From 34003081dd35fdc454221c76c910d78d6a1d06c5 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Wed, 17 Jul 2024 16:25:41 +0200 Subject: [PATCH] get files from bsc --- .chktexrc | 2 + .gitignore | 61 + .vscode/ltex.dictionary.en-GB.txt | 4 + .vscode/ltex.dictionary.en-US.txt | 84 ++ .vscode/ltex.hiddenFalsePositives.en-GB.txt | 7 + .vscode/ltex.hiddenFalsePositives.en-US.txt | 61 + .vscode/settings.json | 27 + Makefile | 16 + README.md | 8 + agda/Coind.agda | 50 + agda/Setoids.agda | 50 + agda/agda.agda-lib | 3 + bib.bib | 372 ++++++ img/fau.pdf | 1176 +++++++++++++++++++ img/tcs.pdf | Bin 0 -> 2792 bytes main.pdf | Bin 0 -> 331852 bytes main.tex | 248 ++++ quiver.sty | 40 + src/00_abstract.tex | 10 + src/01_introduction.tex | 35 + src/02_preliminaries.tex | 528 +++++++++ src/03_agda-categories.tex | 143 +++ src/04_partiality-monads.tex | 572 +++++++++ src/05_iteration.tex | 1040 ++++++++++++++++ src/06_setoids.tex | 521 ++++++++ src/07_conclusion.tex | 9 + src/titlepage.tex | 49 + thesis.pdf | Bin 0 -> 331855 bytes 28 files changed, 5116 insertions(+) create mode 100644 .chktexrc create mode 100644 .gitignore create mode 100644 .vscode/ltex.dictionary.en-GB.txt create mode 100644 .vscode/ltex.dictionary.en-US.txt create mode 100644 .vscode/ltex.hiddenFalsePositives.en-GB.txt create mode 100644 .vscode/ltex.hiddenFalsePositives.en-US.txt create mode 100644 .vscode/settings.json create mode 100644 Makefile create mode 100644 README.md create mode 100644 agda/Coind.agda create mode 100644 agda/Setoids.agda create mode 100644 agda/agda.agda-lib create mode 100644 bib.bib create mode 100644 img/fau.pdf create mode 100644 img/tcs.pdf create mode 100644 main.pdf create mode 100644 main.tex create mode 100644 quiver.sty create mode 100644 src/00_abstract.tex create mode 100644 src/01_introduction.tex create mode 100644 src/02_preliminaries.tex create mode 100644 src/03_agda-categories.tex create mode 100644 src/04_partiality-monads.tex create mode 100644 src/05_iteration.tex create mode 100644 src/06_setoids.tex create mode 100644 src/07_conclusion.tex create mode 100644 src/titlepage.tex create mode 100644 thesis.pdf diff --git a/.chktexrc b/.chktexrc new file mode 100644 index 0000000..83270ac --- /dev/null +++ b/.chktexrc @@ -0,0 +1,2 @@ +# Exclude these environments from syntax checking +VerbEnvir { tikzcd } \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..8c28d0f --- /dev/null +++ b/.gitignore @@ -0,0 +1,61 @@ +# agda +*.agdai +*.log +Everything.agda +agda/public/ +.direnv +.DS_Store + +# latex +# put this to .git/info/exclude in git repos managing latex +# +# git ls-files --others --exclude-from=.git/info/exclude +# Lines that start with '#' are comments. +# For a project mostly in C, the following would be a good set of +# exclude patterns (uncomment them if you want to use them): +# *.[oa] +.*.swp +.#* +*~ +_minted-main/ +# AUTOGENERATED +# All wildcards below this marker are used to remove generated files in +# 'make clean' +*.aux +*.fdb_latexmk +*.log +*.out +thesis/*.pdf +slides/*.pdf +*.synctex.gz +*.toc +*.bbl +*.blg +*.idx +*.ilg +*.fls +*.ind +*.zip +*.dvi +*.eps +*.bcf +*.run.xml +*.nav +*.snm +*.vrb +*.vtc +*.spl +*.nlo +*.nls +*.auxlock +.auctex-auto/ +_region_.tex +*.xdv +thesis/_minted-main/ +slides/_minted-main/ +thesis/main.bbl-SAVE-ERROR +thesis/main.bcf-SAVE-ERROR +thesis/main.tdo +main.synctex(busy) +thesis/main.pyg +thesis/main.loe diff --git a/.vscode/ltex.dictionary.en-GB.txt b/.vscode/ltex.dictionary.en-GB.txt new file mode 100644 index 0000000..44535c8 --- /dev/null +++ b/.vscode/ltex.dictionary.en-GB.txt @@ -0,0 +1,4 @@ +Agda +Vatthauer +Moggi +Capretta diff --git a/.vscode/ltex.dictionary.en-US.txt b/.vscode/ltex.dictionary.en-US.txt new file mode 100644 index 0000000..e49000d --- /dev/null +++ b/.vscode/ltex.dictionary.en-US.txt @@ -0,0 +1,84 @@ +cocartesian +cartesian +iso +coproducts +Coalgebras +adjunctions +coalgebras +Adjunctions +Lambek +endofunctor +pointful +Kleisli +functoriality +formalizations +Agda +Coq +agda-categories +setoids +sym-assoc +setoid-enriched +extensionality +Setoid +Moggi +Cockett +Bucalo +equational +coinductive +corecursion +coinduction +coalgebra +Capretta +monic +monicity +intensional +Fixpoint +Elgot +exponentials +Pre-Elgot +pre-Elgot +quotiented +quotients-as-setoid +setoid +Setoids +Coproducts +iff +Quotienting +bisimilarity +corecursively +coproduct +adjunction +counit +epi +F-coalgebra +F-coalgebras +F-Coalgebras +terminality +coinductively +monos +epis +isos +Corecursion +subobject +isomorphisms +epicness +fixpoint +Martin-Löf +Set₀ +Set₁ +bisimilar +copatterns +epimorphisms +monomorphisms +expressivity +Friedrich-Alexander-Universität +Erlangen-Nürnberg +Goncharov +denotational +Plotkin +monadic +Vatthauer +minimality +coequalizer +refl +coList diff --git a/.vscode/ltex.hiddenFalsePositives.en-GB.txt b/.vscode/ltex.hiddenFalsePositives.en-GB.txt new file mode 100644 index 0000000..3da3949 --- /dev/null +++ b/.vscode/ltex.hiddenFalsePositives.en-GB.txt @@ -0,0 +1,7 @@ +{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q[agda] linenos=true, breaklines=true, encoding=utf8, fontsize=, frame=lines, autogobble\\E$"} +{"rule":"WHITESPACE_RULE","sentence":"^\\Q[4][]##4\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q[ignoreall,show=definition]\\E$"} +{"rule":"COMMA_PARENTHESIS_WHITESPACE","sentence":"^\\Q[ignoreall,show=definition]\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q[1]Coalgs(#1)\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q[cases] mycase Case .\\E$"} +{"rule":"COMMA_PARENTHESIS_WHITESPACE","sentence":"^\\Q[cases] mycase Case .\\E$"} diff --git a/.vscode/ltex.hiddenFalsePositives.en-US.txt b/.vscode/ltex.hiddenFalsePositives.en-US.txt new file mode 100644 index 0000000..045a66d --- /dev/null +++ b/.vscode/ltex.hiddenFalsePositives.en-US.txt @@ -0,0 +1,61 @@ +{"rule":"POSSESSIVE_APOSTROPHE","sentence":"^\\QFurthermore, in mathematical textbooks equality between morphisms is usually taken for granted, i.e. there is some global notion of equality that is clear to everyone.\\E$"} +{"rule":"SENTENCE_WHITESPACE","sentence":"^\\QKleisli').\\E$"} +{"rule":"SENTENCE_WHITESPACE","sentence":"^\\QConstruction.\\E$"} +{"rule":"NO_SPACE_CLOSING_QUOTE","sentence":"^\\Q[inline]Change quotation marks ”\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q”: Given a Kleisli triple \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, we get a monad \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q where \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is the object mapping of the Kleisli triple together with the functor action \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is the morphism family of the Kleisli triple where naturality is easy to show and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is a natural transformation defined as \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QLet \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid morphism, we define \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q point wise: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q where \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is defined corecursively by: \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QThe following conditions hold: There exists a unit morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any DX, satisfying \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q For any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q there exists a unique morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q satisfying: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q There exists a unique morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q satisfying: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q We will make use of the fact that every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is a final coalgebra: [\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] This follows by definition of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QWe call a morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q guarded if there exists an \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q such that the following diagram commutes: &&& &&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QIt suffices to show \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, because then follows: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q We prove this by coinduction using: [inline]Change name of morphism &&& &&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Q[inline]Make this more explicit The first step in both equations can be proven by monicity of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and then using \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and the dual diagram for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q which is a direct consequence of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the last step holds generally for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QFirst we need to show naturality of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, i.e. we need to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q The needed coalgebra is shown in this diagram: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Next we check the strength laws: [\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] To show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q we do coinduction using the following coalgebra: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q [\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] We don't need coinduction to show \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, but we need a small helper lemma: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q which is a direct consequence of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QFirst we need to show naturality of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, i.e. we need to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q The coalgebra for coinduction is: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q We write \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to abbreviate the rather long coalgebra, i.e. in this diagram \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Q&&&&&&& &&&&&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q then follows from this diagram.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QSince \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is a final coalgebra we get the following proof principle: Given two morphisms \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q it suffices to show that there exists a coalgebra structure \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q such that the following diagrams commute: &&&&&& &&&&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Uniqueness of the coalgebra morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q then gives us that indeed \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QFirst we need to show naturality of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, i.e. we need to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q The coalgebra for coinduction is: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q We write \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to abbreviate the used coalgebra, i.e. in this diagram \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QNext we check the strength laws: [\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] To show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q we do coinduction using the following coalgebra: &&& &&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q [\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q] We don't need coinduction to show \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, but we need a small helper lemma: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q which is a direct consequence of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QIt suffices to show \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, because then follows: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q We prove this by coinduction using: &&& &&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Q[inline]Move this remark to the beginning of proof The first step in both equations can be proven by monicity of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and then using \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and the dual diagram for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q which is a direct consequence of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: &&&& &&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QTo show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q it suffices to show that there exists a coalgebra structure \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q such that the following diagrams commute: &&&&&& &&&&&& \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Uniqueness of the coalgebra morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q then results in \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object X for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q test: \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object X for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q test: \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object X for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:diamond Diamond\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object X for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object A for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q the iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: Note that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q since \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: Note that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q since \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: Note that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q since \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: First, note that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q can equivalently be reformulated as \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q since \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Using \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, we are left to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q: First, note that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q can equivalently be reformulated as \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q since \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Using \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, we are left to show that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"IF_IS","sentence":"^\\QLet \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid morphism, we define \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q point wise: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object A for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q an iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, and for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q an iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q implies \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"ENGLISH_WORD_REPEAT_RULE","sentence":"^\\QA (unguarded) Elgot Algebra \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q consists of: An object \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, and for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q an iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying the following axioms: law:fixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:uniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q implies \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:folding Folding: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_US","sentence":"^\\QGiven a functor \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, a (H-)guarded Elgot algebra consists of: An object \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, a H-algebra structure \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, and for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q an iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, satisfying the following axioms: law:guardedfixpoint Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:guardeduniformity Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q implies \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:guardedcompositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qlaw:compositionality Compositionality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:stutter Stutter: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, law:diamond Diamond: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_US","sentence":"^\\QAn Elgot monad consists of A monad \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, for every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q an iteration \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q satisfying: Fixpoint: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, Uniformity: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q implies \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, Naturality: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, Codiagonal: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"IF_IS","sentence":"^\\QLet \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid function, we define \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q point wise: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QGiven a function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, the lifted function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is defined as \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QConsider, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q where \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is a setoid function that maps every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"IF_IS","sentence":"^\\QNow, consider the following function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q which tries running two computations and returns the one that finished first: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QLastly, consider the function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, which adds a number of \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q constructors in front of a value and is given by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QConsider another setoid function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QNext, let us consider functions for counting steps of computations, first regard \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, which returns the number of steps a terminating computation has to take and is defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QConsider \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QFurthermore, consider the setoid function \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Now, by coinduction we can easily follow that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"WHITESPACE_RULE","sentence":"^\\QFriedrich-Alexander-Universität Erlangen-Nürnberg [] Chair for Computer Science 8 Theoretical Computer Science Bachelor Thesis in Computer Science [0.5] Advisor: Sergey Goncharov Erlangen,\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_US","sentence":"^\\Q[agda] linenos=true, breaklines=true, encoding=utf8, fontsize=, frame=lines, autogobble\\E$"} +{"rule":"WHITESPACE_RULE","sentence":"^\\Q[4][]##4\\E$"} +{"rule":"MORFOLOGIK_RULE_EN_US","sentence":"^\\Q[cases] mycase Case .\\E$"} +{"rule":"COMMA_PARENTHESIS_WHITESPACE","sentence":"^\\Q[cases] mycase Case .\\E$"} +{"rule":"IF_IS","sentence":"^\\QLet \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q be a setoid morphism, we define \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q point wise: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QFurthermore, consider the setoid morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Now, by coinduction we can easily follow that \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q for any \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"IF_IS","sentence":"^\\QConsider, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q and \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q where \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q is a setoid morphism that maps every \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q to \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"} +{"rule":"IF_IS","sentence":"^\\QConsider another setoid morphism \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, defined by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q if \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"} +{"rule":"DOUBLE_PUNCTUATION","sentence":"^\\QAgda implements a Martin-Löf style dependent type theory with inductive and coinductive types as well as an infinite hierarchy of universes Set_0, Set_1, , where usually Set_0 is abbreviated as Set.\\E$"} +{"rule":"DOUBLE_PUNCTUATION","sentence":"^\\QAgda implements a Martin-Löf style dependent type theory with inductive and coinductive types as well as an infinite hierarchy of universes Set₀, Set₁, , where usually Set₀ is abbreviated as Set.\\E$"} diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 0000000..fdce008 --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,27 @@ +{ + "latex-workshop.latex.tools": [ + { + "name": "latexmk-main", + "command": "latexmk", + "args": [ + "-synctex=1", + "-interaction=nonstopmode", + "-file-line-error", + "-shell-escape", + "-pdf", + "-xelatex", + "-outdir=%OUTDIR%", + "main.tex" + ], + "env": {} + } + ], + "latex-workshop.latex.recipes": [ + { + "name": "latexmk-main", + "tools": [ + "latexmk-main" + ] + } + ] +} \ No newline at end of file diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..740f02e --- /dev/null +++ b/Makefile @@ -0,0 +1,16 @@ +src = $(wildcard *.tex) +pdf = $(src:.tex=.pdf) +imgpdf = $(wildcard img/*.pdf) + +.PHONY: all clean + +all: $(pdf) $(imgpdf) + +%.pdf: %.tex $(wildcard src/*.tex) $(wildcard *.bib) $(imgpdf) + latexmk -pdf -xelatex -shell-escape -file-line-error -synctex=1 -halt-on-error -shell-escape $< + +clean: + latexmk -C $(src) + rm -f $(wildcard *.out *.nls *.nlo *.bbl *.blg *-blx.bib *.run.xml *.bcf *.synctex.gz *.fdb_latexmk *.fls *.toc *.loe *.tdo *.bbl-SAVE-ERROR) + rm -f $(wildcard src/*.aux) + rm -rf $(wildcard _minted-main src/.auctex-auto _region_.prv) diff --git a/README.md b/README.md new file mode 100644 index 0000000..76a08e5 --- /dev/null +++ b/README.md @@ -0,0 +1,8 @@ +# The thesis +This folder contains the source of my thesis. + +## Requirements +Building the thesis requires a working xelatex installation. Since I am using the [minted]([minted](https://ctan.org/pkg/minted)) package for representing Agda code you will also need the Python syntax highlighter [Pygments](https://pygments.org/). + +## Usage +To compile the thesis just run `make` with the needed programs installed. \ No newline at end of file diff --git a/agda/Coind.agda b/agda/Coind.agda new file mode 100644 index 0000000..069d74f --- /dev/null +++ b/agda/Coind.agda @@ -0,0 +1,50 @@ +{-# OPTIONS --guardedness #-} + +-- Agda code that is included in the thesis. +-- just for making sure that everything used in the thesis actually compiles ;) + +open import Agda.Builtin.Equality +module Coind where +module Streams where + record Stream (A : Set) : Set where + coinductive + field + head : A + tail : Stream A + open Stream + + repeat : {A : Set} (a : A) → Stream A + head (repeat a) = a + tail (repeat a) = repeat a + + record _≈_ {A} (s : Stream A) (t : Stream A) : Set where + coinductive + field + head : head s ≡ head t + tail : tail s ≈ tail t + open _≈_ + + repeat-eq : ∀ {A} (a : A) → repeat a ≈ tail (repeat a) + head (repeat-eq {A} a) = refl + tail (repeat-eq {A} a) = repeat-eq a + +module coLists where + mutual + data coList (A : Set) : Set where + nil : coList A + _∷_ : A → coList′ A → coList A + + record coList′ (A : Set) : Set where + coinductive + field force : coList A + open coList′ + + module repeatMutual where + mutual + repeat : {A : Set} (a : A) → coList A + repeat′ : {A : Set} (a : A) → coList′ A + repeat a = a ∷ repeat′ a + force (repeat′ a) = repeat a + + repeat : {A : Set} (a : A) → coList A + repeat a = a ∷ λ { .force → repeat a } \ No newline at end of file diff --git a/agda/Setoids.agda b/agda/Setoids.agda new file mode 100644 index 0000000..56250de --- /dev/null +++ b/agda/Setoids.agda @@ -0,0 +1,50 @@ +-- Agda code that is included in the thesis. +-- just for making sure that everything used in the thesis actually compiles ;) + +module Setoids where + open import Level + + record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where + constructor _,_ + field + fst : A + snd : B + open _×_ + + <_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (A → B) → (A → C) → A → (B × C) + < f , g > x = (f x , g x) + + record ⊤ {l} : Set l where + constructor tt + + ! : ∀ {l} {X : Set l} → X → ⊤ {l} + ! _ = tt + + data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where + i₁ : A → A + B + i₂ : B → A + B + + [_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (A → C) → (B → C) → (A + B) → C + [ f , g ] (i₁ x) = f x + [ f , g ] (i₂ x) = g x + + data ⊥ {l} : Set l where + + ¡ : ∀ {l} {X : Set l} → ⊥ {l} → X + ¡ () + + distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B) + (A × C) → A × (B + C) + distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y) + distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y) + + distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A × (B + C) → (A × B) + (A × C) + distributeˡ (x , i₁ y) = i₁ (x , y) + distributeˡ (x , i₂ y) = i₂ (x , y) + + curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (C × A → B) → C → A → B + curry f x y = f (x , y) + + eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B + eval (f , x) = f x diff --git a/agda/agda.agda-lib b/agda/agda.agda-lib new file mode 100644 index 0000000..5a648d6 --- /dev/null +++ b/agda/agda.agda-lib @@ -0,0 +1,3 @@ +name: agda +include: . +depend: standard-library \ No newline at end of file diff --git a/bib.bib b/bib.bib new file mode 100644 index 0000000..332efe2 --- /dev/null +++ b/bib.bib @@ -0,0 +1,372 @@ +@software{agda, + author = {{Agda Developers}}, + title = {{Agda}}, + url = {https://agda.readthedocs.io/}, + version = {2.6.5} +} + +@inproceedings{agda-categories, + author = {Hu, Jason Z. S. and Carette, Jacques}, + title = {Formalizing Category Theory in Agda}, + year = {2021}, + isbn = {9781450382991}, + publisher = {Association for Computing Machinery}, + address = {New York, NY, USA}, + url = {https://doi.org/10.1145/3437992.3439922}, + doi = {10.1145/3437992.3439922}, + abstract = {The generality and pervasiveness of category theory in modern mathematics makes it a frequent and useful target of formalization. It is however quite challenging to formalize, for a variety of reasons. Agda currently (i.e. in 2020) does not have a standard, working formalization of category theory. We document our work on solving this dilemma. The formalization revealed a number of potential design choices, and we present, motivate and explain the ones we picked. In particular, we find that alternative definitions or alternative proofs from those found in standard textbooks can be advantageous, as well as "fit" Agda's type theory more smoothly. Some definitions regarded as equivalent in standard textbooks turn out to make different "universe level" assumptions, with some being more polymorphic than others. We also pay close attention to engineering issues so that the library integrates well with Agda's own standard library, as well as being compatible with as many of supported type theories in Agda as possible.