = OrbA O
module o = orbA O.o
helper : (e : < f > O.x < g > O.x) (≡.subst (G-Set.orb B) (eq {O.x}) orbB[ < f > o.y , o.g , _ ]) orbB[ < f > o.y , o.g , _ ]
helper e = {!!}