}, + booktitle = {Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs}, + pages = {327–342}, + numpages = {16}, + keywords = {formal mathematics, Agda, category theory}, + location = {Virtual, Denmark}, + series = {CPP 2021} +} + +@manual{agda-man, + title = {Agda User Manual}, + author = {The Agda Team}, + year = {2024}, + month = {03}, + day = {06}, + version = {2.6.4.3}, + url = {https://agda.readthedocs.io/en/v2.6.4.3/} +} + +@software{agda-stdlib, + author = {{The Agda Community}}, + month = dec, + title = {{Agda Standard Library}}, + url = {https://github.com/agda/agda-stdlib}, + version = {2.0}, + year = {2023} +} + +@incollection{Altenkirch_2017, + doi = {10.1007/978-3-662-54458-7_31}, + url = {https://doi.org/10.1007%2F978-3-662-54458-7_31}, + year = {2017}, + publisher = {Springer Berlin Heidelberg}, + pages = {534--549}, + author = {Thorsten Altenkirch and Nils Anders Danielsson and Nicolai Kraus}, + title = {Partiality, Revisited}, + booktitle = {Lecture Notes in Computer Science} +} + +@manual{coq-man, + title = {The Coq Reference Manual}, + author = {The Coq Development Team}, + year = {2024}, + month = {03}, + day = {01}, + version = {8.19.1}, + url = {https://coq.inria.fr/doc/V8.19.0/refman/} +} + +@article{delay, + author = {Venanzio Capretta}, + title = {General Recursion via Coinductive Types}, + journal = {CoRR}, + volume = {abs/cs/0505037}, + year = {2005}, + url = {http://arxiv.org/abs/cs/0505037}, + eprinttype = {arXiv}, + eprint = {cs/0505037}, + timestamp = {Mon, 13 Aug 2018 16:46:14 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-cs-0505037.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} + +@article{elgotalgebras, + author = {Jir{\'{\i}} Ad{\'{a}}mek and + Stefan Milius and + Jir{\'{\i}} Velebil}, + title = {Elgot Algebras}, + journal = {CoRR}, + volume = {abs/cs/0609040}, + year = {2006}, + url = {http://arxiv.org/abs/cs/0609040}, + eprinttype = {arXiv}, + eprint = {cs/0609040}, + timestamp = {Mon, 04 Sep 2023 12:29:24 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-cs-0609040.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} + +@article{elgotmonad, + title = {Elgot theories: a new perspective on the equational properties of iteration}, + volume = {21}, + doi = {10.1017/S0960129510000496}, + number = {2}, + journal = {Mathematical Structures in Computer Science}, + publisher = {Cambridge University Press}, + author = {Jir{\'{\i}} Ad{\'{a}}mek and + Stefan Milius and + Jir{\'{\i}} Velebil}, + year = {2011}, + pages = {417–480} +} + +@article{eqlm, + author = {Bucalo, Anna and F\"{u}hrmann, Carsten and Simpson, Alex}, + title = {An Equational Notion of Lifting Monad}, + year = {2003}, + issue_date = {15 February 2003}, + publisher = {Elsevier Science Publishers Ltd.}, + address = {GBR}, + volume = {294}, + number = {1–2}, + issn = {0304-3975}, + url = {https://doi.org/10.1016/S0304-3975(01)00243-2}, + doi = {10.1016/S0304-3975(01)00243-2}, + abstract = {We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus, equational lifting monads precisely capture the equational properties of partial maps as induced by partial map classifiers. The representation theorem also provides a tool for transferring nonequational properties of partial map classifiers to equational lifting monads. It is proved using a direct axiomatization of Kleisli categories of equational lifting monads. This axiomatization is of interest in its own right.}, + journal = {Theor. Comput. Sci.}, + month = {2}, + pages = {31–60}, + numpages = {30}, + keywords = {premonoidal categories, categories, partiality and partial categories, abstract Kleish, commutative strong monads} +} + +@inproceedings{goncharov2017unifying, + title = {Unifying guarded and unguarded iteration}, + author = {Goncharov, Sergey and Schr{\"o}der, Lutz and Rauch, Christoph and Pir{\'o}g, Maciej}, + booktitle = {Foundations of Software Science and Computation Structures: 20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings 20}, + pages = {517--533}, + year = {2017}, + organization = {Springer} +} + +@article{goncharov2018unguarded, + title = {Unguarded recursion on coinductive resumptions}, + author = {Goncharov, Sergey and Schr{\"o}der, Lutz and Rauch, Christoph and Jakob, Julian}, + journal = {Logical Methods in Computer Science}, + volume = {14}, + year = {2018}, + publisher = {Episciences. org} +} + +@book{inductive, + title = {Categorical programming with inductive and coinductive types}, + author = {Vene, Varmo}, + year = {2000}, + publisher = {Citeseer} +} + +@article{kozencoinduction, + title = {Practical coinduction}, + author = {Kozen, Dexter and Silva, Alexandra}, + journal = {Mathematical Structures in Computer Science}, + volume = {27}, + number = {7}, + pages = {1132--1152}, + year = {2017}, + publisher = {Cambridge University Press} +} + +@article{lambek, + title = {A fixpoint theorem for complete categories}, + author = {Lambek, Joachim}, + journal = {Mathematische Zeitschrift}, + volume = {103}, + pages = {151--161}, + year = {1968}, + publisher = {Springer} +} + +@inproceedings{Lane1971, + title = {Categories for the Working Mathematician}, + author = {Saunders Mac Lane}, + year = {1971}, + url = {https://api.semanticscholar.org/CorpusID:122892655} +} + +@article{manes, + title = {Algebraic Theories in a Category}, + author = {Manes, Ernest G}, + journal = {Algebraic Theories}, + pages = {161--279}, + year = {1976}, + publisher = {Springer} +} + +@article{moggi, + author = {Moggi, Eugenio}, + title = {Notions of Computation and Monads}, + year = {1991}, + issue_date = {July 1991}, + publisher = {Academic Press, Inc.}, + address = {USA}, + volume = {93}, + number = {1}, + issn = {0890-5401}, + url = {https://doi.org/10.1016/0890-5401(91)90052-4}, + doi = {10.1016/0890-5401(91)90052-4}, + journal = {Inf. Comput.}, + month = {7}, + pages = {55–92}, + numpages = {38} +} + +@online{nad-delay, + author = {Nils Anders Danielsson}, + title = {The delay monad, defined coinductively}, + url = {https://www.cse.chalmers.se/~nad/listings/delay-monad/Delay-monad.html}, + urlday = {15}, + urlmonth = {02}, + urlyear = {2024} +} + +@article{param-corec, + title = {Parametric corecursion}, + journal = {Theoretical Computer Science}, + volume = {260}, + number = {1}, + pages = {139-163}, + year = {2001}, + note = {Coalgebraic Methods in Computer Science 1998}, + issn = {0304-3975}, + doi = {https://doi.org/10.1016/S0304-3975(00)00126-2}, + url = {https://www.sciencedirect.com/science/article/pii/S0304397500001262}, + author = {Lawrence S. Moss}, + abstract = {This paper gives a treatment of substitution for “parametric” objects in final coalgebras, and also presents principles of definition by corecursion for such objects. The substitution results are coalgebraic versions of well-known consequences of initiality, and the work on corecursion is a general formulation which allows one to specify elements of final coalgebras using systems of equations. One source of our results is the theory of hypersets, and at the end of this paper we sketch a development of that theory which calls upon the general work of this paper to a very large extent and particular facts of elementary set theory to a much smaller extent.} +} + +@inproceedings{quotienting, + author = {Chapman, James and Uustalu, Tarmo and Veltri, Niccol\`{o}}, + title = {Quotienting the Delay Monad by Weak Bisimilarity}, + year = {2015}, + isbn = {9783319251493}, + publisher = {Springer-Verlag}, + address = {Berlin, Heidelberg}, + url = {https://doi.org/10.1007/978-3-319-25150-9_8}, + doi = {10.1007/978-3-319-25150-9_8}, + abstract = {The delay datatype was introduced by Capretta [3] as a means to deal with partial functions as in computability theory in Martin-L\"{o}f type theory. It is a monad and it constitutes a constructive alternative to the maybe monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay monad quotiented by weak bisimilarity is still a monad. In this paper, we consider Hofmann's alternative approach [6] of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the semi-classical axiom of countable choice. We have fully formalized our results in the Agda dependently typed programming language.}, + booktitle = {Proceedings of the 12th International Colloquium on Theoretical Aspects of Computing - ICTAC 2015 - Volume 9399}, + pages = {110–125}, + numpages = {16} +} + +@article{restriction, + author = {Cockett, J. R. B. and Lack, Stephen}, + title = {Restriction Categories I: Categories of Partial Maps}, + year = {2002}, + issue_date = {January}, + publisher = {Elsevier Science Publishers Ltd.}, + address = {GBR}, + volume = {270}, + number = {1–2}, + issn = {0304-3975}, + url = {https://doi.org/10.1016/S0304-3975(00)00382-0}, + doi = {10.1016/S0304-3975(00)00382-0}, + abstract = {Given a category with a stable system of monics, one can form the corresponding category of partial maps. To each map in this category there is, on the domain of the map, an associated idempotent, which measures the degree of partiality. This structure is captured abstractly by the notion of a restriction category, in which every arrow is required to have such an associated idempotent. Categories with a stable system of monics, functors preserving this structure, and natural transformations which are cartesian with respect to the chosen monics, form a 2-category which we call MCat. The construction of categories of partial maps provides a 2-functor Par:Mcat→Cat. We show that Par can be made into an equivalence of 2-categories between MCat and a 2-category of restriction categories. The underlying ordinary functor Par&r0:Mcat&0 → Ca t0 of the above 2-functor Par turns out to be monadic, and, from this, we deduce the completeness and cocompleteness of the 2-categories of M-categories and of restriction categories. We also consider the problem of how to turn a formal system of subobjects into an actual system of subobjects. A formal system of subobjects is given by a functor into the category sLat of semilattices. This structure gives rise to a restriction category which, via the above equivalence of 2-categories, gives an M-category. This M-category contains the universal realization of the given formal subobjects as actual subobjects.}, + journal = {Theor. Comput. Sci.}, + month = {1}, + pages = {223–259}, + numpages = {37} +} + +@article{setoids, + title = {Category theoretic structure of setoids}, + journal = {Theoretical Computer Science}, + volume = {546}, + pages = {145-163}, + year = {2014}, + note = {Models of Interaction: Essays in Honour of Glynn Winskel}, + issn = {0304-3975}, + doi = {https://doi.org/10.1016/j.tcs.2014.03.006}, + url = {https://www.sciencedirect.com/science/article/pii/S0304397514001819}, + author = {Yoshiki Kinoshita and John Power}, + keywords = {Setoid, Proof assistant, Proof irrelevance, Cartesian closed category, Coproduct, -category, -inserter, -category, -coinserter}, + abstract = {A setoid is a set together with a constructive representation of an equivalence relation on it. Here, we give category theoretic support to the notion. We first define a category Setoid and prove it is Cartesian closed with coproducts. We then enrich it in the Cartesian closed category Equiv of sets and classical equivalence relations, extend the above results, and prove that Setoid as an Equiv-enriched category has a relaxed form of equalisers. We then recall the definition of E-category, generalising that of Equiv-enriched category, and show that Setoid as an E-category has a relaxed form of coequalisers. In doing all this, we carefully compare our category theoretic constructs with Agda code for type-theoretic constructs on setoids.} +} + +@article{setoids, + author = {Barthe, Gilles and Capretta, Venanzio and Pons, Olivier}, + title = {Setoids in type theory}, + year = {2003}, + issue_date = {March 2003}, + publisher = {Cambridge University Press}, + address = {USA}, + volume = {13}, + number = {2}, + issn = {0956-7968}, + url = {https://doi.org/10.1017/S0956796802004501}, + doi = {10.1017/S0956796802004501}, + abstract = {Formalising mathematics in dependent type theory often requires to represent sets as setoids, i.e. types with an explicit equality relation. This paper surveys some possible definitions of setoids and assesses their suitability as a basis for developing mathematics. According to whether the equality relation is required to be reflexive or not we have total or partial setoid, respectively. There is only one definition of total setoid, but four different definitions of partial setoid, depending on four different notions of setoid function. We prove that one approach to partial setoids in unsuitable, and that the other approaches can be divided in two classes of equivalence. One class contains definitions of partial setoids that are equivalent to total setoids; the other class contains an inherently different definition, that has been useful in the modeling of type systems. We also provide some elements of discussion on the merits of each approach from the viewpoint of formalizing mathematics. In particular, we exhibit a difficulty with the common definition of subsetoids in the partial setoid approach.}, + journal = {J. Funct. Program.}, + month = {mar}, + pages = {261–293}, + numpages = {33} +} + +@article{sol-thm, + author = {Aczel, Peter and Ad\'{a}mek, Jir\'{\i} and Milius, Stefan and Velebil, Jir\'{\i}}, + title = {Infinite trees and completely iterative theories: a coalgebraic view}, + year = {2003}, + issue_date = {07 May 2003}, + publisher = {Elsevier Science Publishers Ltd.}, + address = {GBR}, + volume = {300}, + number = {1–3}, + issn = {0304-3975}, + url = {https://doi.org/10.1016/S0304-3975(02)00728-4}, + doi = {10.1016/S0304-3975(02)00728-4}, + abstract = {Infinite trees form a free completely iterative theory over any given signature--this fact, proved by Elgot, Bloom and Tindell, turns out to be a special case of a much more general categorical result exhibited in the present paper. We prove that whenever an endofunctor H of a category has final coalgebras for all functors H(-) + X, then those coalgebras, TX, form a monad. This monad is completely iterative, i.e., every guarded system of recursive equations has a unique solution. And it is a free completely iterative monad on H. The special case of polynomial endofunctors of the category Set is the above mentioned theory, or monad, of infinite trees.This procedure can be generalized to monoidal categories satisfying a mild side condition: if, for an object H, the endofunctor H ⊗ _ + I has a final coalgebra, T, then T is a monoid. This specializes to the above case for the monoidal category of all endofunctors.}, + journal = {Theor. Comput. Sci.}, + month = {5}, + pages = {1–45}, + numpages = {45}, + keywords = {coalgebra, completely iterative theory, monad, monoidal category, solution theorem} +} + +@article{uniformelgot, + author = {Sergey Goncharov}, + title = {Uniform Elgot Iteration in Foundations}, + journal = {CoRR}, + volume = {abs/2102.11828}, + year = {2021}, + url = {https://arxiv.org/abs/2102.11828}, + eprinttype = {arXiv}, + eprint = {2102.11828}, + timestamp = {Fri, 26 Feb 2021 14:31:25 +0100}, + biburl = {https://dblp.org/rec/journals/corr/abs-2102-11828.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} + +@article{while, + author = {Sergey Goncharov and + Lutz Schr{\"{o}}der and + Christoph Rauch}, + title = {(Co-)Algebraic Foundations for Effect Handling and Iteration}, + journal = {CoRR}, + volume = {abs/1405.0854}, + year = {2014}, + url = {http://arxiv.org/abs/1405.0854}, + eprinttype = {arXiv}, + eprint = {1405.0854}, + timestamp = {Mon, 13 Aug 2018 16:47:19 +0200}, + biburl = {https://dblp.org/rec/journals/corr/GoncharovSR14.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} +} + +@article{plotkin1975call, + title = {Call-by-name, call-by-value and the $\lambda$-calculus}, + author = {Plotkin, Gordon D.}, + journal = {Theoretical computer science}, + volume = {1}, + number = {2}, + pages = {125--159}, + year = {1975}, + publisher = {Elsevier} +} + +@article{scott1993type, + title = {A type-theoretical alternative to ISWIM, CUCH, OWHY}, + author = {Scott, Dana S}, + journal = {Theoretical Computer Science}, + volume = {121}, + number = {1-2}, + pages = {411--440}, + year = {1993}, + publisher = {Elsevier} +} diff --git a/img/fau.pdf b/img/fau.pdf new file mode 100644 index 0000000..29a2e19 --- /dev/null +++ b/img/fau.pdf @@ -0,0 +1,1176 @@ +%PDF-1.6 % +1 0 obj <>/OCGs[5 0 R]>>/Pages 3 0 R/Type/Catalog>> endobj 2 0 obj <>stream + + + + + application/pdf + + + FAU_Kernmarke_Q_RGB_blue + + + 2022-01-12T13:23:45+01:00 + 2022-01-12T13:23:45+01:00 + 2022-01-12T13:23:45+01:00 + Adobe Illustrator 26.0 (Macintosh) + + + + 256 + 40 + JPEG + /9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgAKAEAAwER AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo +DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8AHXetP52ufKOr+ZUa4juN K1y+ubO2le1Vvqc1w0UavGeShViVa7nxrm0EeDiEe+Lhk8VE9xW6Z5ch1PT7fUbL8uJ5LS7jWWCQ +a0jLI4qCUcqy/IjDKdGjP8A2KiN/wAP2on/AAVP/wCW1m/8K2H/AJqyPi/0/wDYrwf0fteofk9o c2l2mpGTy1J5dWd4igk1RdWE/EOCQyk+nwr0719sxdRKyN7+FN+IV0r4qn5z6zew+XLfy5pcnDWf NNwumWrA0McT73MxoR8KRbE9q4NNEcXEeUd1ynah1eQv5w0fVpY9QteUOhaJKfLOogM3KTQr1fRt b1unxxTozk/zFczPDI26nf49zRxg+4bfB7B+TOtXtz5Yl0HVX5a15XuH0q9JNS6w/wBxKPFXioAe 9Ccw9TECVjlLdvxHajzDNNVu3stLvLxFDPbQSTKp6ExoWANPllERZpsJ2fPA8zazr0I1jUJy15e+ Rdanl9P4EDi4mVeKjpxUADvmy4BHYfzw4nETv/RL3D8uWZvy98rsxLM2k2JZjuSTbJucwM31n3ly cf0j3JX+b/mvVfLHk19Q0plS8lube1WV15cFmfizKDtyA6VyenxiUqKMsiBs8tu7m4/S8g9V6f8A Kz7OOnI/YKN8Py9sywNv+SbQef8AnvofNa5b578kaT5t0PyVoWq6YLSw1XX7uysE1AC4uJvq87Sm drqKdmiDAohX0wPnmxyyjKRB5C3EgCACOqv5n87eefLv6Qh0yWO1WfX7y3utZktQyF4bC0MCuoBQ G4kZt6V+GgwQxQlV/wA3l8SmU5Dl3quv+bPM2q+ZdE03VrtLV4tV8uzx6LHaufWWT0Zri6WdhyCp OzJQ9KUI5YwxxESR3S3WUiSAfJN7HXPOt1a6Hrl+YtSuZdR1YabZfVVRohZWd+kYLj4i0rxLuKbf PIGMRYG2w+8MgTsff+lJLXXfNnmzTvKc8HmCKfXDqxLTfo54k0+VrC49SFwxCTcN1r2PWuTMIwMt tq7+e7ESMq33tl9l+YHnSL8vLfzNe6fbyxHSvWeZXcXD6gxMUUYtQnHi8hSp59+mUnDHj4Qev2Ng meG/JgejN5g0zy7ceUdZtL2C6h1PRNTtPrhWSSRJryFLshomkTgtzGzKOVaNvmRLhMuIdxH2NQsC j5I7TvzR/MO5n80fXLyKyOnQ3Rjs/qhaW0uYZ1W1iA4n1RcAiPc1Nar0NInBAcNdUjJLdQ8xfm/5 7s/Lmnzwztb+Yppb6W/spLWNYITbSoosfjBld0Tf4fiPLkWoMMNPAyP83b+1ZZZV5shTzt+Yw8yy TpLHcaQdVutNh0n6t+9b09NF3G3rCjU9T4R49z0yvwocPnV/ay45WxGLz75sjTWvNNlfjVtXj0DT 0muFsmjWzke9f6zEYqUkNt6jfF/wX2Tl3hR2iRQ4j18mHGdz5Mt8qebvzK1298uW36RtlguUv7i8 vEttrq3tJohFxDKojeTmUJX4ePxCu2U5McIg7dzOMpGky8x+Y9Q0XzN5R13zhFFpNpDHqtveS2ry 3Vsjypbm3DuI0PJ/Tenw9chCAlGQjvyZSlRBPmwy38z/AJjaN5SsRpFwLSGx0OTWZYLq19Z5mfUn VY6tRk5wuD8u3cXmEJSN99fY18UgNu5ONT82+cfL8WrahpNqJobjXtV0020cCljdSwp+j7hjSpAl Ti5OxBGQjjjKgf5oP60mRF13lTh/MH8yofPl9oNzcwsunRypJatb8Xljjsy6X0cipT45V5U+zvxp WmJww4Ae/wDXyXjlxU3N58/MHS7XyVNqWrxztr6Q3F5b29mn1jjdGL04kRgiNxUty4uHBJNOIxGK B4qHLzXjkKs82rTU9T07XND1Ca6mstKdPMSNYW9uvpTzwalK6xhacfVmiWq13+E06nExBBHX0/co JBHxYr5U8w6/Pod3NFfHSdN07UNFuH1C2t1Yi1mRof34QFCLcQLyAqOzVy7JAXyskFhGRr5JV5W/ 44/kz/wHPM3/ABO8yeTnL+tH9DGPIe4vT/y6/Jv8s9U8iaDqN/ocU97d2MM1xMZJwXd0BZiFcDc+ GYmbU5BMgHq3Y8UTEbMi/wCVEflL/wBS7D/yNuP+qmV/msnez8GHczTTNM0/S9Pg0/TrdLWytkEc FvGOKqo7AfryiUiTZbAKeA/mFrl5rvm3V7zTTzmt3Xyf5XHY317tqNwCu49KImPl7qc2OGIjEA/1 j7ujizNk17gx9dMjN4+rKyr+X1y/+CTKFFTAkQWPUCQaEfXF9Xl47ZZxbV/H9X7Pkxrr/DyZD+XH mC70bzfpF3qNY5dRLeU/MynouqaftZTMTTk00NEBP+VlWaAlEgdPUPcebLHKiPkXuvmT/lHdU/5g 5/8Ak02YEPqDlS5Pmvy//wAcCz/81/rf/UTPm0nz/wA8OHHl/ml9B/lv/wCS78rf9siw/wCoaPNd m+uXvLlY/pHuYn/zkT/5L1P+2jZ/8nMt0f1/AsM/0sCvP+OxL/5tGz/4g2ZA5f8AJNqPP/PfRea1 y3l/lD86rXVPL175k1ltPstIsI4GvFtJ7i6urd7mURRLPF9XjA5Gv2WbMrJpqlwi7aY5rFlNIfzV sln1ue8s7lNL0xbFoPTtp3uj9cgaZjLCAWTjx7gU75E4DtXM2nxOavN+cn5fxXOn25v3ZtTit57V 0gmZPSu2McTu4WiDmOJ5UIOAaae+3JPixV1/NbyUdUuNOa6ljktjdc7h7eZbZhYIXuik5T03EQU8 qHB4Eqv8br4sbQUH52fl9NpZ1JLyf0RdRWXo/VpzOZriN5YKRBC5EqRkoab5I6ad0jxo1aaf8rC8 uXPlpta0y8huWksJtRsrN3EU0qQo5P7tv3gHKJlJ49jkPBkJUe9l4gqwxXS/zxsdQ063vBaLbn9G X19qMUruWtp7H0v3TBEZijicMGC140NMulpSDXmPtYDNacSfmro+li5i19ljvYruGzjt7CO5ui8l zapcwov7pGLurGlBTp3yvwCeSfEA5qWp/nL5UiXW7PT5Xn1rSbbUZRbSwzRxPPpkbPLD6pUKSOO/ E9MMdNLYnka+1TlG/evtfzk8nnQ31G9mnt5rdbUTWrW06SySXikw/V43UPKshRuJHhidNK6CjKKR MP5u+RZzpwgvJJRqdu13bskEpVYI3aOWSU8aRiJo2D8ulMH5ee/knxYo/wAq+f8Ay75ommg0trgT W8UVxJHc281ufRn5elIvqqvJXC1UjtkcmKUOaYzEuTI8qZuxV2KuxV2KuxV2Kvl3yjpGvSeWfI+q 2eiXmsaammazY3q2JRZF+t3VzF8LSVUEB67jNrkkOKQJo2P0OFEGga70Vb+TdXtoI7e20fz7DBEo SKGPU7VEVR0CqIgABgOQHrD5J4D3SRdj5O1u4vbe3lsvP1tFNIkclw+qW/CNWYAu1Iq0UGpyJyAD +D5JED/S+b1vzhq1t5A/Lm6ns3lmns4Bb6d67tPNNdTHhEWZqtIxduTe1e2YeOPiT3b5nhi8Ji03 zVbXx0zy9o9zq9x5YsJ7H67AVKRa5qKhr64ZifiaJXMS+6qc2HFEi5GuI/YOTjUeQHL72Yyy6235 YHyIPy91YWwsvqyzloP96B+8E9K9fX/eZRt4nHxDm2b8PDwljtt5S/MLXJtQt7/y/e6fNqmmQNcX snHj+mdLUm2ulKn4fWVPTfb7Tk5ackI1RBo/YWHDI9P7Xsug+al80/lY2tU43E+nTpeR0pwuYo2j mWnb41NPbMKePgyV5uRGXFG3hvl8j9A2Q7nyBrYA8T9ZnzPnz/zw40eX+aX0F+Wjo/5deVijBgNJ sRUGu62yAj6CKZrs31y95crH9I9zE/8AnIp0X8v4gzAF9SswoJpU8yaD6ATluj+v4MM/0sDvHX9O PHX42/NC0YL3oqGp+iozIHL/AJJtR5/576MzWuW8+sPyhS10D/D0vmLULvRUWBbeylW2CxG3uYrp GUpErE1h47k7Me9MyTqLPFQtqGLar2V/NP5R6J5i1C7vrq8uYZbu6tLxljELoHsoXgQcJo5UYFZC TyB3wY9QYilliBUrT8m9CttKfTUvbponttPtC59Plw027N3Gfs0qztRvbpidSSbrv+1RiFUlQ/KC 6m82SLPO3+DI01EQWTzh35avHS4WGNII/RVXkcgtK56Upvk/zHp/pbfYx8Lfy/Wmvl38mfLuhQWM drcyu9jfwagJjFaxPI1tDLBHHIYYYi68Z2JLVau9dzkJ6mUr9zKOIBOdO8gaLY+VjoCVkX6tcWi3 7rGblY7oyF6Px2p6zUyByky4mQgAKSib8mPKkt290XnSWfRv0FdlGVfViEaRLM3w/wB6EjUV6bdM mNTKvjbHwh9lKmiflPpmmXVrey6ne6hf29+NRe7umjZ5HS1NnHG3FFHBIztTf3wS1BO1AbftUYgG 738ptFu450e8uVFxLrEzFfT2OuIyTgVX/dYb4PxriNQR9n2JOIff9qX3f5G6Bf6dPa6nqd9qFw5s xbXlz9Xd4EsA4gRU9IRuKTOG5q3IHfJDVEHYAftYnCDzTbSPys8vaYOETyNE2ly6PLGEhhDwzzNN I9II4lDksR8IH35GWeR+dshjAQP5beRNf8v6vqd9qt0Z4pLe10/TkeZbiUW9mZODO6QWqrVZBReJ PWrHDmyiQACMcCDu9AzHbXYq7FXYq7FXYq7FXyPpOnQal5b8lWdy0n1dND8wXQSOR4/3tvPdSxse BHR0GbiRqUj5x/Q4AFge4vU/IH5L+RNY8k6Hqt/DdyXt7Zwz3Di8uVBd0BYhVcAb+GYmXUzjMgN8 MMTEFk1j+Rv5e2V7b3lvb3QntpEmiLXtywDxsGWql6HcdDlR1UyK/QzGGIYl+cPmmFvNcUTUk03y Tbfpq+iO6SanNSPTIGpvXm4f/VJy7T4/T5y2+HVryy3934DBYPK3mm/vLbQLDRJvMMWgRG58yRrf Lp/qavqg9aUvKWQuYUVY6L0KmvXfIOSIFk1fLa9g18JO1XX3pl/yrXzT/wCWxm/8KQf9Vch40f5/ +xT4Z/m/agNQ8pX9ldRabceVrnyvr97DNceW75dWe/WS8seM/olFd0BkQFV5ftEUyQyA78XEOu1c 0GNbVR97N/yk8wWUvmC900qqaL53tDrenQCnBLuhh1O2X3DqWA7KMo1EDQPWO36mzFLeuh/BYhp1 lq+jtb6ZBaC/8y+QZby1u9GaobU9BvyWLxD9sqJCQANgQaE7ZcSDv/DPr3EMACNusfuR/lTzxqXl 7TTa+UPM+iX3l9SzWuk+Y5msNQsizVaCrNGrqhJ3DH2yOTEJH1A35bgpjMgbEV5pDrfmfXvOXmW0 1LzHqltL5U8tSi91FtMWRbBGjIZIIpJuLT3M1OC02FartypZGAhGoj1S7+f9jEyMjZ5BOvygsNT8 4ecI9TuUP1DTtRutf1WTfgdSvAFt7ZD39BFDnwJKntkNQRCNdSK+DLEDI38X0hmsct2KuxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KvOdA/JTRdJOhK97LeQaJaX1j6Miqqzxag8rycyp qKesRtmTPUk3519jTHCBXk9Ct7e3treO3t41ht4VEcMMYCoiKKKqqNgAMxybblTArEfMX5Z6BrWq W1+4+rlb6DUdSjiUUvZbRCluJiT9mME7Drl0M5iK8q9zXLGCUb5J8m2vlXTLi1juHvbq+upr6/vp QqyTTztVmIXYUAAyOXJxlMIcIZDlbNj3nXybbeabGzhe5eyvNOu4b+wvogrPFNCaggN1BBoRlmLJ wH3sJw4kD5Z/LLQdB1Ka9jH1ki9ub7S0lUf6E16oW4SEg/YcKOo2+nJTzmQr8FEcYC/zx+W2iebG t7uSSbTdcsd9P1qyb07mHqach9panofoIqccWYw25juWeMS97B778q/zHllc3F15Y19yOK6lq+kx /WyBsORRHBPzJy8Z4f0h7i1nHLyPwQsf/OPmt65PbN518yCfT7Q1g0bSoFtbZB4RgBESvQ0i5Hxw /mxH6Rv3lHgE/UXr+g6Bo+gaXDpWj2qWdhbikcMY292YmpZj3YmpzDnMyNlyIxAFBH5FLsVdirsV dirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVf//Z + + + + uuid:1626494a-4525-1e4b-b36d-580e91c702e2 + xmp.did:458be105-64a9-4a24-876f-499eb16d2347 + uuid:5D20892493BFDB11914A8590D31508C8 + proof:pdf + + xmp.iid:745ae15f-e4dc-44c5-98bd-7f76e35cfca4 + xmp.did:745ae15f-e4dc-44c5-98bd-7f76e35cfca4 + uuid:5D20892493BFDB11914A8590D31508C8 + proof:pdf + + + + + saved + xmp.iid:b21a3dea-a85f-49a8-897a-2be850f91412 + 2021-09-03T11:27:12+02:00 + Adobe Illustrator 25.4 (Macintosh) + / + + + saved + xmp.iid:745ae15f-e4dc-44c5-98bd-7f76e35cfca4 + 2022-01-12T13:19:55+01:00 + Adobe Illustrator 26.0 (Macintosh) + / + + + converted + from application/postscript to application/vnd.adobe.illustrator + + + saved + xmp.iid:458be105-64a9-4a24-876f-499eb16d2347 + 2022-01-12T13:23:45+01:00 + Adobe Illustrator 26.0 (Macintosh) + / + + + + Print + Adobe Illustrator + False + False + 1 + + 513.749537 + 99.683817 + Millimeters + + + + Cyan + Magenta + Yellow + Black + + + + + + Standard-Farbfeldgruppe + 0 + + + + Weiß + RGB + PROCESS + 255 + 255 + 255 + + + Schwarz + RGB + PROCESS + 0 + 0 + 0 + + + R=4 G=49 B=106 + PROCESS + 100.000000 + RGB + 3 + 49 + 105 + + + R=4 G=30 B=66 + PROCESS + 100.000000 + RGB + 3 + 29 + 66 + + + R=253 G=183 B=53 + PROCESS + 100.000000 + RGB + 253 + 182 + 52 + + + R=197 G=15 B=60 + PROCESS + 100.000000 + RGB + 196 + 15 + 59 + + + R=24 G=180 B=241 + PROCESS + 100.000000 + RGB + 24 + 179 + 240 + + + R=123 G=183 B=37 + PROCESS + 100.000000 + RGB + 123 + 182 + 36 + + + R=140 G=159 B=177 + PROCESS + 100.000000 + RGB + 140 + 158 + 177 + + + + + + + Adobe PDF library 16.03 + + + + + + + + + + + + + + + + + + + + + + + + + endstream endobj 3 0 obj <> endobj 7 0 obj <>/Resources<>/Properties<>>>/Thumb 11 0 R/TrimBox[0.0 0.0 1456.3 282.568]/Type/Page>> endobj 8 0 obj <>stream +HWˎW4E2H^->?av#$G@ص`" ~ß?xb1ןnx/G:"r z>r؎盼| +_} @ceM`X?%DIb%ǒ(!ۈEd=?n9p!{$CN$iј~ǂظk #к~Q-PxQ;M|A%8 Ԁ*J, GNRQ U R-glcmQ0*b悓3h@&cS Ĵ,$#V:v*՟;="|vN;QYhV~@:cZKa;V" 0&&.(xk.``ϒ*a('wenL +#ך":ƈz'e(~"I[&:~!q ~'|ⱳ}@zY$DBFmNru!! v ۢtS +_?=?>Ok+H!ON?wWnѤњZmFaӷ'/#\~1}˯kDZ9[@ˍ[41GlF"|+8_Xe"|H `TGFBfw# I:d,ɢƐ‘%5dY_9w5>v$'^Fa*=nsn} 7 +0Ép0.1A^U1XYqGRw3,ic|sFЎ!q vzz544/kbArĆbߒ4RA8tW!1hJ3"#i!C8 R˕\Iz[d|G$~DR.)%+l(?LaY"MrC6 yi˔#i8*k3#OY4P);nuˡ q%b6H߷DDq·4"]5"q;fh(('4O4= 4XqnO䬀rl$́eDzk}Ѥhii> jp9}anVmF&w\0udÒ0W#RCRD3垥Ȥ T͂EAe(EɑJ+eT7OLda;t+5S+]⮦r#*i! Z;Y7y>?4ܙo *YbF[NJ'\*`1DH. fOh'`vS8)Ǩc<=ȅ(Ӧ򶓄aRVH5߂tg_kyhMRŎJw蟷(nJR:d.j읯؍>1pi_m,]Tj؟sc?9跺j[^]mjKն~v]e׫m_m˫mۯyMע cK}dSQ!+ $͍ vɲ/֝Twk(VΫ:zH($Y(x]G@D ke1^o_ +<9ˮL‬b^vRIRaσ^qI 2ˉ4ʜw g꼰UAE9 *3lM‹+<EENr 5'T|;Ds܏O%"ӵQ7jKKǦ]8cf!-f ?:h=ܴ 9a={ +mb@]KZ$#7dYUy\.(ܔs:y4t)p4N:dDtt}\7R{G7?v7MI36ӌY}ʹ~|HQRMx0ˇM +e '`Ә1LD2nQjX]ʘ@& Ίy͘ +"=C >\8+MAB<{_m< *쌣ƾϏ{[-jJ+- j=4K]Rnk|Zg͑YT4c`ա$fP$sdҊiuYqS6,.Ō m {Q?X{4E(Msh4ETё-_u-bf3*Is4i0A߭zcIĶzrccΝM_Bu =% vM:ԟ?'Lm#่j| +ՍA3$e<|- 4"Pyon],]-95i* rWEhؕP5E)ChK $ YɮaN(Q9j!E'zpDˑhR7(u4h h  +qHQ$ ȈUx\[RT3i#(HYd$bZ1O4k8"uƏd1 +11<'W6څ(MU7GcO6U)A J=gƴTvw%0Pn' c RƐd+p2!kg{l<\ʅ(P肔DcaTVPٔJ: ~٩,3J׼g + RhK PE'4aPjMe }0!> + 7I``7'W@K /VGFZߋ,jHL1:'Q8c$%A0e0r9hZ5X$ [|$zjb[wvT'k%2Ѓd =֛>3D˫ )ߵ:6 +kqPe H*V92o$ԭ. {}q0} I~DQ$Yފ_lŽYZ(V0Xq`<㨉P $WeIW1g1b(56Rw|F*ێ2Ũ;\];pxRC O'1!f=/KCx鶁yH𷫅~8)8zt :Q7YNx}1xXug#Ȋt:їQ$y*TH.u$z&FlHHBҿ絢BM> `zHKNljANʘ68aTQ?e[Q)?@\k(*1.pS㭿Q#73Yw_WwCq281? 3cyb~̍}~jpr}\_︾~w>r}|{y0׏#{NL!tцh }$#[ɺ&L'TUYK[ +bT"W3YaɁwII"b7ѤFV֡,(cna isb}%J~X$tJԠOM !6cx4PrpnV,9t_Rx$XCA~_S0Οakg8eCC?qF)?rb`i`^(ჂQHlf?#J>)̈+|+ZVİe@YKn3KHN{iR%4b/x!AC_gq!}6z j`w't]97Wީ ,m6[eW5M>4fqp}tBf gYr=Vz-1D"| +8 /ҠQYeqi8LR$ 9 M%$,Bb&(25,ڢ #ΌUe/QRQ;a7\M?(JKW9 ᮾ/ORMgJ/$ "NX r|sL6եXhp:hZM. 2Wo.D`20dlA Fۆ %}1eG}-CC[^85`%uZ[VhVB6lV4?Hi7XA1ϳcÙ,rlWqB\[XB;yځCAy\Ng>stream +8;Z\t;%<[O#Xf?@jtbfn-sW[]![?>uUL-_eXIp55lDtWsj",]\*iY;_DZl:MX^rC6 +WKCpnX_C_@"O3dP(5O_D.JJZqRd?;pkq8,I'DY\Te%rUgQakda^F6k2eWLW=+fSNpi?Tn.)EUWi>s4 +06)Fp4p(d9l)ui~> endstream endobj 12 0 obj [/Indexed/DeviceRGB 255 13 0 R] endobj 13 0 obj <>stream +8;X]O>EqN@%''O_@%e@?J;%+8(9e>X=MR6S?i^YgA3=].HDXF.R$lIL@"pJ+EP(%0 +b]6ajmNZn*!='OQZeQ^Y*,=]?C.B+\Ulg9dhD*"iC[;*=3`oP1[!S^)?1)IZ4dup` +E1r!/,*0[*9.aFIR2&b-C#soRZ7Dl%MLY\.?d>Mn +6%Q2oYfNRF$$+ON<+]RUJmC0InDZ4OTs0S!saG>GGKUlQ*Q?45:CI&4J'_2j$XKrcYp0n+Xl_nU*O( +l[$6Nn+Z_Nq0]s7hs]`XX1nZ8&94a\~> endstream endobj 5 0 obj <> endobj 14 0 obj [/View/Design] endobj 15 0 obj <>>> endobj 10 0 obj <> endobj 9 0 obj <> endobj 16 0 obj <> endobj 17 0 obj <>stream +%!PS-Adobe-3.0 %%Creator: Adobe Illustrator(R) 24.0 %%AI8_CreatorVersion: 26.0.2 %%For: (Homer J. Simpson) () %%Title: (FAU_Kernmarke_Q_RGB_blue.eps) %%CreationDate: 12.01.22 13:23 %%Canvassize: 16383 %%BoundingBox: -7252 -1010 -5892 -814 %%HiResBoundingBox: -7251.7474 -1009.2718 -5892.9136 -814.8105 %%DocumentProcessColors: Cyan Magenta Yellow Black %AI5_FileFormat 14.0 %AI12_BuildNumber: 754 %AI3_ColorUsage: Color %AI7_ImageSettings: 0 %%RGBProcessColor: 0.482353001832962 0.717647016048431 0.145098000764847 (R=123 G=183 B=37) %%+ 0.549019992351532 0.623529016971588 0.694118022918701 (R=140 G=159 B=177) %%+ 0.772548973560333 0.058823999017477 0.235293999314308 (R=197 G=15 B=60) %%+ 0.094117999076843 0.705882012844086 0.945097982883453 (R=24 G=180 B=241) %%+ 0.992156982421875 0.717647016048431 0.207843005657196 (R=253 G=183 B=53) %%+ 0.015685999765992 0.117646999657154 0.258823990821838 (R=4 G=30 B=66) %%+ 0.015685999765992 0.192157000303268 0.415686011314392 (R=4 G=49 B=106) %%+ 0 0 0 ([Passermarken]) %AI3_Cropmarks: -7300.4653 -1050.8446 -5844.1674 -768.2763 %AI3_TemplateBox: 120.5 -77.5 120.5 -77.5 %AI3_TileBox: -6975.31635 -1189.06045 -6192.31635 -630.060450000001 %AI3_DocumentPreview: None %AI5_ArtSize: 14400 14400 %AI5_RulerUnits: 1 %AI24_LargeCanvasScale: 1 %AI9_ColorModel: 1 %AI5_ArtFlags: 0 0 0 1 0 0 1 0 0 %AI5_TargetResolution: 800 %AI5_NumLayers: 1 %AI17_Begin_Content_if_version_gt:24 4 %AI10_OpenToVie: -7307 -426 2.53662 0 0 0 2210 1460 18 0 0 46 107 0 0 0 1 1 1 1 1 0 1 %AI17_Alternate_Content %AI9_OpenToView: -7307 -426 2.53662 2210 1460 18 0 0 46 107 0 0 0 1 1 1 1 1 0 1 %AI17_End_Versioned_Content %AI5_OpenViewLayers: 7 %AI17_Begin_Content_if_version_gt:24 4 %AI17_Alternate_Content %AI17_End_Versioned_Content %%PageOrigin:-186 -473 %AI7_GridSettings: 8 1 8 1 0 0 0.800000011920929 0.800000011920929 0.800000011920929 0.899999976158142 0.899999976158142 0.899999976158142 %AI9_Flatten: 1 %AI12_CMSettings: 00.MS %%EndComments endstream endobj 18 0 obj <>stream +%AI24_ZStandard_Data(/X ,L6iTbT+at.f"{sfԜ2 FY@,FF%$St$ÉYi,rY(J!n*kQjgW4GX`*SCS\Rbv~nF3)aMFhay(k 0e(0  -'q03 +2h\HA C^-0xf]S'q~3JzD+4`>k6U9y>VG*޵ 1U | +CAex#AI%CAnq,p +עvʫÁg6Fd z@,ZXd$HAq[ `Qg %EqvAGGƅ V*ssjtC Y1>33sIM; dƉGWi#aN,Ki3R+;e , !()rq88tnȾ%!AXO"qc,ˤg*!5 Ȇ!qH H6аPÉ?E: t0j-gH;E-b:T_)NU'Nf4`fMtљuVRGigyF *2/cyLiY3w#vei2WD5eY9:,0.Xtu0ȻkŒ"\Hg!DG^!EE%nj\;c, Ñ8b 2Í@ *ڍ*PKdyX|d)CZgG,1>09 +Dq8q<.ƍD(" MqKFWÆF)hC>ښ*jQCGx*68FBaAq? agaLm\q@$Sw"VS= C.,>y9A;mU +;+ +J8<ь!1`Qam*#B2Rcx/q_ٴ*QvDꬥX(" +d4pU sOsC!GAQ,[a(]nna +KP4QDYl(˕uUTS RP袆BP$+pVF-n,k8nX8܉[g-Z( +cH ¸ϰMቊJgWXY? +Qc^ai6CXԈ.|;>7p?t>%.L8!q$ "1 +R +S"V\qP +"P(YТNӈQ(JF耠%hA +֕U֏:P(jQRjŬGDUTAVVVa˃PQ./`11"IJJ̧qCyd"HE.rS.>|(P.}p!cttF`@f4Hc<2jWTk<,<|ĜrP[$yr4i79T֪:KRH! zǟ*xGhLCdd4ax`Xx@Ш's "fxYceȐc"LˮsyLbnv WjedctJS@( $(18H7[ڙє̈#8q񀁘UTQ +RbX$ E"@$#qHO8D&L%h$&@( +D@ 8 0ˆ8!FqZC! QD!1š88GxaG:0Xq8>wCuWG$ρTj;yȃ8qHAqX栃=;Ç?8ā8GPcq b(DaCa " 80a@00!*(`A.,@,i 6,tЁ :Р" $L Ă  p@NB Th0 $4 62 a  LhpXA P` +.D@A "\Ƞ*44D20@A  4PPႅ 0 &0A&  Hh0! $@H@d:p + .@ȠXAB.T0,D@! H@ + t $d 4$@,  HXX`JHp &  +h`@@2h A$@4hXA +.dАD0&BLA&06„&0B ؀ +&`X0( 4``0,2ă .@(#a kd. h 6PA @C!BNLP 80  LpAarȠ"SR. !.0x0D0<A&4\@`B ITt_@ аA * (@  d` *@x+ &`B*0cf  (D`'hbr68&\Z.Hp%re.@`.P*ƼX"3\. =2Ӽ`` p` +, + ,@@ zJ4h<2XLp)@TbGy ?g<fjΩKSYxT?Y! c +v9{3M!5c$ Ԩ[dZo7eHkvh1(4kaR=ە!``0," 5!@E@H sf92jA4L2ULe+C08Pc6… 4lCKB*a / udhRWy  &D`B.a,Xp  F *4`pBbX0ACi@B + +g4;:3o2hGh;RG5RG$#tUeVʊYg?#KH (¹K7436E,Zs5B.QbUUٲ ڱTlYXW-?TXh*M+9gGӔɬ/1{/>jY ],C$˛J эlT9^alMgĶ+5ЬЅs֛UYeb93&,fGX*m)rr&"Cg =V+w${,q^n%imdуt)Hic;l%jW^;*HG|"EݕIVC4+sn%!w:29/V#UG4X\G癕R:R<*CHrG|OiS(s&m+UGZ=*IGTceŭ._ &=U#Di<|6}Y+x*}+x=a9i`9,CF\ŲsF辡"#dW M*!9g1R)'3Ö^NjDeu]MļwWJv|sJIQ6%_BxwoRR?iU*!JH2=Sbό܍%K,g3*mJ#iwmSiaq+I%Hcc{J3'_\ec7 B4ș1 qK"]:먘94l޴mK56+:wKHv,xN1;;_oܴy ZT?{oY,%ԛ9 +l^]he:-rΚ2})hCN+Ɇ~tM,ڽ&̰2='H%M27Ri;+xDrʇ]GVb#rhi/=`0#c4z F1 ٕ$"Uu^KǞT\K +,Szw^*!єhiitwSrn\iMoޚ)i%tWM|עUVآ$X/ ZI_ftD7[>`0%RdCL>%K|N1+,e׾kG)Zf^SCݭ)t%V]7m؝VbhXL?ʛk1,IfG䰮9KaxYZM:kWgebUg>A#T576Ry ]T4`p'pJa>7+t ݮܕd7J]IC/Y{uŎn +*sDEItܚTXtRXbS҈v+bYRˡM;U+n{Ɍ.sļDC!fyj^|D0?s.%WiWPdg RO'uYȭ{8ŌH1mN1"u4c;e^YDΰ x31b"Un~WȑoKzZ*:,y+);MYQ j ܖB}!jtw#dYBͦXt=wLZ_KKTYB5bIƟ! _)":{.πj^hOVrz)ݒcDق't$ʛ +jfD;rRqT\ra%p@ <`0P "\" ǃ 8H@( D LB* +<`0* Ȁd!l p p@d0k%oV#=mS1acʐk3c_NnfngN 'iH&gOVၤöbCeZu)uS(BSue12̪Ah E czXL3|Ddq(#TFq8B89tb)e;v)Si:<3VϾBxϹqM敱CI$+cC2rh3?$#wg*w<̫b/eLw,xxu$*oZgd86rjZs=esece!tr5 +F*WE7Hώ&aAbhDMt54)̲ih㙧qBGbG- {9;le7 "[ +}7U +|żߝMr±pZ9ti6V8X mՖlYbERIx:+OiQЍ ) mVգž^eY 厪H`an١4,WGz6O,uh[k>fxD܊cG 3z5ᯌ +!nnYHFF;s͕'1;Ě +oo>s^)7_*=̛/6o藮ʒCBvNfFvYjO9 gGajli֍H^,b˺t&I›-{tN>&ݔ V;Xx:MD&6m)LfsWЉlσ9r'X_v +HLsĎ5mv!M39X l4,hIV$-C)FVw~W.0-ʕYJˬ<jr\DEe%eA"BlHyJ%f]wWyyBFts+Fn3mzZʆ6|ghj96bNZH*Uk4qhyA*4/;*DwT'2$jfNyVK[Ӭ&X+͐#fwt4_gr跤}]9|񘿺q"BSM:Zu-<*\Έ4 䛤izEf-ZBkXX6335'!{m Oo>qF,a#;;kSŸў֫fNNlja ކ\9MnT":JK#'5ϘM_=jͭftO+hx;ּ;Sn)-m]AGXgmvcѫ>D^OLUHg%Ԓ.BYL4eDYCbED9ږ:e>&KSx+%Bi敵U~b#o4U*gsye]XNh.%ubFs`KlrF^jHh#V'KxDT gcKhilDEg%7ˍMOsEyy%O.ʜ]钒I]qIA+iB,*HF̴#ٜoLlD3"J/CqXJ܋ngttvbHl*H/Ebtd={iOy:,{)ٙSdfyfT+UY9DH[|W[LҘyOxy.}!;%4" gI=;fDrD4ه ueVB+/rgfQ"65%ё}j}]ꉘFm)#[4B"[sg;/%BF|)craR#i7Ru˳D,d: YymK/I-UbT6vSuMDN:ާyTtiTW=>UvFXǩ,ITeSu"O2R󮮌8hxb]W ^#2-]ygKC3r fi1of7PǨ33%|{*=+?=KbHt:Uhz}ƅCgnsä{ݟb?yKFIG46|o#yVkmpӹʑ!}N۞W/F8/"]/'?EOoŒH̽O qzOۜ.MVy(+m;uEE4Vò!byII4D, MB"ab,>E6;TB2ڑ|nYLg+& "\pB8 .XĂʺޫ)ͦBHiO0+}u2*4K`_ }X4wNN6D q>iB|]J򢏕"qeD;]n]X/n/3sh%*vcٓr*uثxi"^m?*bs+;xu7"4C\X]Z1;3$sl"YFG5ӅtL+{ GG)62NUߍGYD-Xٻ^.{EIx?#Djy2%2Sİ?l[izg[ }YiNf2vri|Va*i1Uq*k~8cY49$^ }l[}s6x7>KvP2FVx#!"ǪXgiDETmMI'V>=+Бķtgl!Rɢu扙w,My 'N4|U &)G0Z*w:g<9{ݼKT&J;4||.GŮ|e \gXWyGxzfzN:[}G^:o\U%f1"rY=9o(=wzNsYtWj9#l;?ʺ^ʦYYVA;{Եe{^!]!+O2rwJl \J;y򃗿ݵamh-iLKm.݇״~W1%GĢ2cC4LLf ʌ/5ȌrgfU?_VCuY4/y_372cxj^mj^MK!X,>sTgTɪbdU]Lu#M-ؚ6myesy~w٦?c"V[stjMuN^fLsr%nh^uGֻ:/7s˖ok$U[̚>7޼Y;%:]^+ZgʢE?g-}Cm1׳S?j(?HsSX[CU5O-e1~)2Ɋַ?K:V8-ՉZ-b5}= +5c{[U-kUi٩ng5$!{[*Z=cBTf=ZM=Ū1kna]^= +ugLyh8HdMU{hgEtSV ]"KãY?׌~.̬Fu NUҳJjjөd2,5 X럾1}ޗ)7D7]1\UXW*^ӬsV *q5D}e+툲~W+:z,_.繦o^deUI_'+E}euQƢPKe2$WGvy]ٕ){[q=YM#Ǝij5vlYرu=ZٟO ^yNUcw{B#',ckəe²ι&V?z`Ш^V&]_kRӻהʆU7M4Rc~bί +MXө9+Asgs߿Q͟g4v6Ϭq9⯊sc0&W_g#>Ն0~+-ռLoRD+}+ ~4ϵ5ŎE=XSj9ECҽX39O}Rn3ۣ[mJk*9fsD1tVjjtilz޼٢ݲ3;fCʛm:{X5G57l:K9g"ʮk읏βZkZ}[g>[ϴiDVuxu{)n/g\9e/]/,p+3Ɋ{uսYد'nدUlM4kZ>n[ ~lSU[G 압'J*IOvV >-BCvPTZۢκfWɓU)VUi4U8FXu~^-ҫEzjod_HUIǪ*2ݪSO5Vh*T=WX݅Tcߏk [gvEM341n4Sty;;ˑU{X_j!Jo*^\W~Yq 5) dfX)352Yűu^e!Ɨhb0n$K-MgZYyX&Mbd漤LЭ#3j 0Z^m巗 +N:"~UteڜbKԥz42V$˴0LM꩸evaL2YIlJVi9S&]Y~BUd|˝7Qδv'hOڲsedΚLW]',f)凚:IMe3L4d%iJ&]+'2|.5Su+|iYm0ok#K\duZIKr>IdFybtVָlNu[AIWe}e:RW,D9VNz&z+Yg#ޑf'ݹ̬"]MS|Jk\;xCJN&0ѲSk1'2m+siʜ )FK*>%}rrF#2vh6fv=1Sj75,Omluv9MΪ{2KkwJ&]){%&i9IJ3N]oY3ەL]:;K`jn44f^/9Nݓi}yVesaY?o6>4Bf2"*=$^ޅ^#KF;&¢5תʚ8ٚ,FEGB;Mrx3_u4c=j.úYv56f7NI-KtZʲ̚;<`sMVHt٩ Ik93,˩,Cٙ|rF5D6tgV}'u_e}.W;)Y7`4_+wRYtTY(Iy(846u9BB=nw5Lh9<=\hƻ3}.ͳ2KfY2gN*>膖hY_,DlteWIbl\|4l2LTƬDuB1*8իtתxX,Cݵ{їӓ26BeǘsX ՏEg<5!fٰ;VZs5u;w[{ܾ[fvQ>;ˬUVA_9Bj tt7DI3BmGFϗ*'٥ɌdbI"y#go9K:W|msz9Sv3tx$Nkf99ߏF%]$̬s:VМc,N^T{Hxͫ܏+dQ@*&(U~d)QE&"w*C^oј/Qp*YtcbѡorcR!\,$QeϲG*Ae։GXiBOT7H5DQ,DՍMۑ:\OTD<'( !Q)/'W@') \X4UANp©Y l7{o~ɉUrE>T}=LJzM)CU]l"DT5o~=OT>LQJb.U1h+Z*A0ϸPRTV$ C ԅZ=:je2d0Q.nU XZ'_ٟE뙉aS*].XurQG` DU]{[ )Q ۧdUϻ _ + -/NOT `A UIIH5 6ue(!M+Ǭ!Q9vsyLQU։ +9+(*D悿F)Quu{*T-K +/ T\enj Y:}o4rBGU` 6[U*^e +Qվ{Ā#E2> 5(>wYH1G.:+d,(s +R2;guǜ {%%UGCz-z]Z"!H6.O,R/J|/=ڏ sVIv9 BK@KT9|gda&&_rA'mS8CRUNH'U GrŌoeN*U*%7RW ((g6(UQk7QRA`;4d+e`ҊTP肫HRaZ3+&Y f{*9G:0(IYz"U-:o $UB! *+qyeYIlG=OI +T9JS&ef_Lڟ-ȑ@PE*1 +WkI^{BJT2R/̂t kM̄n1Z{ ;ECLr}x:춝RM$~)UZf]JmWE0yߍƇƔ*=\R!TQ(U$ -mk.Lj/ OxD  6dP4W`iF8cFO醈`F9ɎJ,+MTe;VIUǣer1Re: K 3@;S/oGT"U)@,q.4zҬHU%A)H oI @* +-/!$xrvU6}X$J&!C5#G e7x)F-p,+@: 9؟ a ಒt&lC.[vDyx8MTYHsM=Mdg%!@9%*FRɳ&z8[h?LH +2wP+Ua|J_-3w۳Pxib-'/ KM*)]u^sKUa)@|>Rw5/U2* =.U*pӠ?QVљd^ QGzQ65?v``R.ڑuyk#,UIyYDC*I~"R% i1>cHy"YZLYpf9[jMsR6+78 Fŏ*\EřۑuTΞ. 8)\ +ޯR6R$Le'81P5QKz7pKQRn2J*K*F#%#)]hk.nCh1*Rmr_K ySY +Me ƛOI;5yGtkROEb_M?!ćC)6RLrLRIG~IVoqq-}Rz$Jzub +}ƈOkXQJe);ZM7|## <5JU@4@wR%ū] 4i%T=UO;Г)Ubv +)R]E +UrPg[2P~RxW߰ʐUR%$~[%`@4*C֤ +g탴ŕ%6PG/emb. +_lR} )Kq;R%*Xev&,U~EFTDbcљ*O59я[ȱKM5Py5f v᥊T BK$2ڤK %R%ϗ'`RUu>np 7WQ}N#G/oRwtmvJkYyS(BɤJ[T2+i% H:Q[S>PEC_]=bˆTܤjN䵿?bh` 4L&8 彗 +7">j$;ks%0s6'&zyo?GQHδJ̭ǻK$}=S3Fܞ-Da]a;|rm (A;ed0;~ ^'tXs2T`NSG+|v$|G*,7xP ",eDWtZ">ywiH^ _֐ @"3[<c&x[&`Jcl;EbcYQ[6M!W4}%Ԕ;!6Upp z5#%؞ԎYv+P 9=!E@'ժzJ*J腾ZT88S?=[9͑9e Q!dfyr5~SB):_=7m2⚇ʺSaltH\ƭl") dzds~ML˙éo-;6$=:-f&BҚܩ$aǗY"n FZe6%i,{ɂkt0 +{{7=j5 U8QnO6[;tUӌO @p?#SFKqz9"f̛3#2kROF`W-5?yxȄ5_SO V@L"\#a~tp,ML /RdlL˥o0/0}<7cM%,쏬i 9@1|r%!Iւ_Ar@B .e+(ܧ/B`ӭ(^Uʂqa3ݘrʮ^t*p:]ֺ{+B8+78[3'Lr"=@#0N1ƒoq*\˛ 3U*~@pj@;Cu~,P)N˾ҙw} qpѿi {bNW?,Xٱ$ֹ E kOVj(){mS88S%}uCBǻ:t"ONۜԻSe.؁ZҀV\5 ׋bcb`j~%KCJ۹)4_qE15YBoln>Ԡo,;4&"s9w0ARElra3ϬjA}M%`9=S*q]]ȣө}\ *8Ţ BII 2W)"ݥ:=Fl'P7ZNVA~zbً $b{W놠 dퟘ.S\oʏuއ `0-0aR> `׊ĭB\_baދ +d"7r> {@ tK @ӗǬ$x0Eˊa'u݁MB1?8v(+{ub|rSehXu\# X:C#[ [ҧ +"Ui)aSI#`*P>y(rzGoz)|Pe15|#'1zh)Aﱖ./'5TyZ]\^H0GiF$f(%ϝJ%ut^\^xՁ$azhku"w(Qn}a RQf!D G҅:wN7{01b-He?&âwr%Mq3+x"w:fCȑ YS{hx|z=Q~*] R̂ೝC@L EǃԀlSq묈;dpfKLI1t;u7>LPqbN X]JF˺4-xJR3źHF@W*f~ZY)`fL<+?X>9.'s4I;$Yu Ai4p)jXLQ*"RfL̶uK$szj"{1 8+/G=7+t* c^8nd҆7jTlINfpxDcؗ{?`0B]- ϘGtfah5^7x\$܋Ek}fwyӛ7{qMO1LȫSaQ+IEM 06f էKt*P=loѦ(gޟ4[%]Ny&PYL j%ꊄ e}m  .'&ACL185|$}mHɚ<;"nVF!_gx"9Q @6DCvq,J%Nh@æTkspe'h( QǸ,هqK +dѼszt@m +"BBIFΛZkK;*pr1B.$G^ b?3TrC^=7 +|_ޛ=;$ mW_4˜Lix1#3f$U煱9{ 4H+v#mc,*phM򙋾i 햂\ p{O6SգI7J}ԐomŸ +꛻4tEQ=2}RK_Jzc`:өUaEfo'OzYuo/(h5]%[NT3!Q}Bܮ'YaELưOJ~Ӌu}UT6 +ﰞ iyM.\o3'4êMh9e/_jrHؕ/^1-[0+:)CTj%xkg5ZnK>LvUY0Apn&j3Y,s7ݪ4HH+GgoU\0IRL"bJmnw&W1Sh9d{)TஊFkB4=$ύK _^;8N(&|C(z(9;)E֚5o_t[Y dbt0Ѕ abٝ,jnj_+KoR#a5qs viV 7)x$w  NNxۺES+8dDjٍ4,zئE *3 {A#0ib]b{M@sD?t.qVth*>uׂ2p4 +gOC:2x[q[-{DVQ#ϺF#Īwԟ(aZDځaEۚI`6hOl 3ԮHH!Q +T*,`okX?LmǙ9R ,~(BA갉^ct+%_iġJHBxwBK5At(Oc97V +ͭ{"~9\Iv IаɞsS" A.b>MLH (z@EgjEH,ceAL)6e_9IPUTW=MY owrCcu,.C O,]{knwËҚnkˀMdqDH$t &'An#E!8`[S1VXw&zڜ[<Y47ph'qrF 2T̫%~2?Äv,`bY.էc*EX?!+(a; kIa}}Eq~#`umGA%+/g5 -n Mo0ޱ#3P)2#J3M)Dei:r`/"!cɌ $mdZ0; !#;]84 @(d4% :zX"J<*H#4" 򛍦N%!Z +j]JXe4jsE}'4|$,EE'u,Mx7j}I4 wZ +O@20n^/>u*+ f{eÖ;={8Zg7x;jAktw%LL/$ ª\~vIpu$ תAՏAMJՙCVM&Hc +²:'rw3Y@x]Z"~`xVVR{y_ ևOH}P{,lHA` ZA\|Y&g7h% +8$Nwto|F@v5;" +]8g%%ޔ`[݀-Lwt߳1 j]t;̿([dł4;zR;M-=pD"yC$L͕ku.ddpe|5v'UPZJ*ANŋ j hyi&Eoe%Bَ4¯t3itתIY[ RR){unf&$oBV.4)F76Rg)<ތfUhPJȁKzN)oϩ,R`QXМmK@ˮVjqCX):tuk޼үݦ*2^Ce7zaK# - }xQE.<}3ߘz$u/dJ2_î0ip +b<*/~)0L +q9E^PФX{oe;٤,qKnb5ئBv/ygQL*ZJOY*[ӥB쑎eO{%]-b}JwD%KV;/翉=] & f,[[5Ž8ٵGh#V'%oN1n,`O=`ּL/|礟'z\[ 1Wpq@7}} Mf~A~LEuD(%)lrn*EhMN_m lGȆ&CC{)a|Lz<0yE2ǺE~8^10BX 跕`\^H'&_iOHBoXn9Ġ%?Z^qa f5?[G;DbW?FT& 1}!X]<]Dz(M16NB2@чb/ࢂ"HSj&:QĶwgkj]9Az9=sR$SI.obG^k$30|im# tЧKpqa^ZD|8Y* hJ1ao?߈N>-՛A{nFB ]( ѽn.x$Jԯo9fڶL T̎~xdkX_% \us·<"]:G* B\Ƨ6-PA`<ŨpʘW2n6.'P`;gYK+Z~튁B8)K_]^V_ӿ%WhmjZ69|.Xފ3'1^c"i?Ww~y:hT:8A  4Tr+a/s.r,4P`(^ +IC4?6]on0 g𴝋 [+O UdK/DI +:FchByq-y]оܪa/r4t/4v! k=Z}K4%6EVby"*@4'GZ*Qݶ$񛦍%@Aj,xxԐ ?"DvVtVj&}[8et> y +Qju,#~@2Ոu-%E4x@>p='΅&d3,!*Lwa~4`9EЕJ T ٟV((.J=7Bx-|Y-c:.Z8P(Tіl+b$lWO`٤# +W;tX'zMY|OJN'⍼&\ U8f9&QMߣHV [%Q}df_#C5'@`Ñxm4F"huM(mFbZ0l r<}vp,! @3ZiVr;*P0X윾t8+?IxaWJoԏ6=8~m(|MK6')a֣'NbYUQ/~ﻱMQ 13ݳk2j(e}"'NHiC㓘Rc (ؼA.V80W:=Rkf. ȒI꺟Q#$9(-T:,2q @1kzݻ=6|epM;.fHl~6Z@%~ၼɑDR ë 3befUw0G1Sv Nhl;u&c4!qIJic)[.­ F| !Sbĕ[8Ô=J|A"7|1d`^P\Ms=hUP0'ߩ.!h1 +ʠ6J[P$2/D+y4$D'|NU " + +'~# +RPәѷ7RJ*`*r?dE1S_x 3krј6YFfb8:QG 5,H$f`8I")-ԠQ]KU Z~K_S2w;`2m(8+x=L9Em۞($15-̣2 fX\GS?vF)H_%Jq6@o3CnT`H4׮M>r * `P=& 1H=[A,]N;R9uO?P_M,MҶ?tYFț|+󽕺C#8o3am +VN El|ݡ4O^nJоdZ.{NI $]wˌ qeMJ$o\Θ0{qDhR-~E +}f3f9{T*hШ0oO#'+%ˊ B9 SE;j6Wϗ,u0>yMp4&.x4pFt:Z_MOIJ/UID' ~Y(+%@lΰtf~̶6>C +  +c 3ʞ[}E8Nt&0ev[a Dz/pB:?gN0F-vs(1獦 +릘OHG8!FmfoT8Z>[n=[6ÆZKу8+5еfR$A X"gX%!niQh\[ӗ 80Obv&fڣ'ZpeA"LԖi+^dU|~ : ]I\Qd\P7]XQ' kBTSoDDhdmiFسiPJRbKm%g;X5&AKSٌӂ ־֗| C(r\`FYIy~i%2|Ǔ7s|eDPFWn/t葠jQCzGu"۽ uw,f(O] }KA%&E"+AM?;SC&9*QJ4N*/jעsb>a_$'J:kDx_<_P ⣚z^nhQdh9?={I֝>Fo?I81*eqh"(Ǝit?1&3Q;6յdg>^cz+m-8WȐ!kzC +ʜYH +艸76ʏ*ҕ21|5jԁ`ЏT3;+d ģҋIjՒCO8~8JQ2v/ A,B*h6gRm˽+:`ۆ&}*YJt%ٕj tb80pܜl[B4u?4袆ڮWy7eTY4ԥn,??Q)y3Y+ Р6o{^sPr!E/=x;a J{n,rrm`@DK=RcVb|f9sW>Af +W3b1)e&X2XVePk|ƪ̈́<<kqpFf|0S!+!{!\)'^jm%a#Wr,/J1$A ovBEe"<$<9LWD'᫶ ۶1uwU%QNe2Gđ .ʟ9A"3i.j،È3Hwި``Uok}";|x,!9tO=J~϶ϬCU^k0/@8ӅRS<o4o*e'I~cg ܠcjH)(!$4C-gAG_n? 0o^&b/Ԝ*9A;S0d+:N%.Z>x|3/ hDCLtHHςN9Err΅h\g%DouqYo UtD.-=,.5bjW,3`LCAOPT,{Q?fJ2O TPR$p o/(CD_ QRןۛXxʂqbݱWZh<*}G#E" HЁ @Ȁ{#ۧàm@#!Lt&Ʋ!*n*H o;"$L^DEtqq) 4ƩɣCMUKTPRDjM?(tWp)_tTR_fF=~؄jz1櫔'M)"-)ԧ TJ"Ԡ@jW0=aiX8"o +X{9O}CӋN 93Dgv;`ܮ2"z@äX'k),E6gtp >T@ȍ\u= +oȎ]7l]@\/ [M9k>-pg.KZ4-ADR+:PM_Ykp rYj yo*u]k.sch6CcSgK<~19kX2~gܬ|Ԡ2jN4֜}JO1u3%ȳ3T뗆ߥT"rJÊCavKs-%~m+9SPZ&ZTP{ΓQ="Ɠdea4PyB;@@XР2ʦan2@6LLL4⫝>ylYLs <||z#8NlW1Ԟ/^80bN3:qZC\{Q b UB˶@Ä N4˂b%R(N̋TXU@ 1%4d|XWmAt*kd4'N܁'/Lr'>(&k#VNawr>"0,*eqDYܢ˅̡Fc,K]f1_t .ѓ' |Ǵ1s8F*jjs,B!%!?RjC֕X=ΨӯSh x# 4KFRi-*xPӋ (0XefD*lx,oyY!#V\Dz`J!ivA:9plξ1!!q2(b4Hmf4Tԣs`SFԮ~w kAֆ:T=-0n "ds\@ 祤aO_ Q#L8` <:TH!Ŭ zu6ZV$s9HZDh hfG rQz[5"ԚpH~t +A8b|J#tm# |*6]+Ib"M! -CIݒy=RCqӠD]Ȥn+֑k:+H4QXN2Tr C +%͢4WL)(a11)6SCSȯ[WV0E a600{'E"Q'B-_4Тơ?Cq0>@}p]UPgq|gwQT18$ӱs S`)! ([t;"zkŪ\培5u= f75#` V"mM7.T 4~A𼿬_hX`b/LE"H!ŝkA F2tൌ` 'rKo <1=F0}?߻=Ь+Qשk>'D- d4]侺u%//"](haWd.e&݃cd`Z"cNɶdrؚv#z.subSԄb434VJ]4F@$6="4fG+7#όzbi'ÿ1xm$~c >8,{jZ"[U/FfweBYbݻ{MJV +V@ډdAX*#|4 +R&HW|P Uތ|t)KE*ka+G{"iDr %O,чgO -QbGf :\!//O[-'3JᦂW֫3D+JمN}+9n譾Z~5@g qY@ x OI"ܯY: @3cD 8ǀViƣY%~6{8I#ڈ2*]U,]bB ɭ5Vyi/uQ@_md%);,NT]pcC2H'fvlYԄrRnׁՈ^v,^ B2}Z5b2AIQHƆ&`q>9dm'QN&E % KHNHSW\KTwV𷳐T|WU(fX(x-Bܘ<2g$>,(?">E$e=1KEZ>>AWSuG[";+@=*`f!qALSjCg{>^*>"zzQ"MW|u10*^Kےpk)x`7~cY\G?pzٱJ\W[w* y_BxBDu p}uQ>ܜ¨ƄyQa: vxGv;q;P mTyA^@pT\.kJ=L+46D=oHN|!yS@B}>$;q|b\"575- 5$-Q +iB;kǏK繭s8{ QM6<uOj nx'(b!Uڑ$Oq'ZAZrM0y9Lxkr7q>WZ>WW= +ǿ#!z/j(yeuH(i`&fl?QMI!QB7C TH=AF3˘TGDG3w1; e'td^Ʋ&xwV2oLcaDP4JWC:$?BzTE>K\`eX _%ۋF&JA H9-v`G%/$j%$8\ +Z܁Dƃ^ye怬Wbx%Wfze왼0"=*6rcL/!b5LܑO }_Q1Kw&ߵ|" +?RM_)9!gfMT Mi>-3eS>L*PSfԍ ~Cp.4mX;gw%9qs4ndw;!Ý}}ORƺ8$w:K++V|K7cH073QS,ID9Ԧ sh4S2]\9Tv^幩քXqaWtVР2|B/#'+70L"- > X1=zLtҶe&䨗R/4oH}9 #{+h(\;82'F*%MGbT:T?њh78Ƨ"2Uweƍe0Q: .a_].xYrdys+z]?IڇLLZ!%]('#^SKc=dLՊB&\9c:ULhU4zlS(fȣ +ВTӘt9F䊭\5:D4ް"'fBCO3v^RMwXp~|\7pHX"D=Vĕp/&ڡcI!fc1iVC"xqoQ+[Y+ToĖTQ %iČ1h36t \Sa.041/=:XU>R #7L}GԺ@JP:A7n{D_|$@| m>lLіh:Mm݋yT-Z{[]R(hH@n9}`ђe;AOqw rۏEL/>Xs|1eVʄ_N/$~[\ 2$obzPpeFo%$rgjx ѳr[+B+93,>J>ǠP:(NoC:~PN`3PGls#%'qx8Y~Yh}9{Y`3D&4iwOƒVf>}Y}ua_30x/}v+oGcRc~{n(MR̞X,MP>(X\&B<NjwEꖹq(Q^J GH.]d^,/In +%QK:l7"샺J _]!2vU5iͰ/IRm-*XFm '*Nrڒd1 +X +VŠ[cd VL'aX$(c#JK069hT00Lns<;#tq8ek3tCXaar'' +F 8l?e{*|]UNKto[c9_,֊e`BIScjKLNW_*K,DOy 5jDAQ +\~jVa/9<< \v~Z߷He#+$ԳG[rvwN;yIm՗Ax-24 Fcv1m v-Em,(dm]=W---շn`H+/E;EY&X?Miu^5- +q3{${U4y:k4,VۏC(:&(9e1i/DVdx%YxIcuSSy>up0&PLA-5T^I- ac$XeY$]*b+Wݤ +!4!SDeh~TVX%=l`3 +MyH)h ,p*z5g9W-zPfL"8ֻ wVNd֍kfP[O[ET'ќ[{ŸNV`TCp(d 64GW1g +&&m"0c>3Fv*8q_$1ՉU4iDق}/Ju?*9E8 9<$f4'YDV+-HP@4q&Q{h7Xe/du@ + +R2F0yu3aCc7 P (R?KOXxx`г yVX@d*k} v}3( (@D@ @?xy)@.Yg~ $ )y2<$W$Rjؚxx +ptoMS'%_W e{tZI܌N䦉4¾$y] a8H D0ZP`X U}1񀷲eZ~so|B|9E\JN 3J_8R'c)3-Џ09]G\. >+n"EDw+%_A/" N`80<-q3cESDZ',* rVצR^`iIs 2*!}JT^c"R[Oמ 肩ΓKeoI?T^9ft5Kȱ1V{J FeJ4ƽ̮ͣysvWe.Z \Q;>a32񇓩Qz)E&["\enɖ>+"ަ(QNG2F. k6& <4ct"<a s:èᢱH0B![EsF Һ,OCJw[{ +.dzȘ|2ܩ +V3:* ԭqWg@/fm=#}wHKFRRaGbHAOuoEE!ęˀc 4;dErj&:F0xi]1 "N[)7%ҡ݃aȕ=⃈k0QEq1-e2HV*>gKXݴyb2c׿l t/w*͌Nh NN:YLל 0v; DlM *Zd# T~BsXsOF9ٴv + wvL +E2r:ϰoϭ;E /b _G#d-`VD} +𹗏@ş>!#Q+e{Mh?{)`23^P2Owjn<ѿ%vK6&Lt@e< 73"e(*#x~N Ϗ¦P}K}C)Bk6̜) @N`*Wd%)tx(')L)Ie0!aDUBIvU$N .$(=Re(B#a&bkQÉAZ )iꥤDlz +Ej.}),B{( _xF [bceyϒDV椾L*1>Ò0T͠?%i<$hRD<&p@SINquɺƍ [%ZUQ)Ϩx2WZJQZZҴ_JGqK%N_Kq)8M/#Faw5H eJ%_LE]⤎f +Q໮-Iez:o~NۢG(\Bğ'{!zVe8D]Q\D?s4( 9AGc/i^~Zf^5Q{s<4}6<|WXb_mkTy1X̿{DQ2O+/igWK4٫C;D1iAmI}_TME]Q1 qΣ:>S*~!n}\鵹sųD[C0EZ*ř,gFJH#xrHߨHyFh[dWfBVhK]Z*;q'2nɕ2 K}ҐWvhK+ixY gq! *xS"(Jϟ(3̞[.ϊMR:!\PN9IR&Bk (T󐘂UT%f A~`#HܠC>*D$rMe`B5kv=r8>kGz)},$N<Ⱦ ~D)p侄sϧIp1 5bT&K}'bI5oCԏ"eӇ!#B-"SjD'gWe%H:A5AAl22bC/,GW]4cK),fӷ: g>vo7ӎƙbBvߥ6pw xX\+% Jhi_xEճGKmYmԙ}j}vHD"t)8>R|/gJ*')]s;CqsM2=\IEJ7#|=rR}Ϳ m}9'~M!75 +񶐰Z2)."aYYuJʫjk0j*"'BE>\pm\'Sdq'B9hrr('{WQ)QiHr!'nT.pՆ13;[oBbi[ed"Pe}bVIT\=7SPg^:&>1UM( "Yz]xaϠXVԪb5ٷeX!eQF<_ V'''THx&4—p:s6V!,IXJGJ;J $W}D\#Kh:5DhD44aG/Y1*/U.zyѺgirjb|i1jj?gi!KO { 4KhS_DKCX.(t:M'M#e?s%M:dtuV!j:=>>VmnQYEUb#o; +QJLFST5T3p{i="\ =npủl̓Y95PJ!WQG蒎ƹ.34(]"1t/*EKnLHXuLPJʴ`Z j6R$#]=Fj6sQD3_(-$[}y|YFޜjTP#]JloˤFbP3 +5x\h53Y3iS˧:!j/jQW+=Ÿʇ*7Mt4_t3KD11U~+!#ױגm@!zj=IRg[Uj͔7R1ETF&ԈX"84hd%9&^ƱeU"DQQ8)WLMdJa!OW3wГ[s%$^P6A"ZG5ZrAg2B%V_v(Pf$\21)$_8 ++.s&%S[HLG8WE>9" ++̈F%SF}ǬQI,:$єGx(bաWG?gw"e R>h:;;2D+c)' ѵCU$kFgu&Vt4dlʬی#%`_?<+"ǭ~t7 ֬IZ4ޔ*I&5XUa$Ee$9ftt(ŲQ3hgUjl_ 6X_c":\F>XW+cGޠ_Z贂Vi5V +fdƋ7ZQ;jkGr.UrB2F}b852UĊ}FhR>5D6hQvB) V/G8J1]R {,LB +m$P|1 O4$Wp(3VMd +R?2eW?6CIe/[jЋ21b"U5"D6fjܙGYAEArΉhA }Q]#{5u|$fv}h(J"KC"Z 5CZ7 bjaO~[UHEd"( [ho;۹#LCbÝ^S&$E!LČ&_s!"$".u/l4/NV,&XE,œ*~HE e\N+Mg~ g`L +*^,8,,l֯EI`ĺZVM]p9WC굂VIf;+0 +##%DvgPU0T ΧO} Cp +a~ݕ +豌 +ď)}S0UQ(VpC0N +~^`RQvF0T`sB Vu# +I;'Pk SOvO y<*<  AH'8㘜0?ޑ˜$"^.bTe ج6eXb旎 \gj~ L%p`Ѫ =LoSVIVH3?Y= GN{ik#PeɪZŒ"DP%,"B(+p%V?$!=l<_! B0B/ Bv> LkCd <f~S:«m~ +~@r!@ae  ^ᭈ< =Bnꁡ_Mщ<KnJ|;0Pkv@D{$;:`ԁiWXҁЁ74*7._]@ͽ@W\gU_'fxq 6 6m6+cWf@3ED4C l~1b}4Ol~^3W(VpV,ˀ|@bRɸW1 +e"&r= 6 LzU ~>]`R\ .\ͯBQ@Kb*(g' p OX* &0+ ~U kOKJBzr +ډQElbS@hJA +7.& p.( ={@xup{_ lgc8"k  δNgk hK;|qo _8Xrgޞ5l%y]5@Y bFH uVv[=0SVEsoj"t8A.]66G;p"4rb#0;B W0-DeLYxb{MUK'Tn4M<0ޢj\dž hK&} !;/c a㛃< ږQ{~L@|!d=lb҆qt&}@۶R"j<Tdm_B 2nQEy;P\T< +bt6,xKU]sD{;ux#? : f3]]:s s=l#wo&q*=іS9@'^0t!p){+6"ц:[#f kAda'~zӦ7Dýn%u~6   hUylƦ`.3kgNyodsUEΉ䃔2u @"?BR _Y9 Xĥ`(ѴX `{Ր H'Qqy8 ]JodMFwP .Uu\YBObҍ艠F뾋Y},a̤썖!Jk +3+_ + ?ja.G R  +5|h$ywNC+P4|LI @"*^`'FG +x Nv.u[^K6&l!IcTy9Tv!<ՖA>|\}P.*cJ/` {b\dttTl)r)ʖÉTq,6o7KWKh 3()tL ڳ* oI][J@+e4@6| Fi jCg U7D h:8`q' LJgQ&vv +B\f/i`9iF0C s +qd)=𪗮 +\dTͱKL':/(y?MQ +yٙ8S@?bw%nA=x0- RE{htԊ{Upj񷼞Y>?WA_ޥevF]!РĹyÄ -ur\$~ijD1@K>)2,I_qqX4$KըZZ{T?dig>P+p 0[2k< wJT3qBTo!BCnE?~=Ȩp$g˯'`(Q#s愅b/#ѫJmrAbGPffMȈ4ES@bHac?`eG壤öS#-F Z%ĬxL 眥Ɇ>/4~G0F4cЉa2{0 LĨ봢%`'l CjR c2@X\ϛr gi ~ !\7k`8 +@dٷ7%]_>)g dB܌<:Y/.8O5?|&1aBT47:_UD@@kH{\8 +@26QK/h{Z'ѠdWipsUZ*p "UOTM}rUvPo}e!?펙դ[!ϏK'$C-j)>LuuVj:$R9'㉊#f^B/"[Dg4DQ(sP,4DQ-i}7Q] ؔeöA+bY@~&?umݔF?ek~$KJ[2Ēr'qB4Iſ')La$"lI駦 ZZ~!F?? !ȬCQ'A  +dbЋ. +%ME@ E%)'rGZM{:^o|$X.)֌׵v䆅@cO=e/gw/R%hD&B*Y +-t" 'O`Yle+3]gf?Jx` ~H`/Ed}b7~Wl7~̾JI\XB)92g (gIvBc~}3S,٩<ڠ~>8hnnH#Vz7$^jxnW/lDNTqWteDOWX`#|a7yO3˽+ +INE8Ҫ1`.g7s%µgt:1:[AntsJVھt_} GdhڷtR6bS)AjP)?'0ާ1L1"3+#WIneI6kxYpTto{/i|dKi Z?5BT"/gO~_%07gZa+]Mo$= %z+c)ؖn)$ >^Y8{&V32*@P/LJL_5`'Y3x.?yJ%a%-?|WVb&)FcLB(㭰)~m9o~+z@`yےGM#72h:fDJ3ԃ+YyCAY>B'.] KH6;$'k?%?#dDcE'YV5b3!_R?m6OgJ~sZ X3SYք.Ĥ@态ȑL (ܑC@zv^.*F.k?9qBF!c ϦU+YD +Hin +!S@ڻn'!xAK#WRmΙLv+ieC]LG < +_M'~RYҌTv+9zl?~%C'ǿmpkrCTx/ߴϿTTLS_6Oe@ۖ(- $˺I#?UIuk5êgQR+ǟ-]=4p@p)6#} +хsJad-҃*}dynߦz`Ҩcq؅ӳOm⃬7xd4YdOG( Ml ycQea߼29tO\YExƨO)Vבl#i~Q>[{DmxqX?QJn#ɰ~^- -|Gl~f;㣒@+R; :eCm62Dq_X3PYm|6t!p}k B8OOZ;dH=DF?Y`Eė{:Ƅ+sB?VVvPC[Bٍ aNR3v~!b+R/K;Čׄ'%9(_65#Pfh# yߢE C(Zeeu!#6D_bC'co?œPQʰUq BF~]"p>_2 ?(LKi񣂐b\kϬ .7@'9 zP0q'H?DNUFcrR:`<]^M>ϜoD*GWK"-o/5A@KICd 5~aYJN$J4ʐ,Xi lwiEb ?`>|2h؜/,8j|4~9eQ[XiI&gO(`r`;ϏƯ_lc.YZhuH%-vE`F8čo;@hTH) ?h)꒥-3՛ &-q1<:!wii׉WP + z^o)f68ˈe$h#WM﯌)E,>SCAo"z%"EW\G}2{B}.%cɀȼ^)Afk'1Ci1 _At]A4I)x҅X8)Az bI7PN /cޟLK]l-%$Or{ h%O;KaoLLx+H#YŒ= dkx3][BqG9 C_[G?p+޿`AZ@C^"#uL"C[\ڌTF';ާP_zy74q}?< Is$am';~gK5>wD&n<^T+T̄}6ۂE' ?)bbݽ׾1xe!Pg{PabNi8J`G Nc7勼er 'lJs}|󓝱 +Gl}O]ʟYLD+]CSP-»9:=iՓQ^P8b^XyAOGKH~Q(s)n;#!$`8gtGAX`?}XUϬHxs"0ގYd?@>",a%= +~1G\2*@Iw )~Q)>͉Ī#ltgt$D"o⿼"wTlS٤솿_)ʁC83ȅ)OwF<E%|hIZe!|VIQOAjRHT& o6nRRxA9# :e|ʾsO) a?jC1BwCſAԪyWk!|@ (fPh$^PT]=860Q͝S2 _>* &Dx QdomNic>{WCc vdc&o!pDS yUqO'KR1D+ :C$:}LBP+as,v2GK2+܊K8k6pVUg%š&bZUה>?ԡ՛l"#FO:"a4QsVVkrG']$&~SozwTܟr3Uqjۃ/,pmx6X'J!CtjDs@*E nV=m{0] +ޣd_n +GomdaMϯGn70$~ 864{𸺹oT|A/AHk*)=r3FQx3XK0a/z [ulޠ2.*us3ɍ  u|-a* wG (c) $zk.fMr{QX9tjrr5Rnd 2%$Ir'tSrl;Sžn>LOKF>|z?[~Z\?;]=N܄Foߩ}Azp;ȓ4lqo?qC(/\9( |K6{R<Q/.e ^\Me2:?eTJ]RI&bב+Fp?iؖOb'P''XTü%⒈lWL`?=e81t:>_o^e,(PY UVnzh (^/ Vd_Pcv=)J0^p9^ +\`0Z;%We;oaYqP7]iW%,&C0[l Xқ@gF`K-kvjkYti2^UJG=&Zcڤ; ե-;AcfMQ2DMmX~قK;Uhl7!aXm  Rb(u}Q!R_[~d$)%~zK,ܫ Xt83ӳf-0^, ^ےjS"gP]Ӄ9>E>CrUi>ξ~.Wrlki!Z*$Ao 'e&L {I F&׏3@J:Ӊ{QbtRfe@}C7_"4׭#).O<2@̡ɍm_Aԋ_p2x_#;ZI3zWJ.~ ~מgdaŷB +^uޤZVa>Xn(|̮fi=bٸ/e +A Ǘ)voSy|m*n~˝/U0#XN-&SAy0azU[:~L h} A-NJ7&Pcm Sml9垹Lz RfKɠsTJz\Enyv?Hp6An;_Ս2Z$y䕐'aTiˤ,y(s_-*O>ic0{m*1o%̣h%`G%|XTmUǂ=߹&y˿DxkvWcI,?>ly7'`8tVtlI+JpFEROU^YذT)+99!&<^`)?z(?\"P~'®n7-'\iMs*$-ɫˈECRO>,y4ljǟ䥤b=H{TH *خpdd"?WBxIjg#,~XCqC|AEHqRC_Cx-2|"J7; jד耽 xG|B%J-\l7ǞV'ChMo `p\6n xxc(3I?'lN[KۑrǾՃݔxڕ _RH׵IO# [x|zl\([fC}]5-Y$>u!" &EڒK1|<\sƒA~¯ZgQ ZriʆOMzYsD*/=i01҅>r:v+b24`` .7й" }m$yX,/Oحşz]V+g$/ +G'aH OHWOcnY+Z4ݐeC}R(ibMͼ~B2Ǥ|UKF=% L.+rhu ܟYa\Hg,{[-mm3ɬ:B6>E*0T10a^XdZ6žbX + wBcf`1~kf2ڼHqߏ0MXmj _ݞv|ndÿc# pMctK<=3)+f[d ,yz}vHݲ{hq.7@*%"&i7TPLNˬ^BqjZ6DL {]kQjش$ߵ3}` qْ1[k_Ha@:W?y$k2A+M`iG^yiH{iSEkA l%u=O>Eh,=w}C!k-`]aڊ+>ENJ(4;i/NUy.XfZCy{-Tj[sC9&a˷|.D KX:DTȬke[A?Y򾠻V./ިct]8%mÝvwa 8A(6'ulltxm 1 +%Hd܇BnW{N6;CNFgɰi5MAQffx+6W8^-aqoגcDff~UfnZto;߼QYpV@\ +*1.lZPl`X,1߉:q`LJ>T2 J m7\H#Ӹ FN<)۰g=Áɦok#2e~Mũl+űFy ,gc\7 7 锰FT C&/UuO ԙ=\R&U|hjlw@ф0kZRL^Z;H,{"V3f:#\Q @>.J1B^C{uk&bP9Z:cLYjϜ00}PlO5ңmF/eK55 q c_k52Ǣ߄)Sya:L(\/9jgcX$s-!<ָkRHR{aA$>c`vPN\͵D~,"GY&"s7WZj/^90 }]3,y]X]G&n"ٽy`|Gu+]N/a1a`|Pyk|` 1IWBb "D*0V"۔p׍EК&rMoWMPBϠ\P;r׈Z5V!ɔcbcǃ]caY йx {& +ȗ/Zt=CA8{K8nPqxl |Ov"5ah]pĖa#ΰўAnJY%3lnމhP\Zj#tFüQv?pe U%$k @eKV;l}K^vִ~E@rI1fL"1('B%[5Z +ȗؐ\= rB68M-5lL.4l*?[Y SMxj[qW +*ؠ$9r̨`sCFJZh="]8lȆͱ}L&K,ʄf* }q&1lA.nHTܺ\o{Bq'[3ldAI"DZ$klK(nJSb(-4XP^0 ꈤ_2PKwgh[v9i#S! oFx0}+b/c1Ҋ;:ע*+vr{TW*`#Z9@" 0+9l(ıbHm!E4j +WgEoiO:$Qʐ3 6ޥJ~'k3Dw^/V,`#~rmIL +E0A2t/WĕjY`Z8! cdQ~s64˛'@iep^m>F$(^N7pxVȒ8 ~Α~u;D#A&O? +9<5GRS>k]eTxSLۻeK?<;jˆ{^yTy\JZ ВφЊQ̳cSʯE\<[11dFMEYkUhz +0lJs[M!9&$<8s/#T:/ ؀mz\G8 \Udlp!##។y `{&pu$"UxtԈ[trʝ4 N3Mq"/?oC-=LvoϏ!#wV*N@8O<~tN"kWG3hfx |̿'3x+|7jMG +~̯̓yp +r=`YT1L +kT&'-|4 ;y\C)HbPX"I Q:=>U|QJs@z%uzNL=gtԣ8+YG۰`Y'IU:wy$K +卜_[@>x,M I: <ʓCxcAIȀ&$5GI +7;4GŒozmT3ꅺq=Ր@=O[|[':I(9CcO%##!*ytp >܌8lm%8 = |ݐ=pXKd?d@ia0%ks Rω'ɔI4F҆C8 BaCd-^2$, #3eJ,Ő9)Hoҝ/| ʞL~;j +ٳ,tEQ}h>6"{ +oO'ZY#{|` >u3G4["%5:!{@7JDi{H18%Z/TgWTftV3zȎPǻH׳HBI:Ek|=}'|="%_WP OH׳S=U_O}}J:bdAz~A*c74D <]3\\_*JTGa$h} CIP:Is.1fNcp$*'o֓|.4[M_ωZW zrW)(\zFe(8J_Ϸ[Q~\BWA;Qa+YNX1pZDI+R vQ_c[dk$K ףg ͔(ǯ$n oGJ枙, %9׷bn'hJn""qH\=OzĦjiijex؀ NmHB\zcwѳ`!I){hVGL0~Fș"V@VI$~t.VI`fUkŠ>M;ypEL{#xIzV)t@>ZF? vpF>tZAd;PutReZ;ߧR"?`b#d3?m~v5<@fm*i?ڽ"!)!MGO{dJr"'`FN;FF?]M6 m,fOzfXW@0?&U" (G W1J 5JyJq\G͒p=4u gi8t԰4Q՘DOA r鍤*{̗4Kgm=Kݫ߀Dà֧= ׍6%<0 ܠy¥ӉT$ !d7%v).Uwv&b=^BK2Ѱ-B)BE +oLK)m HLro"G8PԂb~ĵCa2ٿVAÞBtoH@4%$LeR7fBmE*ALEJfwS)@X3eˮe)GT|fKgTDcv 3-6/(-290icZ睔"H NE$V="NS"7r"sDԤrNGZ5!mx q\Sٗo0;#~ I`l98]0K3"[@au4z^8MLs@zS +L`nb]`'9_ \cֆBNUG" '0nFx"wF9!"y=ܕBGGI2tf* ǏG^-^M2ݽGjJ-jpܳ9}9{ItE2aZ*THa{G(SGNԤ\mPbiK0'R\!*Hd ?CA~NvL@Bba\Hq|xˏֽn(e9U/nJi|!_D"XrSD-*sJNАǜh iq4(~!1s$N,H͂GEd2@A>JfߢL%GOV2֜ 1)ȿ5.1? .*|<^֜b{D,B%=ZOpHyETXǜŃ/Rg8- ;ur"Q3MpFrj|@mHUNgFP=X G4Wb޵V?J< [N "fH9q k,HQ]Ѭf^k G KMB US*oH(up8mX% -^4y;#~FwDqɐN|N)<0nx.h rNQB75ºPLČVZ$cv:_% hUNe]rjqjUN5q9Vci`(p]NS T.@roݑ0HEݤƞٺ0 N!m|x8޼ +6R#W/Ϣ)s]OB(ke@?1_HXL r"1IIqJ?f$AU4eO &P;S}mJߑoN3t|sQ&ti%(ȔGLkXV*jaΜ>v"穥꯷WH/[-A;?|s)&vޏM X ļJG~ ew!$Ծw?u Nl.! "`_42NVA!sE46yH)]GRHERguz-`-^i">-ˍ`R:i=!֓G$%ȼ5.i?9IG + L Cbxɞ8T'OpO*\I:#'Oʬ^+l|<l v?8<7ʯs|ؿAZAiJ=$v>%BDZv^3]n VH-s>KѤ%JYYӂJէ~e% RVR(6!eEd3JDzpFN3R endstream endobj 19 0 obj <>stream +'SۇU}Uq5Jxcb Q⻇çІ5Jہ4 [( ZLHJ0r,Dp? +yXe-HϗD4z1ymR! +"4ة¬,I2k>,_M\K걍8`@o/P8\]m-P,&cf]f~ +IZAP)bWtI9K4&2nӈ@\0d0eu!3RwHK.c8rT^g!DP;EKfLp%n+t$L6S@q@)I 4C},f%;b2a{T>XLGiߪ"5ƌFGU\|d^@"Yk,LNQc|:' "y6~[)2҄C͇wGux?35Z3!탄wQ:@(2!TK>'D šՓ2IJM QԘ-^bLT=kLk6οP=&6 2j:@xh-S$mi1 d=me(5 #9.[TSo񥚔TvÉ"\j +ǷC&ZO^DM,$(W.ޚgc&Yܦ'Xߓp&D8hiB7D5IL-vLz4DZcDm4"~l& AkR& aM*3<Ú⮦6&~{d +Xn5q1Nvj +dRUޜ5ŜhEբ"΅v ZDplQLn8e hˉ=9 '=V9Q~8:wlŊxv]`ubN+rٽ1BITҙi^Ġ0<5k}?tф90tRn'/CWlP(N|pуR WJI +m̀*R(h&2RČq<֨eoʛ T:ٰ ձr,ŗ&2h{DzPAOE@$cꡘxPa/;2xhi_]0HɠS2^5JN ί]\+u5u 5V˻]U)#[yKWn +A]$)+Mex+1$T?g:R7?hm7$U2@*/yJ`dYcr'$Ħ HU~ܪ[E8IUJGHRU,dAO'U BQlyLJez$U8DtŬn ARsq0;Ge!;9Fj\=T7[.[}b6Usӈ^3LU!k| +JJU9Y!$A lRUm2? +^RU(UU-~G.ў" +*iERU`vyA? Ut*5>P`*Ky܌(*oJD)R +c@q|c?esJjW_r(R(]&lL3Ur&uUA5"{^(]Ƞ* +G{p%≪ +Y=-w1!rk +UaNW)CU(\0o*o^"mVV)Lzq}D*,öf[|}\@?TXќ9QU~8W bYq9vhKbOjґ|iU:UUe6T%%&J\9^CD$KKg8bUB`/6X $KjhC5-U-I;9gn6GJFj 5P/Id@vK_@v_RΨw;0c ʪ*_>aN*ŽTʶrC@ JU @>C>uJ~:JU- RsTS+Uǂ}&$Re`)φ|ȉsRu"8әe#k- Kr\2JU //T}l -JyZ3YʥH- +4FB"RŲRz}Pb7٬TJUwIRrKH߼)RŐ2~ +eVVlNůHJ[0|l`*+U+UIRu00p#WApYt#de5T6Hi3,WJu*JUjgUH̊%JUqЏo[_Qޟz0`J.pl-CrNLp +@R%,TJaRu4G\F_+Uͣ]A*9 {|rJIҢ_:Zls[KU ӏw`REA R =ైpBlVi +5cw,U&R%+{T,U#FU1lJYİhڢg-U,bJ<뵞gKUFw_RmG |P3X8{ +aLU?cǘ`ƕ?q1̞;%bs.u.|"SE/p~bdCLfA\`0U\30NbfZ'"Qp9c?0& ni,.[3 #; UFX2-"M՟ϤPRkySl* @l +mtO)ybp;X)d UrN(^#PƏ| +F8YJo6+!#fY8(D8ZrM娓DUO60C [5HTK$4ejrH svVHzAO |eQM-UZ* ?'D56Eʉ*͵?yMj N؁Ƽ/[]WPUQ~䝡׶۟:TE\br2P%[0m +喴61${TȝMړ]UF㇪=FuZ U`ckT';Pu= 3Tq + + ʝP0^x&9s?GZ]tbD U~# U^c^}ZsLBU9J"WBD%E1H-%H^cADB;IWZ}2/cPh +BvE*O k#5*S%+ۨwBiby߱_/)C£@%0*άhBd.*҆*͵I UK/ ;fȷgL U3ے]{f> 8'0Tٳ2>aJld4ryZ$CS^gk&|+)U@Fы8CP0Z\B-fuSATcj#A +jXp!A5mDɵ@oWW8Qp,pATIU> qV.CHwZX0.xjme+QlwDfĥŏ@*j6vU Uo-/CUvYlC֍ΝKQZ;]1p ۈ ~=t/4-T])XU4C<rEyRvX@O#LCU6l/cؠʫt) &fҞh޾(CH\#lMtڈ*7U! w>4Drk&>T%$R]f}+U P.A;4[:TSx~'E;%rPޡ2cTz ZC#vJPQ%䶒]CF;n kY:U{_F~d)"8Tյ\Qf-LP7D!&i*yr#"1?a3BNT51Nr%y<"1aL%<y4Rox?`* X?مGP%hНg@6Iɡja]ijPU&:TCWW$p*<4NLfJ؊haW*.2;Y/nA @\+m, UI ! UnꔏF-q|g#}eUyp~/*_4'TIT (BT (tsK6Ppeaw6C9T qҶܴ*Dg)UxءꎂP>`wco!-a*u-Kq;5T%}ۨiobVPwutx*ݭ*0 U+m:]< U~Jei * gtG-dKQ$U7'& z(ǑPű1@ +U2^Jc&%~ Am]Byϻ#a#PxfMBT ̈́*j^YGBD5 +KBv'T$[ ĔPE^B&T5[ Z7 +U9D0gD. YJ-fEy*dQBUf18\J'=BֿoIWک+T)qR&?X!W8O%_[\Eb}'T.wzyBՔI%Κ U U1(dˢ U+ +t`h2 QXI ?4nd U7ObF ̌r0,?k%4T!?PU64T:K)\*%|5K{/K꿸 Ix8 CiKh0iVY.lCso]=Fl2$5T9=$W +a"9k̨ȩWCˠ3CYBY TT8rvʵH뒀 U(\:(Vb$2\:Q ^ +J׵;a1 U! M0P%8[M3j@OT3\Fs{/0嗇X +UeO9#~LʬKJ;jD[c[i UUҝM. +j.CUc$qRPtҾCPղɌ,>iR%?:|P"CCX\uDeZC+TXW&mQE9Y_}}z2g.$j!W0`mU8U .@h +I:Єa72HTP^qM9eJPJfx5U]b *3&|R90;wDUu[Ai;oAy̻>gu'Qw%8x֮tDUIZ@U@FjP5CUtf UKQ7CUGĈ21T霃3Iʵnu+QĆxFgjFnh3S'Ag{AoDՉva_ğ3TǬAsð%aCajea8O *~/k9i;~ )O`C8.&l$V^8-,tupl$ , 8#um0B/f_eD>\KG\w!e qyVw)F4~H {G +!UB&QSQrvvP "P"ȃzQ +H70};JrA2+t"m&2DIU{cr /;GmY:rV.rg9YMnW ++m!3Fޚ񉖗+TB-oh~,F\ _O?43T~^ +>P~C4Wi0L⭖ma!HhL~aM9T}EU!RF,tL?ɞeb*OD[:-AQ܌>wr'N1CjTO?ϴ3b+OIi~G=/ j js"0D8)GtU-p_S!|/0?.9" IdL#etQWY -WWm1bE"z9 HQf1&ƪ|fi*+Pd~C2GUht\QAUy:diLCh>^P¾?9{:F + Kğ3$HI( *EfF7j)\(C Wցeɰ$(7&RW]sb:Rթ24TC(BMCc<,#&`J0#5z<iXܧڭTa3e&b)BߐӬM W=X9$$u(,hT3?!Au!qXl2TH.e$[$Cx ?~͑_e8 [P{7Eƺ< ^IS$8_{Y{>9$g\>Q u Foc +Hca;Kc[ɼ1d*nAȳZE.Qdb}ҍz!+ +g W\Oܐ-)In/ -?C +Gg m$3uop,lEiVS7Jǩ RZ^Y%' 6w"[}2>_V L.X@d/n nVlY c*![@JxSb"VPXlێb^/v2>ZZ"(ی~V)C F ۘA qUnO?Kp\Spb&P[N)B` S1̀;r?8挕[|4d:mǚ:S Klatq}٨b[ Q-gBo-9UgoZV-X-R*v'Hf ق"-cЮk|.,T[ʠDL,ʒE- KeepIBMe5w!E"[ *馉yv4riH4dRd|("Rf#6M/'*d f} PdIЋԾĝes?'[ =&x4I ]S*כlbyMꜽSѱZ='THNd < n(%m͌SBT2Rpl-ݰ0/L&Bd #z9قU68j3 '[h~sҨvaD>ƹ n- s~"$GR̊DUQRx*"I"MDT>b9PynjG&{B٢MgZ 5.Bcγ!}ᗫW-[ ߉rlmJ>]Op`qyLGH GP"s-KDSQb€]Po󅅭ld0 FcЅ5yd;Aυ`XS'DoajtIDP$3$$d!W?f ƽec"$ rRJI/w/[x9<zVE>قǍ rق-dlaIFҦNB"l!ho6I5&2[猂|HEW56$d-@oΤB>|-HYI02D-cOu[-gn}BŞEy;{5\-tJ B߷%m-|`qŊ->^l!.-08cO9(-($i9ʥ{n 7W4rZۛQ:AKAn F%o@٢-qa{_F l!mc~mQ~ﶠYJ)jF1q0U47f{h(l@>V'pn];[\K5Da-Z6+=H~uqֽBhdӸ7 +_:XYǫ{:[L{m3;[%a˔~[b**Ihma䩢&&e'n ~du-EB-؄KUi#ʝc1.Yxl9=8$Uv9$'^v +Q\!PflA#Gvk?Ug:!ph %V4mG-Ġ~-?^-L/3سŬf[Tqx?-06=/j%n |P*ty&8A#Aƈ2$oIb3NF8ou+>DMlըL[Y2] -~0ީ"#\uB໣p3)J-~`Ԡ$muE'ٮv3Tk-mO"ע#=(!NkQۂk{P*% +'qODRwD~SԈN3>ZI3- +Xl13/-jIˆ\jD"N -@nmR&V'KC.T1h+@UEYqtyķ-"ktmAHYmABV!dmeP0f %Yu0Zr f CB$0[XRKg`kH}<5XUEClakP[f /`)u-&\ +f OM8+- +*.1[0eqAng =l)@[lu=hfe |惼g2qaOF rB)N-Tn #}H'GE55s.>[(ͅV\PA ES(}\!g?S25lOau@y _ ^ӗ-X(6l=7 pq-غEcBl18 <~XJ{M8[ce v;C{.K(~C4VS]2N+f H(Â.[ܢIvER<e BQVЯdTӂ./[Pap"Ǽ[A#.s6tG/la j }RjzBKz gԫ^/y=hE0e eZɛ-٢5F\EQk[<dž^8[hrH`O>mڪtςEmlV̓b8 ]oɜ-kPM%> h p)ߩ ;[:[}N4uhwGgf3ϑBj%l㯄d.[:.v-PHZRNR\^ik[ +ɂIQ%Yu8X@o-*J}:c!h0\laG~лt!97X#$]ս>MB-&-PD +f";x>}bzOC5ht;qˆ<[dT7$$xNOlQAfDق x !ib'?]_ق`P *Xg &;3x(g*g̟ǠeGK4/^oȈcU 8݆׳EʉB׈SвvmVbWu~@5g`&&fgmD,l-0ŚE`䬧g{%AyӳfOdab)jcԛH<,*W+DIN8, kd( +n*O2F]Nz7oB@ )-=[xC=V?Jliͷ5|E>[e藈FϬlx>:hA{ @+\iwp`el +:H +5PU,_{҈+QqJU&TMOfڅÑ($8Ū~Gjj=q 2^S"48 6k>[F< iR#\me~hjN$[:?['ƅ¨|x SP +C2mZc*Gs>[,G OєWN[\!c<*D`71_N^g >moENI Tpg D@;Y)PA h6\sKlt)1n3mȑSX#e-C+9ђ@ Q3v Dl(n:d TXg >5zJ"CSx`lM]>,3#g j=ئvI-IJl /ӽ/?g4c<[ޘAXg Ol1.YYF")2xȨ.l (mɩH)DIկf##lAlIElOO7S`#0iz +' \_UvUP gp] BW#읂ԳuT9<[kB@EjSTg M2lN ߞ-bdk%1;FZFUE#顣ƭHk 4Ė:[@Z h_vRPBX8?FsM}L!uA mg &cHsϲ`}}(=[" ^/:B|A;Bhx-"4$-DM +$vJFLg{J/UW+Gե`C܆-_K/_IguZKG?B6r? bszRЕ0)EZYʰlq6|l+Z +Q!.٢bDΝ-jCU1Xw%̷d4XrE_!Z +1P(G\޽t4[ VU +P2 0k-_4w,Klop iC*eP#`Va5 clQ4Yb)A2Qd0spC{fq!\Z i|9f Wh.GBtufНXPlV +p(ܰ1+uRc=ODg+SnOlQ5?v$+Oze1Ҩ\8|sPﳗ-v^&!G҃%r9:064N#HVR$N^{v"YE<=JtMnu/'ۮY3?Y++QrhRZce p!,[zRbC4Tl1̈́KQ`ȰlQ>?q٢>PrXnlV +Vɉ jB Ƌi-[α˽[t>LFe \WS /[y>@dfR~R# q41:-ޤнbfjN1[TE8ԋnjTd۾\BBިGe6 '2L%s$G +Ra920\f +풘Z) J$Ɯ-׼" :-TbQ}"BKS-zrBҰw~ً4l)=!_J-0[ G >fP +Y\ASb<Z'5 v.YGlg\.n]gFltЃZx{J-L'6}AEf ǓfAFQG8Ȯeѵ/uC3-),2޹;)mQp%^fm*ٜD<2rAxJJ&$d?-ت? +wG.nDolU>t00M+( 'h2f>: o*6wB`$)K{m]Dlњxt +n9_m:a|u/Xb@8[t*aMolzwp#1"g4[8@ Tf'Dg8;(7pB̖f $QE3\4n,ބ? 5)ǹCtVssPIjhOqEƣA&-nEtP-" r&(QCA57|Lʁwv"ӠZ)G\f|hB׺m|fj;`wЬ?ʅr&Xz-X5)29-fU'P t6 is-"BZ _b2ęUd$V)Pk;&,%g1"pe-x9/pf /C>L*\ҳ]~„KZflj^. L($7z +dv9\8!P'z#'^yor lеBḾ?#VKKB02kOEqI ј;`b<> 7[L-Dƌ'|E4@`-v'l1F-&93[6q;W.$"`$q?.A=K72 G%(Vr adglqY[eDct9.'TD䐬 6]z԰p=̆%x*#[0[H$19ہZ C TQ_il_cHPl!8/,O~qظi L,߫9%R&Ae6.!{-[Ly"Z! %q6tWK +]PMkK= +#d + +WhZp#mcd 1Z͂*ѷHJhŖxՠlc$p=iK}h`RC̼.kP.EӥW|Z~b&[+;fF؂$V1I8I:fI{h; -]fc $u΃, QsYL$Btǰݠlx'|,(7mQah֩bvl!QIЖ>klqxʷɭ%Nl2BzV/,[TacKs^b2Az+[c6YQi}5#H$~jgtOdVa;bحl!Ib ֕-zOI +W39E \D)xM< O@ApalIj&oLFj/KHf+Gvy̠bݏqՐE*RJ]i8Wi-?I(s80WH+V !O6$]ŀ)HS5ёM{~MN:.aHS֖"fe aRt +ӁYn)X A:b&V{¾Ii vbA>NAʏՊI@hV܋* \򛄷֣|b˩.P_CuTb*֐R(9*d 1&>s=ip݆!=j76TgtjL—\+0@ڊS!`sO$m/Us`nv-Z(R$\2 ZXc|j$̏Ji$cBZf RKf O^' mⲅ;ɰYl.]@%T4^tqmA&C@~9q+zNKJu-IV,9l#$3dL0cB;QL)aۑ$~Դ=&aQ`xj1 &q EC7>Omad--^c"W1 38n62-v/vEѽ8R׾e €.1 zP~e-[ce 8”-8GoNx*΁ RϦDr lһ`#U<"%S| m*#IХw*$ 9P-jk`o#/I(cuSeIp,02 %[l ot1 ƉHBB-0g[l1*eJ +ɶOxgZb*+P6 Y lso)^6 z"[$I!W8F0Eh8,;$~%t~/qHBU?ن.H%[h&ug! Hl +C +6{HC#HCfu豅vxp6j]q +[\S׿ !U!:}K{Zp׹m; +yB$n$>sȤIb7#pWd.\*c sEvJ(#0$B#K1A;8"_?l"h2]$-,kJ=Q8@P" #[bl-25j[>kv>&S+uw-s] z$(^Z2w > ŐS#t~a9@yz-4mK7Q$ح,̰v4?a l^ZtѥN i ޲a؂Q [d+; t-6~{ XSV_-auZG_ڄC0sAi06Ia*ڰE>b"oЀ]mza Q ~BȆ-2k]1'P2HDU-IqgOV°|U;ΝLrbxBW ^!a5%`#3^;VU-yK_t'b @faF݈H+aNWxw<.*T.Lg <%T[1p.4!eu\[0"HI=,FWz6b ޒ .-gq$rVlw3ɺ$uQRP$-j J05k)ny[P5:-?\#]{|1Sa5δHdfh>\}ed ;o}h&N;Ń1,@'M<-H=Ee2F8t>F[#{#pǪD\-P%[o}ŗ!o?e; DphhtP^ +)[OeTLMMɏ-F%woEܷ,]C>X@t=vo̬"_JLc+mmL<#%yܐHo_vIC_$͏8u5cJzlcc 98eڱ*uAZDΎ:8Ba~7__t<dγ/_ԙ)$2 stc? ^XRci-:&bS_  (`,}3>^3%⤐S<2 +Sl/0}B!r-'.?"+Lh%/^j hL![(od дlb Z0zlf8:Q{(2v-F:ڭF:-0f}XtHoLc]o.,9vlU"(&re%W(a{"'G'N•NtY<Z;b˄al'N0A.NV':xq%K݂Z2'gT RV.NeDH[70o"C[M7q]pBMp6aD.Ye ]+D=\Lc& 54A23[31,-H&(p=J 89|f;+0eX/#vEDa0A6L`%f1%KTRw5u ʏ-.\BW2%F[0%\,2+eVe&1K3ndV cxK\1Cl$gf x ,\K0D|9,03ۍt`pxefz y%J]JfZ_%,YU\0>4/UU QXfJPN)\J Y;O!FO'^'ac$X'ѢTff-]'sf̤2$3빙qu'qĈ9 q K$g&T)nl 03EDm鵋L8fD$챬Deg1ͺPfh5hQ5fnF5ky8 (fJO~ZpǸf%$R;^͐aP$xcl$}Efbk$IMB^DxlMg3ØD79c{IL%UgKgnpњ$EΆ$Dj$ gُ4=##A/'Vc;0=F0H\s&]w>Q"Fs.ĔȜC"ah $A#h*=sZ8 FHpZ @"Ce;B Ѩ#huHd>o@ ql}#- hiVq%igDߤ#ҤV9|ni4.87%P7ĦcF۴Y5JNK1v84iO#:#|ΈOCaF\5d>y`Z1"E*#ޙ/S‹$nxe"X5Z%f$"MWWfE0Z*"Gc[֐LEEZ`(ҭ>lZ\DlZ}(&t%"N"THDk5#<#K#5'b@d6LgJ BEb!-jcÐv֥CBe+Clo0s';!lkg+!B mR3DhEKێBB\g =zYh Buw*DRVEp[L5m}}"AO >tq/ 7".M"-975YAnR[ݴRPyU8y[i-Ȣx [m #o/J!C`yB4 6oyқ` +A|3BĒo2I2H7fK!b(\%QNaJ! ;#b_ZܡR +pY)}ut؋N$$jv͌Av!D@|A8APr879 v 9`$: RDåTp@A_X;xww& AH?CN|wi@ܫpa*7v +z X/\)~D\ KWP;:kc߸ ܁ +EN8A/Bt@ƨH%4V`)q~;8/!\:98GD4y:Y +wN{p : +w@2)dj-:Ņ` ]ax+r"V +@4fK N.]%pp +I Vp rS`J GN@bu.;egp8E"@pţĉcyᆂ&⤓wI-ξ}q3 8m D*gruPW@m6C];"O {A.P xB,M]9"ǤX~ .'.>Y*U @O %VK\lĆ/J3 +# W\@%s1S*SbH&M/dEW[g(ZDr?sCrgcJ@W9q0~ YHW!tG`o*݇ tytӵm`A]MERZbbe}^P.:ou~vT7`w 4H"02>.>F_Y|8Upr]Jb|߃Q}FӃE:< Th]`z&וg5ꁈ\GMH\ aN.IIJEC<n@H +A}gw`r 'Vga TuӬ&_P"ǃ`e3 +yj#fi+33'0Cm2@]'w;l䰼n,r&Fe9H`KetüME5_՟%îLKrdP㹘'4KЗ'ӌY-OPUmy3<&-_2TWy_Yڳ>:XNvky~GPd3o@s$ۚ:/z!yԵt;/?𦠧CwGo5 d'aH_H㙎bLBX:G03_U4ÿ^(420ўf2m fh@㸵G'^}2t=x 2^){}_#xϜ6v2Pm,e_2 W%dn(_V=Y݃ \/HUkڼ綆Vc^\T_Ʋ>x}xS٧2wO"d{ 8rrߧch#Wi0Zw8)8~) clЯiX:2WeH +'&LAt}?G=?y~ ':T9؝oN +mRȯp~앆o8M +i73FoH%k~G(M +'g"X6) +O.bt㤐X#4|]'ҙs\{>wRJL8i Umڱ6;k~FZj:m"P +Mi;@) P +ˆG +9RQHأ 6QFB" +x(dPS` P0(0d^P((x +x^ +O8b,(+n _ÆA+`*g*aJ"DpCa.?TpZ!d?N~;#%C s(?xC0cDBwģ(&;4; _*KX#Bxۃ0Kgo86ZCA (?^&ፂ?Up<ɴ HOp60^[#]!c|n6Ef](5TAhHH6JQhz $1։;)? S~#{B BkEX W T/h҅KR/r6ZJ~cɏmN~Z0 E*!#K~`)]?ĕD@`a `/1|| P R8yNz0Oפ8-n<

XS:x|ƒep^Euw^idɯ4AB,5Ut@̸:T(uL:7c; @;,7pR \ǜr@aArqЍq`JSA\N~nZ3/,ɏ68 &A o`78=y7pU37nU?N~j ]6 V2_l Xՠی@5QPF = vifU04Jv) 6L~ ٷ=H8΀!Qz41b9A2VA_F&2]O2LA= {uRliO~J_ d !J3pyl1RO* F*f0AX4OYF,$Rf)̀!_zQ~R/͂&6 tK ~ =K_t/q[wʏ"ͤ  0 >v`$\ S 4s9 0H~`p;*85 +`AN~r;B OՄ0;t _0H++1x1(GcW~!ĐX9A [rD|/`II}JT)+5/hv0Skyh|ea` `cv/`@Zs\'ӥPR^PHJʯP/8

  • t,w,## sR3-)mw/Q=,'LIʔD]YZAF 0~+%jYͽ᜴eς\h&F%?HџS9Ђ;2h桊Zey$.% #!zx0XAMdAZ$ CUd"!fXXg )^SN[ka֤7Y~' 4P-ÖUlN7`Bh0>PA 2@(Ѐ  ,(  @&`&0(؀0 (` R͋!y ({xe-vЀ SxrB dV0A@U$5Ёֆ ,HO h`A"ĖA4 +H*'d4 +i(zm'OY.0\3*'-ȯW30/_Z>m(ދ%w规npC'bic*-W}HM- +4ý[2W"%CYDI%%B,d|f"քRt}PF!MZe2ӷB@/ +<ovҥR1mT{zi\S+ +UJRQ㱻a,j@( +" h `22BB %"$B$5D1tOF1*={-\wTyV%sZ?Tޕ)]14xM'3FirQ=ޣECBj_n_?CmA_ڏz}C~:Ğg8ADl ց*ln$j^aӟ-2Fլ)B91jp6D c.P<;P8"?[x "dU/xV 436l(FfVL>BԢ/^?tq2b,ӷkmš*(*oD"(Ƈs rB6,bJѩ1Zk̶FzlrTgBgf%G>P91lb +jf>v\E8DQ8㱤%_k4!!IˌVt ֧%mq[I&bO1oGf#Ęؕ̌e2Mjdk}a +VT5h]pfp,h8\Yd֊EgAR"!:|'NLPbfhjW *xLhfMSLoQ@?DfhUͥ"&Ǒꔘ\7RA˔Ԃ+咂S#C 4ܐHN!!!932TA[}}˂^$OVSdp|nXN*HGd>P=nMNZvKqVxK~ͫݽH龎A'jMwJc)SfҪz<}c%QtkLن)Smx+%S/%gE[S:H&m'dXlX KI,ix ]Tf1pQ#(0hQ6.KŹʆ'sJ{VTKdJ(TaPQ]GRW))AQ\#R p'j '=%MpDYҁQUfɤ ׻Pm>`|'hn6L:MC_uflz8LvA!rX#a>O x8pCJILj_Y~aPe]*p80а;Xb9D*d.߷.q}:qEtl &Ť%!xւYW9^64Ƅm6.uD5· Woq"MV*gtGKq`f!)$u`:@PA { n%);}6kz PYȽ9_8d$9>,xx%G1G,ȔbV `l.F3z1 z:yR\Ÿt\T~be79-:}S/ 4$k#BAچvmXѽ!ZvLF$/LȤ.I\O"Ql"TȬ w-Ŵ''R&5Ay 9kX }l," mOZ=H3j VsZYٱne!gEzYkjEBVZ^|gXtBxطU15K?=X ]s + A* zGl(up4J4IZƨKCm N3 ٧RKԔcE6lzEѠ/jFlBSQH>?gg{>'%sp[TuO5+OkyTWGŁ𠗂#ݥ)?gh>>agdڑ2k <ҧCxe[J7V--[-w9г[dlߒjz(e CN?3JݹI4yd +Yo{E݀#uFjeMT^uX0S *U--<)ojҪef`!Ϊ5М(Z)+FI:"MAo!,dSti@Zvaey JZFlh q h[>lE}k;LZTG>b%#@2 X)yk(~sh >#ijaxu01+ULȽBޛY +ڹb+̞;bqu#:k憕k<Чݪ5k> tz @~ 5}fXX6p1 H1^F7EeM}Qtrt cHQus6hBAv}Q"`, YΖpzt́EnUbXE3)t&ffʹ{Es +͌Ph60Y!O$1AJjy#E`i*:M8<W6M>$^r h;">4yO4Vbw0H!Cc3F&?hƙXiɵ4klH+ T*no2'dEano-v\i"( KVo@c]J,g1:Cv$!xgZ\DfMU#[ChǢXWηOM6 kC_o}卨94R|[YHw!bkoC׹ק| %1`I‰XGoKuKʬL3 mYL]!ϐ/Tס ˷ jt TC-=ڎǏu[BhpvۭtU⢷lxso)rWy\S3rzfث?_rF|Q(V^w|c;v EzUK_ +7@7pqj4MV+&|V779i(R> 2f pXmdr&'Ѿv6qA +( ߷|T < ݵ5 (`†!)kټ&aI.aw1)na_ü: fN?0@| SpG.6|Gy n@6Z% RYag #0rcK;J,^ھ6HFvct%929Gx']cjayk +$!9 +:9t6ZZ}͓2 juz*7e֢a~|M z\1g3=݃ivhR{e,8FFץ׽QE4eukE!sfI Hi&- +u.&CТ&lgH Ml"xfapZ?8p3'1fY51:-iY`lO[Se.}.P:|qZhgK16|Mت3F$=vS=(-_}gJ q?]Z +YcؙbR&?_2`"iFWEa\ leG~ bpY36(L" _D7O >Om'Mͽ Eh#63rUh(e0*m$Ǖ;reA") iIr. +-~<(^t-Fm Z71 /|+ju5R_F-S]pҒU1'\#Q[`P--153/_2RKRt22xgYXRG_/uc\[(k_͓E 1 ){qXjkg4;dBcg@_ +Djk=YG :tZKXXt}UQhQ:]g2.0g~>YG|@tٚQẠ̄I]r[$g_6*r/*jbDM@"O{"D<ˌER# t +z K /D +|Uy$fcak6ٓqtRCEGOHHơʉnXdF̧.im7FIZ:P2 +U,2P)7\_C ])lZpXPf̩aJ&^ND%u#9pu$R)-3e9H*MMT8 +k T~-&OjѝMSe13eXX/'1F7}B We)Bm]2u5=cFuij<ץ˓YwJfޠ QqV񎻿1D֛GSF} ~u gh$>I-)1Kgsx/{˼TÞ&wij+Pܮq`O]gK_#+K[ wFaXk-jqq+3a+y'qȕHРc5x i6A[:*kSF}R!,h5*YO5Z\Jp%Z@Ugp<@0Ë.>.h,|v0f|f44~,iӹ'H0ƛ1VT {zl_2L3=-:uA7ȸ37vr)f)z)^̑O-2:˹ZƭM8jFZo7<V5>Gp`su^ dhq +1הGSDOnLc +R_ikP3fW`)+9 ҭTiq Ƙx)ՂFmn)ps#=R %k=|Ф4֦|JΖIbe8"J ϧ9ㆹ\aS7G‡'$b9{uLQi" YfBxEK-H4Æ]ys1E.eɟJcjmIb_0*v`<Lf?qf-VhS +ȁ28Eۍ|^žUC XR%>lLr #J1 MU~'!h:-@`8Vf%f5хcB䖬jai*c<1iB_ Srع~x@Lk[(8)rG{CH*WU8ddsGF*d()mt_ԩ<PKs"`EXiCcGgU¾8![P;zRh&gj;GBB𯞳htyTeZN=c @?nov =[7')_\Xta'/.q.1qc?dxF؜MihZH#LJm6HEmU(j#%STjuw lˍkU>: zOx%Qc.:RPLNCJ!LҩlEz"e{ȠNBjn2/W5/* E|0;++ARo29'82^>.e5*ڠ,3@2w:'K%nłM$C&ӷ~W(+FcA{zA@*0ґKE.}#̃2rFʅ2s F> ud1v\d^bҠ#vr@NLj@ n(7C.*RUsRKȢx?W_  _f4qJrjqx [u;s"{Ap _fô|1.v!Fex*jE>O"Ds +*;qCUODWN>3bT+ )IF/clYmgԀIkOJӣŵ\f7{s@3`Tg.N p>iVMZ[ .MKWj]q `2n4t2wϮVTð:d~4і_-4l8Saf &CqC\\T՞-7CbQʢϬU%`zD uo9A=F{ p},kMK|9g &M_]6UMI﹗` );AQVHQ#L;e1G _>}Nt}zT>-QdݭA*!*S'Iz+! \٢ oQ,mZCN }jv<*7\Jͷ^U)`ħ3|wt- +Ⱅ? +d #hN5`:ig$ W +Xp! #BMMz h(컓+HSMdK1wIV%tN7kƜ8 z 81Y؊}*E4Q.X$B*R_vѰ%&uJhD+02FiDNK+e ,~@zo DL +]XS>} vj YxWڭtl#{GXt@D@dcgCF1EWl$ nT3\a5q2,kB7[ǔ2>{F5HkE|`}s +g̔A"qiFn15vݨ̹BՏϹ4á5E]WE3ZX"{Da\ Zm{'9g .k-Lϵ D Bi:Z,Jٖ/RNՖONXyX+-X˳$ݢE9hiyjsV x&a I7p9$ne 4ivFME7n3K8 xU6qE͌k Bo8\tz*!jڧBOBBφݪx' I|"J[:)3OaF:.s 7PW*l}j^3 #tg~zX|Ŧ+c_ wYBVcR8#=s;il$^&ʩҤJLdO0zfQ,oQ|CX*:yN>s =u[Sc Mt0c [`=ƥ2";:i>u81X5Qv2gt*jST6UƝ80%yZ؊NP}t| yVX_'gq67,eT gKa)+ m= ]Nx 2 ANj8j U,xWzll+R!zlx]`ZLTYw>RdVi7OU0,۴N[\ʜjN HrX4I5w߄pxƅSVThU}-hYp#v˯ß.d + +A8|x"kI + +Wk%@RMK|i$T@r!%@?X +IEUzdrzk3WR*!Trw$]R`-+:"qw)\hKO+wNy@Չ"9@v3G/uǿ-ܚ+ +0@bFNfo`=g#>?]L_'l.}MQ !{޽H&;So +d7?Ui F?AJ[pbÂͽ~cSM#/Ձ؛l+)uyk _%MwN +UHBJO_G,qO]t?H=ے/׷gNNnխ2 +s/V<4&C Rl"AtSyRH2m:ΊH㥜WJ^ppNnLkA +4eYĹ 'x7cfj~ δ'ɴ=UhqmXITJ' ԽXϝ PI6ڳcl +7( ܼOJ` Oתv ϱzX⋴ t:g| f~ѶZR1[>2W JفaMFdJ(6OiA\QFn@p/A l-D”a޹d +VU^tYʹ/s\\ m[sThq#8T7˒ȕ~{ǶUJWܠUF䓏&a!/Vxc^͐5չ_5),%Z!XZPo(>0҂Wz6,ERenɇ ) n Re[ֹ|lE KdGyշ']IXs ݟ9U#^A6Jnl^v]&c[lK:PH|kG/#'@_I#gzk0%d3[z#ׁ9(y_s`|",f>'CjX 6UCnݜa90x&+'9يd  F)_`AY&?$>hfH++Oo=<«ֻIZh2*h;f^-'+rć@?|XWIuطŧo ,NW?W_'nl*&Ļ]_MuW<T84XE[p")vq Va_ "/WqJ]*}:}Av^GE^+J-v@ྊv/\_+j׵\J_le;@d7q_.r/_)MWI[lج1`S _x`D5&h`0SM:`| xWK0-HOy-.;@ ;j3Lk 3k: w’ XDĀUzHn /t+"V-mB[hS72XŖS-v\9us[ǘ4f 3[3MPTTK/lp/˳>n+0f$f"f̉-3GZ/ " awq ]`J$fAAŝX.*p4#$6f$2K%Pf4[8In?-GKEea?n~f-fJH_jV%VrA~rE<,OG30eդ)C9lčNCQ^0Y֌-f ٭a3WUbڬl@nk+kͪP E]Ad>nq܈m;0n.qgwK7Y r 7 R0r3i3qb19-@n1|"+ -M"lU"6˟5CY ̰f0f-lֈ[S8O*fk-L،eNs%kv5lc37p6-΍ +ںx59[ff';/17RHΆB*w@=<-!3C 62rFEgWQsvv]3}p 3p iiQiQ+.=bjϚpJmiO #UC͂9t>-5%nC SM]bܢPMSmjAHUGj*vZkq 4!VWÇ[k Sn[뙜nu#3v !n?^-HkU5n6a0-#uHYl#[T[l֎>܂hu}& ++["q 0-84ٺ;h"5{ڂ*1ܢ[=K"mm1-eq nXX}vO%H Hȴq:ɍ-;lsw@7nt[Q7q[u'ik7vnwymxx [{ +-N6HEٛ pIfH-X?q, +|τۉ7ͷ{pmoߴ-ۿn-9*ܢ pt[v[vp &Ʉ 7**pbg) "La {;.I--F'qډlAy&q?J@Ilt-(| +w 8,p `*s/Ӌe8Ľ +nb!Η>m6-.nq(@)A_-@܊$p9#h[vpns|;ry6,eDp%:о-PpJoO?+Qm; !E"vn1&Y-$%o)'UU5)e]oJ[4.q? na[䋸ĩmBhE:!$_&5Q\Jh"e8KNa4WG78Q* n!rN&rō\?D#9 ư3b rHs-sM:whyl1WYEWI-V<ɓ_˵Zծp JʎɎdc +#@}[]Ǝ7]Ԝ.U.5-&.peWZۢLI\7ضȮ mVf[^ʮ-zF+;}'϶zpų,vN-QbrvY%jl %qi3Ddk B~ k4imu0-vo ҮLiG*!l ωLۢjl (liwmq8-(SjgKA=?hslO;x,3#mwo1l׸+-iebw` +̼x;lscɞl ɺi?51<ݟBLx)b P9y\#nOx$O;I>=|{/[("$q~c8DE4D}DK>n+}q}*t5wjimrm>p}?_sn -g?g B^kJy@6dOM~7$0a*}-?0 dRىj-$FFHE(kMK&2ijlgЂǦxlxZh')V|m~Ą`TdS-$J"[jHG/ljGF?qЛx3z~|\ϙj~Dˆ\ڣd>1$-'яe _wiI|BK~Ie% {6:lPp$Yvp|N2ᗥgOj1OD[W6[̰oo3שqVda+q0D?? O"mODUoyEp *_{|.!DeXI]S8`)su,8hb\~J/}-\ ЯGMړ}~ˉ̳ňa-| i[4VNd#J?7EoXjt6r~~/'ϯ.3tX m|B_kh 67K1(Eg/%-ԈJ-8vx[AfNC]2TZjtA ڂpgubFTt\7*淄 -n7!F. Ĭ6[МAd3r˩h8Cg HUbdxF(Jyp"#;/twɝ%4F+ 9{cx MDHt%P|&)?[Q@[g@GK)5)T~.G{>[=)4m Fh;h p˟-Jj~U&F'EE]ߐYmaDZSelva?[DL#ʯt.>jʏE Zg ̞5ǪE:"]\lGj곅k<[_lcL S~-6.4Hi*mNf-̦&9d=[/&pQ 'xR~n k5j.́.ēU夔8D>ۢżOUoe x5]!?s^O6$+Qd g~gH +aEa1?l"[x \x%g-WMTGwXoP"Y_e 9b~_Ygޙ 쓽/~(-Mx|vy s `d iC >0 qe Wz[h~/q3$N(ň-~)=y/2~E-[gy-.N]淤[ fb ,)ePf=l3lF[m~pUWq %/[> +J'UW +[n~Iaڎo45 -tl [a ]͠Q-T2;lICM&ZS[ؚa T !X?sE8"uBb /Oo+AίsES[@ܧRoVz6fZg J32ȺXO+v_Mzv*)V)"2(Nӑ"&^, IZg8‹ncmNT8Ju/Vw)q2%H 2< 5ԸuJgi:2#QVZrySAgՌkĻzM$cu%<O ش +5E*!T͸PbZx*o{.15\5AxS뵏GWfl^T/]R 1Ae$k Bs62olBPJI_SB kB4TT\'bJ)4>ZEP,L+/VU!\d^&<֩17P!ԁDE@CuÅb$ҏ>: 1a[VNwX偫m=qЦݼJI] qcHSrT3"D>'h1`۲ȇ +VZ[ʟk^cHc&8k<5f{4qtQա +vI,RB;Q!AõrFXc=-,TTQ|J~t*ꊇ4K"jBj_f^Y'عÉQ߉VkMQר:Xl !z)9Mq{y*1ѴLZI';jf@jbET"[JqP썪X^ +Ȍx˸*yK,U](S_lWNSFZ& eY +m=l0QD@H6p$L|T2Ë`p jxYDzؽTxhad$ T8F!$+qbJyp5UŅ]f9ԅy+W: 2uuRpT=K°O 磘)q#pyt\ zTD6H8W"DD\.vIF*VWT%(>+9ifZ/Owɐ/NC+VI$^xyZQgE&p(Zd &j"Mk=FQSkK }CVj&"dASG)LYLc|C2Ԉ'n}"FFUtJY&WPFYxQ=X +8hfCUyhOЅX#+ꀞ':,Zږi̓hb43LLS&@` 0Z Ғ :3D +10*E`&X` a& ` p1 A `jz!jӿjLDubC!A!lB@H_Z `K` (Oф޾L%^0zOy*nTmɧVx!>1S) T*DRc.ҘUn&.܍F ~K0hP…L05D?bz9J2 #< d4ݐ1fʎy[&+J8KD9mFûgqdT▃cMZnEc|70KYs֩=*S^Uz23^>$gCR9 7dqMc2*8&hVATI&Fܵ% +Ey;%^IP*}bKh3d&*ĉ+Nd#[(1TLlTN'xVزgP;Uejq)OJňk$Gfkd aX׾&26q-] RECi#٧*+Lu7DZwU)Wԁk% +Ukߺ(Q3zpl6Vc~S7uF0h0YoLQ .Z+ieNVA+Ve%zGXxHeDk*ѓkTnyi+iC- 0nETC$7զ d/̐46[[b}MqZ7:L?"XO/ϒhZqKday{`FV{I5ƯtOgz*\ъ9C!b"P t1 Ci6MU Efp]K w\DQ^JL?¤@B +N b0K`@@`N RV*!JjuVф"ㄌZPD(G;,+&n,9DUEC[ + +96pD$AD8A4tpq%ܶ"@& +"/cSFˆ64lc0o(aPTp\P`.L;ˏ/Ռ bOdq1ȃD>N˜P` +[]łȸd@!@haDl9g:42G6:lsW + H$hPA4 +'x8&9cHe Ű7S$P53P1?AB B}Jꆄi$PC)?$@"%4(:j 2@@z"q |r_3oF\>*CyJLPy;°!$ 0%OT fp[炥I58uEڨ($Ux^2@(#r@4f4f(B0P|Z@{i'Jׁ@ ꎇDt&A +μRf@ƒJw2vlI;*~N1 CrT藖~ <+ULb;4˥ f^CE/Z V]۰fs†2 rh 3 mH>>累G~Bk*= Vf=p]̧"WÓ# |THt5k ؗJt\-(]=)Jˬ@ٽu%Fd/:cZWS1D[i5y+8[LVicgJf=_skrt-|.v,͍|-`?*)P+T%8(8ѨJBBՠ5P\K'O"xňzѡ\Z$$ YR IUo3Y}-:Er w`+Pp~w1qϏJᘴˋ\9c1K VVB73џK\;O sm{FߕpԊK-j{. l- +N7 yO1ـ{ zjOr-CLN_~ROs86>"DPƺrhhAG|t7<#lE YdI SEJħKޢ\#&is4~%jt*jؓ#6-x:_@Lˆ_賽g։cF.l/k90hqH -sxZV.2IQq!01XײxBUmT<Ɓ|P lk',a}l{06 Yi;T"gA2K|'f{fES:^+-D38ڑ衧P {*3:MnO8lq؅"Ω&_Y7F|8qV6-p F4\9 bbĘQGyvim7$5BWCKs>C}u3u[,#!t<JmVxA'dY #]Oˊ3:Y5E׎%)FE N?vE-1P#MrjMJ#J聜Em /6NuW0, +DC+ld-7p1|F(9fL7ߊD 4_ OD> g4YfE[>sܦp+َбZMyե7 4LT66ۊK~G0l^ruUblX` +¯ p9#gQYOuK4FJ w%UGUEuPEJf5oɐC|9xcQ`$\2~pWjsلA +.1 &2A-ߣ-< PA2.94v 9e^4ǙRgK1dM$"=L+?(׵ZœS̤: " 3`pV3jffFrQSyz v>0 +oԨ!Ge\i'Yqt OM"m-"T-tx nPp n]+h;Ͽjr`0u(H#&rT~v%f4324vf~jq43OJEvl9VOnhUc䗻ا؁'zUm4YF 3' + AoЂlY$/D}ekp$LPW[=CVnӕXDa1'm !JgGҘ1 O̒АYYّ@Bɗb 4 +DiRYű&Oi=5$ +,aÇo9o$;PBv*PMQQc}_IӐ'Ki"N#bwӊ*XEm:x;;L @f(Hr?5"2rm}$&=A`vͮ>-4pkbCU=fJZJ`8"'&<\*ӹ2S1{%7`9YHA 6@;f=i7)ړKcޭdg9* +xe6sou'ċk j^;3sO D_l[#2a$^-03#fb6Zg5r%4O#buVerMZlYJ w0FpO szRb, + <4cRZ,6?mBZNiW!EA3覩ƁL.>eg[G4RΑPpgpAOp= E3h5ix +Dk(.|O0XqRIdᓤ-n=e'K$٥4Z]i] 4 +-8BP|: i܈o^i& ~/OlJP*飣K3mH2=1a>l@ j%F1R'E&QޅJqO%$a<5zf WKγpR-\ d俅yU=85,rR +ߟfm0HH.3a[ tFN*L(aYШ2Đ̓@I%@m2!C7av?+((Fb[+A. n \ +f0/&^飫̗`~b=uAvoQ*r9B@ka g`j A1tE17Lяd+.ZkƼMeЌFч]@(]xvBJ( *#tbͩ$~OS ["haBPN\P@2SOВgD7(*.TW'EOM9רt$)m2oFp2l[v65ll|딗 + =*2E׀޽  $ޒ-$ߔ@Uə`Xߺ~փ78z׶(c g:zpW, ++/t0TRP\+s{^e5?{O,Qi)?D7{Sg"x;Rl#Ll\|?36{ gBPqGw`vvB# LW@m$=:;`dvY89XE54Ј33'&1AsSn2 B̢O+ŹP3ݺ(xwHI)> e>W_f)(c8JCNC#mCh -8~'@*#k^u⌵1:v܅DXĉKXYɁ(rל]8@iz+.x)3>/F_xJ -g8X d٨4͉ix@HC>H%ZpbS~cp.]QfS>7N׫ťA #Nf(O;O)Ί), 9}K7&Lå1Hej$&̲$_9ME^X nCtcBEXS*5**TAK;UWKn/#EAX +|p\Q!}H?,Ԩ0d\5E* I]!2w&=9':XRs51y7͚]GȡWV|.;5-X)fK'X-omBuM d"#9VxϹ!<%G.p!YCMoLBۖ;z*""#cذ Թ) f_|;1^\0kf剮,l "!ձ/4A' s}. (a6p@@3Bm۸7=KZ\6%PU:UA171]*!deݻR4B%^$:5+Hiȃ"c (#6ie.%}~!ܥ@jLj>5cL$KI&<Ňrq +G`@ C)*2@żZo٠] d:.g qB̥QA6gxГﶏ*h bA$cr4 lMB}k;TjtEA7 8BH[9P @\IrM.5{ ӹ( 59x18'f щ\*]lʙ6Iy Aq~xNbҤ no,Q>3#2eț)&OipW\tdBV"Ũ-rդ؂PY i#~63Sf-sZPICI,Q"As}㶡 VVN)^;7HR^KgXf;ۂ";\azGZ[l?7|Orf2;6=0ܦsd!1+LjIE3bue8~,\.ۗۃ)tDX/}Xbh9/*cXѠL\<)< izlw`T;8"$%W]!`rHDc]zM7\l'C'> [>tǐGtb&i郾&ڕ"Džk\bŶ fjiX3LY6Bj$67 Y,vHj6dy0sք0|+%8gcǬ-] bGOG'JO3J.XŤ $ۃ~omFifd0uw +(* +UtjIi7[& $3=^)e=f=j0/L:m푢A8_Km L |k4u$-:R]z(Y%6,2Ĕ5M30",|, Pλ<д{A5@)փJU+%p rZ\CAd{MˆOnw'?IX<BIŏYXdFui@٪QKy w&zPX,Qj'8q;ݭ8LO{1ؘkybu+ۅ _rW2QEH핐l C;Bţi ӑ*$vͭa3V?TN󇠆\5-8kZ;>K|[MlCU nVؼK =D{Vl/kF`oRpD nҜ13MoA_ Ba=L_Ǘx|v0!|8(x" Ҕ|!?cu'as +%\`VOkw+Ύ0밲x;,ߴd]ţjcgbQȳ +NӄNo\ZoPkSX/J6q B3gaqU\lj LҿyZWb邎#-@wp`r| umfW|;#"g/׭MDȖ>/?ѠpB/W"+6X iK=*vkf+Dbp K3M `T?] +.N:-Btv>'@ sa +v;u5S'Ili(tbEocg$8\>M;(jRl' L.r؎&i3Ԧ,A0Ө8dSUSdJY Y'3%fLl'K2cػ61P2պZ+$}24fiO07m!aN'21weF#A7n'lQMmz ➏镁2ogА0 2z}x?F!(5Yy8$^CnE@E҈kP}=ȟiR7Hc3IpBz ,DIT@z(/7-X7]aw&i^@Pr(d"[C"KR+UX8oF”^~`/BaIڳSdL~(:3'>3(o'>L[z|E9v~s٦W@[[ט=HeA-EO{s CcTߝ()9$:mL+ZJKZlm<&Y˻Qvzdt>A4 +_mRښL1Z@Ф[f ?gv3@Im?PR{ގtVڤʆ٤jxNOnҖ{ޟ K;i:=Q"_Q'J|_Aᛔn4*nKi\) C a?qcf.6|^I2bhdE9*!2jE4.w%Kc4>NId1sf8OcTNdBj%C!hjpا@X 4v:J>1Qo +*UAow;iX,8mkӵڷ{}&cAkK!@Bcɂu9_&o/nljhSuⱀڂbBwOв;N-# d[(}\pԑkq'0bv&\(rV e)r P4=9I aݛTb1|F_E#tS@qD 9&<.ej^NlR)8Z e<Gw)MHp@QB]bpunW`~֭©ip(tK j_ (AG[`Z_gv~ =rBGnM1Xm,E 0$9w'伍 {v)&qX@ d5  V d!5 ]2ƒi}z|2I~D>-h7 zF1J,jrBE=qE(i6҆C8+ Wg*ƅll%,hC#yzqcSJW.ZɝҍD '3.XwvWu&$BT`ׂD! gӛq TE1n8g QC o/mtZmYP"ss/=.2 P.GH q ܄qgos5m).]Iĵ:qr ++x&s?ܬǍ7vOR.dP:x2C`zS+>y[>;䠜P[$ipcpdDbJ08r fǐ,YuY%(y @K$3Ko r: xA룘^tdPz\Ufi#P#3B a,q\B;@ @#$rQr[w!e(u6AE fY + +/t2ƣh߁w3K2fw +70c?ƽW] dE#^XNp܅_ u@!ѡjuE8 vSvt'Zx@<ۍӅqȼSWZ/t[VPE +>VZxl/ AgG!!BBGec+Aqk#qD% aNQ W(-A& va8dlPP܅Z` XR0/<( rȤ+cz>T@IDN8PCpy6-0T'FU +* DW"M@` a+/@TNجx'."mקf ŲqL&JZbT`?Ivu19Tn;LjW8_^©Oٸ~63|w f F_+qiT^h\oVv ['x4ҾHwNe +>?~ [ܽ=e>'82F=޴={hFr_2pEº8:o]xBaѯ2z/0t?+9y?fh. 0'ƀqR]^!9q>Lg `QkXp&UgF?olw(fh$ 6\x1 H7 +oh8{b W Fw'8 n a\7r8~.!vqg[*nS;#oN"ȾReX[ y, m&a +eKG'V>?o}pTRVkm\1k6JBri0j{Sp?j6ЈC9m$5"%G`Hn>:6ۅAY@tj8~(>1{A?ᇾ١^B7;bj"yޱ*Ԡe:yd-BK~=yY WimhD f~ endstream endobj 20 0 obj <>stream +z݇!瓧n3EzuZZ >{S ™8OA3bOYy҈iSvd?jS8{EqVŰfr!, 20E`϶@)lMX+\y2v~XX2>>a@XcU\Bv%'n# aߪ{ W$,6`aZ."µ|Fu'4\HQx@BaaQ]CD)2ІWš%'-k?M- "\T8oȴcm/KoHs=]Yc{^`PYmPKF1 "q *Mi߱ HYJ$916#*$ƁopI}=|_ܷ)[j{LJ\px1P>cv# +'TpYM'*0F/̯( +K \G9B6ks -yL+B0|/=5yNcv ] b* +鄏-T8vÔl㖵kw1l|" 疪`hVu*Y8lβԔ1_}a·Y2$erH{R!9Y8{~4ut&I{Ӭ꩐v cmFKLJ#ey}7Q< +\r子2 Gmҙ2;,C<WQ"}mÑb79s z }2H^*tN]BLg ~t&5!|\]gz? (3\1{5F/VT|7E;{<. 2f`F +;XC߇OAD@ҠZ?^} j<_2ǒo?^Srzu/:~UJxz+֒f/̓ mB8_=tsU6Oo/z0SG1eZçA*}Ųz¨t8?W5Qh~ʨ}lٴ˒} .4ca~/8^)~2q8[^wgDbSK>zr9a~o|;ʛ`- +_/kd~wϬ·;85)nA13t 7WOX:^r_~<~nm +&q 3M#7a%t]^*B5l[0tFhqp%!B cihHvC-fR;#P+52eԝȕ.w(5]x$zk; 2#x>d0Wd ؂_\%VO- *q8Έ_I[CPQd@7Q:.\X=IЕl\&pȣ~{0c +$ aU<$KB z%YNvDXZ;I H첰0-h Z^KrGHͳƽu⅞te~]g^_\|a/%sC/»@,ρȷ֘WxT34⮧R^J\Yl]J +cgtUֽd!ys*ZcNʾ&XEY4OߛiZ)d [k(<"*ECӝ͝B;s$ЕOzNYWEWC>T%K |-@6in\ڊ֣i^V#Ea=4۴:>+d|[v{o(-*_q` JU"Sn\ƋTחq[%!P\ٸYbπaيxDSmRQϕK$e9̦1lҝOWI|ï\Rc RxxW>ԄY)a!T|c C؋hgedZ TW8zR4s*ZB~C!C `Zu/ jOa9.o/*Жjr~W)ZVb+ZH)ӕb hѱ;>7h.RyL8Ba +!nXxGN/҈70U)DlFڻovU4]g?K k 5ahLZ +U . Ah&Ke&JE&*oVͻǸaf5ۙ 뽅vr8c|yXĀ9~p!6-eW)}ѹ>;SbҮLB#GQ'f +iP|rk0m*J& ~VEիt+}MM$S.KJP'j'i7Q>*pt+ RIRIe7"<ȣqFH+'DD," 'q*KPSP0v~\1ØQT#$^k);vG ȑ4#8H7۳ +ruKCu0f=6Gb ^ےF4(,\11UUPB<2R}srbmLᝌ)Wb< !qi2ѡ2&CtHP4BZ4KEԹtۜ -Z51[xၕ iS>\ص0;% ^/>[:aIbܔ+dS؍}X{#icڒA(ö7.\f3XVb$irܧ$yuDcRK6nvh?L,*Dqdw|NA6q sThEi2pɳ̱}LxĜmmwb"uUg}2LZrKgq"l# 4 3C)7MTk=gJPK""pŧXk+]HgV{,:TtYC_D(W\CG (Ɇ݅%QA8s{nqDsܐ!]}8(!Muyz? grŐs/w^ PZ kԡ)>-[$IG]`8829ϋ:8BW#Mv<Ϗ u"+_.g2>͙m:.@ !-^Lj=\ +&{9lQ<[Ӣb>J6ײXOeiO +ԘDf51SK!Ԟᖊ@~UK%l_H*2w;FSxpk0# *&CXfk.l?߶>m +8SAdѶ>g+ ;2^&a\5t'ՏMxIax2Qeijf,Cu-8"Cat.>܀dmcA*?toCa'Ţ{4PeZ] +[CR$cfYI&ރ4I+ L6Q=91i{.3N~=VbMzA>hͰD5"k=Ty !̮ 'H1n8&}P)]fYj 7_Rӭ-!.8Uzք?bSl@]󫤈΋]{>EJS;,<)&i,'Ѯ(?@ET1DNo̬$ .N1 UPI{`jI1B@;ʭ\>މ02xhuF7&-~ 4I{_Qٕwc <S +st ʑ~!6ů]י@0ya*'%76rDE\;y.p.Y +H^z nLśGiL}Ù3V@s9exK!]fk-avN!| ҬW,h*߆#&I-醭8Ƀ  +k,[gRsM(Y7O[;*5ʼnx(̍.US"\5lo5n|ԷE,ނu Z²ׁR/gJqΙe1CRuJRjJ믪Lgh^`, xE>5ӢjG.)N+ ʿV_v/Yg-WΩ-X*1џQNx ^a+-zb_swѴ0mTѬS  +2a|\ yQf85ZZIg>IآNs}Ά:pZ'@IA^0ɷ^FKpn{_b(c(-lNԮU $*S3!C'4 6nF +q3Tc7t߸svMxNѰGS+ȯrR .ćYv*b|w1NBQoruâ)E5&A+fW)2S= (h[`cBўڵ +uFuҽ ƷC\ۥ0`v 9>z3">Ð;%E)WL<6&FhVw}%o.,ZXNM1ɽz2չ+ zX"MPkѢּYbK;}/MA@׬PcuT|ķKOV"Ƕ B+I}=<+M!P 8;X>AnuB6mu 5q_)y0!v0 'pD7S$:uݚOװĝ6`:},7ZMF(k}|gX=_)2`+>~ͬ8AHrI&ݸ?QZSr{ha֬ݷWr"'xL*kj?MZ-nB*Wl\BxqZX%9ܺHOˑ1-uR:ɨX3I3jju/qБ^eq~tQf. }J:tR+(ɆT,&Ê'mRvv$|=1"fen(tYY'vX JDXkz9)F2l>,KG11^] ̭@C4+ 3s>(w_0Bj۲ʐl<xn*% +^fzpw +4⍣iz Kq32|K]zb3!n)NK  F ]1/gU =YaQJjEz鬡 3#^Գesp"D4vq.,Y"_ r~1h*ma| F_qZ+1}4 F4<C-/<+~yF𦣌1WV5:TpΒOX.]tIdkKe2s<s}odd9߾򞳏`B҅B˹]K냻MS"e=+$rVÏFɅD},Rݘ};F[3>[y']BY8q7zWzAT蛜LPUxlЇGU4RwROH?~9<_Sը]lK 㛲Ư%-n ,B2S֗[P2>>>HB~Mpt29U] .,ƭD>4?E<`mG꡺kW*D"u#)=x畏 U7`aQ֩N ٣ӤfW?x[!igU^A&Я*G݁-4g2hn-9 q"tHs +*;0w}V\滍nAk3ǝUhŎcӶH+u3µb+$`jAQ77[WrAX/X; )RyAu׋`>AT1sAkQ iO>Ȇ*\O +Q)\SˠRPo75R6>fkWj K/4wy s:Pi]CK^4gyE 16= "<1=gxv(K>I1J>(uH:+AVn~)&vBKdʴiheE\2=lg!Mʫjvia%pgFDx@F3^DlBVfZƔ@ɢHk!' Ӽ~rgZ%$REf"ڔ9 xB5@O.u{HSwiSo䛚bޜU>z#$H!P^m 9Y*O>pKY0ϐiwR8X..HbFH;&`<$>]q9?|BR5lކKෳb8P ql{ʫhո?:W h,,Rluj +>V̏Ym*B~bw^NPl@>l~c?K= I|kV*dxo\c ZMY(pyM45wa.6e{v YSt&rpy} + f3T>c`f]DOI]rK7w;j-F }#fWXk=P )mѩOz SU8|DQ_dva|1/qU>ؘuRSP\- j>9D#7DׇM;'e2>io 83*ξdj +~ 0o膓NRfeR݆j Rf<-慯.؏n˽5)>_gɝ"1^+<#mf3yR'\NXxr +n)z+LXCԿF4PVU!pnJu֮SVn+M6ARIkwy7RG|'ֵîg00aŵj5QjX6h-)YFS;g]9y>/fɟ;nrzP\ )2oktZ0fuPxiHx rFy28?nD+.=7 肒^P>6{&>CM$-[Ze.Z@;l@>&4 +vA?+K9ƢtZ 34LWPC1fڔթWߤ/~%G^&gcXhVeQ%Y4JZPq,/'nYj5 +¿Lu4b5~v;g?rX%NAy t]IPyE&YiʋĞ$7*M@bC$iO^]M\਒h FeD3o4$:S!(66S1$w?D,( ^@ rV +Nr 1Lm:ҳ e.W3=I/-]~l\kMG z ?p$Dc WXϮњ&$o,f )\H.$Pc /$Q!9i))bwECbkLT@&~ & CV2 !)tPTb!׷jr!31y:2$~|c0C6Jz%Daz:1),`GxO9?Iʺ`T@3 +nF<󍁈a~%ʗ"K4T8`ui|?iѩyyTbe% 6O'4Bĕ/djMӞ3b}=,b'e1†c!0S^A u}S~#҃#/@42S'hDS;ɔX(3#$K`d&bm@lg]b/C)?Z3DNY6V.:m%'&QK⫠l0PfbG`̚=$RDLq=U>}*"vCgO{Jxag| s` ~Iiv܍4 %綕q )"{#@X_A>!NgB}`Vt# [EwUe Vd/Y9^}ԍnX|f$E|*r;v8yOMS v<'cS3b6 [3(Mʙ2XԒ>/c`Oޤ$lGt6zaL2|E[,m%Sfr >{ƶ20y0q Эǧ`Nvr346*!Mha#"1> Zr}D3?7Gfg {^(m|st'zlCw4̀gHז]Xb+BW( st%AX0I'F;6r!*[ ".xY)CKsbO. !sbҷ";PagXi=}z,nvJ޵DSmɤgLѓ"%!{gZֲ֓&pQC1)\b ֟NuR''+POf]H< mݜ+.HAdVPLM'LUTZGS,uΞRS <do dɽx9,ή9^=7ﱤz'BU>'*WHiFOz_^JG.Ns缬=l%qzn1% */7q8*S.,z:i'`gԩA<'e%1gۢ=r9v׀(Q-UX)] xPo3~C Ұ0{Bt&&6۰by5p4f.*rp5hGrPd +~}|GsoRg1sZ/wpؓ> hNLݙ{ה8STf+R"5X,u$pT@4d-I-GY<Т9yDc!L5%Rg\gcnYQ"֗sSyCb/L +uji?kE|2>wvwu)WTqm0t Sr'ħmT;dm7X S䮱Gޣ-I( +ƕm8re =2<{1IK&Y@JH GOd,O]>$՗&8A&"ϻ Ux]bre1PpcDYa:?9ʢ)qJs4t NxLrzNesi&i+u,_Ի:̩O9&SOTt-nب0^%H[cψ/hɏ.N~\S0an3є\,!q=a9&mBC!} |ȇbSO0iP)+ ep +Ko|0" oVZ]Ɨ,u"' =C_, .5܊旂XJ|tl~ lGOf/5!h[|W ~ +e0tY<̀,uKi֙P*b:DOt$a,b`ȅK:;I\>ڙP_oĊeec6*2jG&hL.Ir@/j4|MF7k F(E(& +3:ä4V4WV ,@\yc!gR9̱/J5JxдB 9#?%rZ dk% RJӻ˟HXPv:TDҶVW9-PCI}}@쨌tKVkԕTǧjQ) TdnxFJaA7`DĕrX7-)!Rn^mRLPE^LN;#h5J] 9uAGYVn53sI3/D(]7cNFWɎ_q5UJۗ=d\~_M.zhP%DJy#Ȩ ( @N 9B_aW,d밴,O?:m}2[ !ٞ-g */}y8빗킦K,@?I޸s S N[h\׎T7Ԫ ggBLvdg ZLQBFmgǀZ$& ޽oeV;̲ϱ;QPڕG#]x2 gBV;[$=ԤERwc;,@ +t/wLk;.Vdy®Z둋 &=yMFjTHEٌ[3)N #7i>C$hEY{C +%)3imi.(yvXs(򨺧DUPA,D46ԣhXlq6.;gjWs[#E0ebĊz]R@e.ypg]|e amL驂. VIUEa)o`r:g"AuS;1c'qDs_IQU-d@! [C,ctl4]?ĠbK&#8ʕbz6!i#UPhԇ' (qk"_17 فDnGB +擅δM!BCw^UL#v"dR!,U J0ÝңԩޚJyCDҸmB| YF%@a\ S `"VX)4RҺ(jPrV#$ÎE=߬,JMb 26`̾RQZosUG)0W+͆Ofıh|g2CVs_cFI<@E~-nHwr0`?v]n{)Ňqj68|~f[bTK#[o" '6jAXjv{;>TځX7Pg( c[K+&#ṣA)$Pp +8?cT1ŭbΥmJfŜ˚mk_{vxn^w%S2{s;W[Ruv5kf7nkֺ|YmT_;zn^꽷շb*շRbj;[mUסzww_ߗ˶Ug~5U^홾R}_~_qj}}ܗrZl]Uwk*ݸj͚͝=]9;'3Wέ;33fjjߺ*z˘u3o fOXRȍrXJFÄ[MҪӗ IJł2&,&/k^ ߺ\y/H8 (8Rɺܸq2v/{*SʸiSX+eU[L\YdTfUڋՓnzlSM-oմ5uՔⵚR]ujoSک)kU[T[vgM]Ja8ro2>obŚ2XSh&Uܜrb̌m̍5̮Fi8(NBy@4IRəxEAHPR%IAA MK=0HZ.hK6FuZ.̵d.G%CU<)F^=ʃt!/Jhm aaaƙ5=F &:APM㢤xGz +Ai8dbWqAN4yH th2&s'qPc\Da9Ɓ@&EnR!>T.cà "TKƙ U'A` "9 9Qqh4lTqPBNRrqj&/"`4N9*T$8ʳ8`\4#K'B<̓0= -"zycHރ` +  + +hCP02HłIyX[R0VF"R80(@Q0sr3XTUZ#?;ÖF8D<U]V"M9CxQƷv|iG~H9`+$v$=\%QS|,c9<2+NE/#cN#r~RXh!w,a-8b"1vh2:1K<9f0Ųӝj+zhskCo U=x_BM烥)ܮ7`!%\N¶r"肔(3D&/ +H{uW=X\Y\Z,O9e# ^l*w ?p5W0v:uq +8Qbڂ:μ10OzQ.\ v 6MK 3kklZGKYH[ƛx+.EBd^%aÌFGU`k9[F[WYw$ya_[/aуTЅf{e˼zo[ g,m0 Ǵ6$ō)d1j #yFB1PRibѥ@O< e`ACBEX[ŵHX}@hPD~!@G9L߾w km;'<kiM1!wW`90n"-%+ Mi|:KU F + 26΍Ҡ,HUTy\eSMaFXĔ%Û e/75;W#?|:2c~0BwFV}ԓYmxx]Tꇓ3nDS,ȋ< L҈.ҫ4.XN*f]?KF}*d\D!tmD2ףT0('^C0@S"n茳XK:`QL|"Hc^׸^Ao%`ao\o|mdQ^b]/YP>X!{S~D[x:ǰʎ!sl-Z +H*cf:^%_Гb9TM20@4Y՗`\x}X>x)]ϼ5'ӎ(0VG1 jE SI1ÝQH6`70ar/NCMIéu'O Z:_oaRsYVsYvS`DW7N8( d 90c0c>4=0$KP91$`A-Y] `gg"s7⠂0<(dzbixFfrӤ=aZݘi~Lg(X b2BPhM={lLC8Y&K ;RF>)6`zuD(蘰`8e,eS!px[^sqC%5]8lSϗ΁vU*AY݀[*\zbR?Oa_|eG ~EIK+xͨ֒z75Q&<ְW6@6/ ac,z|=q}}g&W6KmCa3"0p~:{MUQf;Hx!՚, d4eAk{Ob$+Jv/e8 =8-Ydna V\Y|KvYf")!En* 瀐ђ`gyU& 8+Z'Si@+S C ohK7]I-堰# Ōԍ"  f[ot5ٝTZq=e`, A)vL:GE n=(0b##C:3Y{Pԑ=*kpyi:khuø:CpotX [ll1Ğ@kʄ + 0 %ϒ"'X#&pajx2O`ftR鰠X4Jy-ܚ<|pqK3Upлs4Å +3k2)~ӗ ]VqvI^p ˀ ]PF91;^pij9VB'^q:tR-.>p$5z%nbPm6+TE׉'=J1'|t . @Z +iAd"Eg?49Ly.ƒa$FOx"5ۧ^s1e*=5Ti|!ɂtacnN1'l owshGi?-\Xi:)rrʵ ̸, EJ%d-f??HC*a]U;\S̎AC՛*Z +*AaG0ۙǸ@t틬@VHk.^(!!j8X`,Ý:&U&X-ڃCPB9Z6O`uH3/,1SضPr M9Lν#q/bPÕCW"ľXq̡rU*?.D,eMJAfEJёGږQ fQRE3(7(_xQRV"*6~ 6N-d}KY&:E%P1Go4j:,51 qj(@#;8b`p!JaIjaB&+`5I^ ]D{sD.̈0m[B%jɢs%=VÙقD+_!j4d#I!S8P5?>uDlޠyN:x5%$?h@0I$`a<ācK /=4xb#,Ľᥥ*rVm,Q:sq v˄СTI~ؿW=mv,0K"3 yB%42SfFR_6GHjyČ$SyI#7uZ!*Jy'=t~'ps#Z NT?);=380t4SJ)m'|mK%]#G<(t5dMPc}̶+R7C@)z`1v67 +g4 +;֡~s]6W=v@\DcAXo8p;)MYTOFr|p*_]t,!yjNM0|-{PEa.ġ U + ΉT5:0L9+qXpbտB)Xqy;f歓U]=je0 `;:LW̆bX1@1_`}B]9o2D;p&u"l1i:oҵ,7~-_uVUKSTϫuJ'5$Nh_Ї"G5Q'a9#@Z{^AQqݖ$!5z?RjD[אACl𲠀>}# Z1y+>YF9[N3 Ž=t^r'&T4&MNd3tH: cGW<1TbPwx3(UMdž+{q.'[񀫩5OMY k~:;JS-x;o9<2UiX]#l 2)SAu NJ&y dQs0@y [L 6yFlب7ΤԠ8Fmu-)ӵ +;(e{+$e,ܭk7{U:B&KHoJPhɓL|Z Ǐ .q0"?dۺ`[#^Ҟ:q7Hթ&ztJIr|_REp(2kSL%!AE͑w7a/]^6֔ /^i%M+f&"VBx" M߼e2zϜjN֛]ܐX7GGh2WY/*'ߒoX;{@ +n]4arjJ< o/ߘX(C&ʉcۗ1|Y啐 4@l,Z- M8b#,l B'8F$@ʴhiOIY+́GВ^ i͂S ̋RTj~K"TgJ_pž.iL6T( 5IJPnIm%7TK]z+1Ln7[ olAzu @tH@O΁l_,Q)Ն]_i]u_z&)ʈ2H'QZ6\s6Q/0.Bţw `!?dp[bg/lW*xLȯp$$R=@q)1jZȲ}"[cW >l䤶M +Dp3i|Vml|8p#Zj؅? ǎ4lv'u+6S+m#`u2A?B H()t;[9+>[R@w#,yUyCdnz껃J˩:gQ".yK3p8^,cao;RU{c $c!?\y?k~PÛEΤ4Wj.W(#+T m$9gmDN _b$~bV0(зQ Sϙzsi~$[#$A@$~iA >۫u[`nSO4(JI'9/ +%`J :m^\)FrxB,UpT/VQq|U_bKOT7Kx M ޼+ +nD@ʻ4djqBD}gT~`qkjmՀa]j%揠F*&"P;K.QTt?I}P@ϑ|JxX1H *hdBܻ+YA5AH!+5q6QNfMS MdٌgZQ+3~wm*AWEt.Gɣ?9;E˴T`5YѦtavP kʉ5Z*K q{C$WXp逜yQ ,|øOtTa0ZRΣhۼ%œld6" v#rū\6(5P^r!gI(xzXͼP: |:."NP̕9+$G:y(ؒDA[> +`F2M*Į%kx3r&aWEX EXmK&"*ю%ߞ뗎V/ȔbĽ_rR*p2%N7g%-PM^7q{iwGhWsw96(O%q9I9GPzʁz{CB ,z$ + +doi ͠#75[نV[ь"? +_P਌Ph +XBUȢ s3m.s_tm]aG@^f5˃^<L:[&qI)Ii|o}rO''̨FmycdbC`HtI0 Dt\K=U8'4VcFh3ýPe!gܞ1C~^=M){pkfboG4qm Navx佾1J[0<1aDwTj09ʆ >f/P@=hT{oaŒ{gR`]A + (Et9d ^Adyܛ& xZ6n!wp4͢'`=TCv{:B~B]@0fL~1M'yYX D.Ɂ `Y_xckI0&BA# 8wĪ[QJ]7),yp;,O8]NdEY*nNhKORRRRR\`9)-meZڳHԣ@Pﺷzg(ӡ1unLV|'tUbƶ?u +Q"~-kRRQ\y]ܝ@DV^iZ>t|P5 +މ oQ{%~ +u7V4QXS82'?TGՌTKC4#Hyz.)VXl;kU{_ë; kNn}?asڭ<"t5GTi0C(:P)BmC{*?:3.2`{L΢;%=>g9*LtD:sN}(Q/YQ{i: +flfxmAީPwɽh> =K?JLQQu&Dz(-|[vVvY'kdu]֧v-6YrC~}Pe<ˤ)jS/GPgʑQ{Lt:YqQ0]123q9]3uFC|E]D}>t:M(W3ys%«{Lyw,u).KgOzɯҡfnThwg)MMꇅy~uSJR͍jӢK~YQ~G8#ZT)PjDίvdNԏ^%Dȝ,y(9*#F;9im#qx2QX,,,x@ "`( + +$gI_T(#*GT,P5z]_ijD卨Y5գ>L򟅯 Rk,m~K5Tj,u/O[4j5q8EpX`]ֈt uOu/uyI=6&Ul\pu)e#7v󽖹醍ׇ FS"?j`zfLsc63 +fbW)w0F3LK\UlnN֍\i9':6_2f^^.=5lOWo-֝nm^D*jet-ugde[ztQ=JԈ1Y^{2_Ļ].R=E3Q#FBU^?Dfn(T^"ݺOGЮ>5:{EjmTǩEEר=R*,.e-:m\TM噜vQ26/&kSjcfX,gFx~z&:Ejɴi**VH5OVO4܊kkzg~'_?P5/.? +TvyQyݢJ_eGȺ(KE&KGa\y(P3vbnmi:Rtzʼn\]*01*]nT:SOt _NgČܲ1-FGvwb XDaD L 0`LD¸LX @0"`4Bun3r;{̋n-Mն,Rz+,h 좪+*(.-;8W73;D!go̬Yegff_45s%&)!3kt)3DDDLy闙fEwoowTUO43233ϒjMNN̬wivv:-2cr2f-nn^"_7-sUd[\D\\DDDDTTDDTDEDDDED\DE\D\\ż̻UtOflhꈈ) -ٙhum277{uwvմ˙v7zZDiyɚ̗iokgNo8i'D֛یϿO[VUfNO&3]Q'^JfGGntE_xko+wuuEUMU]OkWvjΈykJ)?x{I;Yَ9sjF"aH0H0XD45IiGID@.E ՛$)8.0$ DzxL 1#"wyhʄ@M&`(f"H/YL0\`Ly<0I#a&4ã9䛗P0fxL&ќɰÂk  @D2CCjcgŠh*xtA(0L uhgJY'aaE$ +.yz:g:) q^"B2(ƒk ") (.D0 &5L`@C0DD0 Ƣp!00,38 +@ ǃ"0C1!M$ɰ0P̄pHD c"00&vj_nvLwuq0()Di(  Sp(xL +8e@X82\`X`&P!4L,FM$X@3h4Tb0 4(4"ꋁb0 4pL0H4 㡘D ԁ @3 2 !QdX !aThPApP  da +\<84CC ky p5(l8 C1Z- +"c4 #Bte Aapʾjkwóںà0HŠ"i0`"DBb TH +DQZYek84H +!1q"š45($(3/:JW<ϴˈ VQ~w5TTԫ41T4"CX #P"'1͖>`ʳ  3@kj8ѵea.^i ۥȆM?jTZL}(wPu F0y{ ].u94c՗c<9Ey7bsa +3.lKe$1iPƒY#$64@R%wof .%}cM6Qk7՜ 4IK'YlА:43uKK}wSع$AODJ $W@9P|S؏龂5 #|-Y|`"i2X^/XN {} Q ~ 0*L)64V@=u&y1Mu܆+89Pɍ1C|a,9cBl`^1!i޶6yjWע0sb]⹕[Q[cY+㷣vԛd)\щ2:VCMkwkpty;6d{Ii):pB *=@O[c wY;7Wa1>x*[ˤuE0P̕nA/e/ѻ&X2ZU41~>MwU cMb jЦl +ܳ~%}aF7tuKJhVrdqdJc\̉9#,Z1rU+0?(Ւ唴aFrNprY]-X"/.G*!tkRA Uq.ޑ&| >VȀGńNjZd\JCR;I 8ʧJ~{n-GJ lW:x=}e /B?v5Z1܀] l;(' t9\?'^xb,#C|v}W %wzIG[I*4Bsb|l=>=}Ϛ+Z6a`I] $4Z/bʂ[I TL^j!8f3[O-o>$r"3nDf!{C]"Bg)t@ ﹿ=[xd˖Gt̽וvzs(s|=Z)Rs1HzKn)[Ԇ0`g#IDP sfڋzYݼ (f^\A7Tee+'d,er3, + *b}2p$[%RcK?F>℀qJ]Aq݃@7 óQ4)r{ǓZ~3>mGRط͗(2ru { qO8SHMS?cbT(#K%`HA"DQ,$vx{4-\8E&*Ir2s'WsX#0$-&tLܕefSԮP|:D8!WG J~Qq^uW̩R'VU!14ba98"ػƳƍJ{ +6n.p\K$?g=öleP(`s%Pv&hA%ZA-eD.*@B%?y˳cWwrz +xc2[QTX~+fjAzaN79>$ϟ!>L (:.9,<+O!SU'I^B +}%4'+<.r&,܁[pNSg=j4ϸ0!m0%tz!D i[N}[sBsDyx3ACdVCfI2S wUtN>wXzUB񰩊8H-Tf9)wN5=;K)׺1/\>8\!WC@~q4 Djo9ײ97(AV*3;S\s屪Iʷac"VB"ݻ;7Sm(*sh:C_ 8oƷ7.h#u~PF7Zb>A)DPƗ$Ww ?$^<[lZb\T15zX%W7bĐʓ&7{&v@RKg$M + ;+mDFG4" +wl|$4CkFYPj%VzfG‡&= 086K_s$2$v.ڍw]4'F,E`Cܱ~"/*/Xab[BX 9=sӭƺ݆)X  W fpkZaN:'m%q 24N$'nƣn3% DިfzABE ɕY0^aڅpp*KoBu젛JK|jח"b6e)9ִٹx@s{)j-Z> 0"\'渎t:[7!q9*ի3k#μBeHD@__ih " ^(8_^1 d(1LRZduB0LI:qAk0|̩٨fU@ЋRW3E`T~ +v.M Bp5AvԢce(!&aڃn#v&!(ʏ#Zq~e7HK\>Zv(d%1Ϋ:SN|iG ཐFB ѕ֧1w7XZ'j=߄j$nv)±t:Y&d4x)O+Jh44vy +>|0tvIOiZ5iգ˙(h̩EO3=5m⟲ %hM[zeJ=wɯ[]X䢴û Vm8?sPs+LHr-1>+$q0T[; ynHH&TidVJ4X~q XR"[&`fub:JA +1ACQ=Pca=oe_4 +cwA^SVz=n C/qj"dp'wH0>0P2cf;^?ڷnؒGhV`O/^L>I0 -,QS.B)PSh:]J F>#z'BPOYI\t4`:޸f1mn|14`[U{Mڞ*i /i@QT&Q2I¢қ5O[z߈-D )QWjcq;+;5}vdACld>#w +gzL{c=%\X"N@*PT! +nJ} F\;wvKDŽE\{QK쎏m(ƻLaYY0>8jew+Jq䠾jfY/cQ7FB Yڗ"E ׶&xhl16wM<0*i0XW|3 SjӺ̛/ +bYa%Tbv wuw +L:*pu?4tC@3fmsMC)]>7WP)e` 1U$ij.JFPLb~r?W8.Rh <r0My {U$w ֏(2VX$]]!ĴMiQ|V KhKmȢDN@` $P4uSjqd,g#B<7=o# +7r[P݋YTI2c7wWI1J.,^^Vnm4Э}}A1`Ԯ]?SQ^Β#3M/CjtUNـ_!D3Nxݔ|vdʕ.E87 .Ol5Xfݤ[`e_S,>08K{յEQ"1gG\ăB{)G1*}׬ȉ27i-s<]k &GYQ>ɦ읻8TPM?C Ds֮߮O/(zCb ;ƟaXd + 3$'\@޴|5]b^-lFLB2({V#'rRCb F󶏏]NؙFv(Uȥ(dT+ҦF[ڊ4}T.dHvuʻ˗i!F^YX +]DW3n,"t|$E$_j-1za`M8߃.'eSbg)3ʹNAt#L*[O&"/|FHǎYy"C(_"}>e;\`HdTy1t,N3@R̾),T*mok,!?b|NfbVxs `ڋ3Z*8i\XICta<v#., Qbp԰c1q?oB.wϩIPMN[$P_rnrwA Y/VͲ4|~z4͓0BccϠbl@oDv|z%p4F6V_|Qzd5wPeHʺ_ۆvsB`{>N+ zxG%_u>H|zF5)qXLq6~ycNb#| P$c+uA]:ѩ=%*;o|24j.B"N ӘS|Vl= PUElbkU.n{ŽZ֧ m~HVtɀ dzLjWJ&ey +~XQ/j3S$ h"A,]i%ip;{T.-#޽Y_k*(px*I@ˉ#Xj"43w~+c1Fkf/+M&-CU;fN%5D0HѴiٌ}` 0Xov8tR bߓka*le>,q(cuX-ms(>ܰb>Zd F]A +} x@̙:(Ϲ| +pυ^YiHut0yB焃xk@"nv:c< ɲNV[x@Qe a ޓpU.bY\e SL./NREvFewpGaF>p#9YP:FuP8-lQT'٧ NĐ "FK>aM l9=G퍂;該c\ ~<;KCR+$6Tc0O\m(x%TӠt+qAd9\>Łyoš_ `vdLog M[s?\R춈[t.'Vp3MB!6Mx-)nTAgVlۑR93 R~*/|)CE5N {ƻZ1kR䧢R?k`9%>6dwPW;=t{wqjqU'P+5҅B4,鷳~>4SUY{WZ*2[̏MU&ޖmTY%Rڍ1>S|MܘgZl_oA~e.}exB;?ki̥11u/ "͗t/|Y8]̰Xy=rGZ _ISpm8+y8I@KE N':٥N6ugQ.Ҩ\oր%j,mU+G;]JM< ǗHm*aݜdp[1ٺX#NoI*X\$L[[zkoH}3}@dsb2fR9)JkO2\ws: [A5X\m`B3 [8ny=@Ì|3 k-pԋ"r*$؆BT@5!qB ^O@9wBRR2 `$14DW)Sj*AZ&,СP$`GT0Y7HS?,k\U$>JQ(=O^YY^yZe#`w} Cދ Y饊M60 +qdngӴƜ̡0ZK~C!OK4GU&P~zݎBi01vmm$ "Si\BM/Z8=֗ {Y}M4&3y^;B)f#3uK]ã"9{r=­ZSwWsf%F:ҍd;h )O{%őIiiĨ&ǃ{$F4h~"x; +9u5<1hWbtSFkޏQq =o- +!Q +qq(B2Gk7{gJ&\X[h$ۺs>H?*.һǚ%4m']܉2:ޟxhWe&ϟ{~ -fQ"-0,qQM(&HMՏEut1CD5Umdl 0,g@^]ZL`٥-T85lj+/tY|h +#  HD:'?ޜ}\0&JFz&IR.%LJD~~-$Ѽ +Ŝ8"k4UB%$Cvg+^c++_%a6CͪZ%OQJJV1m=5W{>3;"&ߠJ*DK{aUEn +fVouHݩiv +>k cPfyV!kJN:,%63>ϔ(M&(B^ u,3Vko9oFh5ルy ̴}qv7#@ o/^u!?c^P\/9~Ngy`{!GyԭNDLprUh'3/dbai2rp +P1ŚkH)#E'-Rɗd8n$k9Y.23ONh>'TiJ$DNimU)ḎbUJɸ4ܻE/SiPAuLyRJE~@QӞ-8nG56J +gHK/HvzPg]b4qҙ=>+(sQS?V:1joh(#U0y[KhjI[> #9Wxc4A&B.9u^I JpKkO"s/vz499fq]63.IN:( +o61<_'ZBj^ 7ܐ}r.qaS5#Pul6a-z ,1PUU-`,Eqy'h9d%)Ac /tUIZ\ӽEܛk(m\ :sۡ7 }:@ '8o;$K>«i\"BpD[12ǥx +0%.`LT~ ^$+T⩮` %Xj K(Idɿje9%@~(/X8$h'Z%Z# %}pCkE?: a{LGYL%,÷Λ>2lM'g%"6z2V q1V~~F'N%sƵq ə'ZT W"A8ٽIS!Ǫt T-,&Om M^,@4++9~8'Ea!JPW։*E+VZz1p@^jt&ML8e]_yz B_* +ChPzA]Zfy.n<7uvZ9;~Hl*_g Їu_w!` 'M,gi7\gsQv!'oLHAd7PD79'pl]y& ,%@[6TY+)$Ğc2u>&\@0`P/P )Ǜ+F[UJ~f#^lmV[X9y9ө7_11A>}y!՚q(ௌBL0k +T)x4ɚy$SCNT,}&uMU`[`f_ŻQĢw(gWMv(gѩl25{pV0ԍH.i%&ݝ<@"75{ #)5MB +OSri!))BmkZ1=` /T]{( x#C Z$mA*"3m=5~%Lu_mc23hnUxihQV ĔJإ&,С/}!' _'_*}p̓>B' ^~ +Bë =(td܋J<#orP2363.htM a 6xPJ?_^?[ʼTPs,'Q9/`s4a~GgQwp@ +Lp7⢆9*:XA")c/ԡ}Dȃ2!39 #[Vҙ' 13jjNA4 *;e?sZ#XnO7p[/M و8N4o[ +<3[<8cCrDPd9#7p?.y~X03+# 7[n`K"p̙>Iݤ6Q ( t"<3V2 #t? ـruӡit$dZI60hԵu|Z. yFWԳ}PBС5> 'ATˁث ^i$LQf@J)ӳo>x@7 T>cOŁhKg 2ե5)UjK4oJ'WiǮ8+ X m1\V[˘pUMak?'>\mn2pVj(2s)x!@ VA/~l%Vɭ.FxH1~Aڧ1(Q>N[Ct=A(!rC/"nxHq3~0^VO9~$~j ,?l;꼄ITn̑ѭP:7n.(ZOzI'lm(ɣV>gᅱxVI)q#e#0ꙋWeuܯDàtDpf":z #wS7{f/ ˈe(vYzI64XTDw&9Qza%kZgF8 HE%e|]GwwZլ1slؔ:ͯl)XB),Z[m@=-"K lkl`TG C 4R\&HY`ޙѸ'ϻ/[c~xwFAH{?2n֩wD<#:wB[X0Yϫ'-z2ZQ8L>ki̿i S;i%F$:o *?oY~>  NldmC ikc}VM;j]MUtId7w)np"IjזͿy2;Lt 5 ^e#cDYTIgaI'*Q7VR;|Zi %>򇯍>jb-R#r^tbD(2\Q>;<[`р7>g2k$݀43h1滌L_ $ 酉k +ܬI %86x__l3qeհ#7 1lČrs +N%~H֒ +ʖ KWuB1|p~0e<uqBAlҲ2ޡJp6ZXc^1"0Lw9mwD& O&8t䖛X 2s^=44.Ȅhj Jg:fhb$䐥2J!Rfga k$$\k?gBCTj:/ҥK9oAt="hOB#$mn;&H&WDđRbTWWdD&b u&2O4û +gioaYӶؘ̪Uv3/9cPkj,'9iYYġ!hMEqD8Ϩ+*>ǍXa=4ҲxWϦE1XsK)6B!`h4v?vuݓ=f^Ti(n'FmR[xcx=N/vSbac'_;cX)^P;P1e-ì&L36ģ5@pG:(#n`Eb1VY`ÇXzp +ijnwJj`Se \q$Sr>jӧ^TGC/ 7&R -qZ2O]Cu'V=~K4%s_n +x3lu MI;o%p 4qr!+̃)420 F +LqZh *Y |ۯCB#p038e$QKl0N妗yO#%T±.F>CymPaQrƐ~PM)VQ\GY|r?_ ycPCHNQv\dN[łO3s{vTtCgN%f?r@X5rLal6Szy#1PYBl'@z.zWB2J&0&>!j"mߗΞTw#<5!ir%npcsҘƵS&mR9ք R;*JD;vnRɥ;R1R߲=zq^i{zaj)JJIR+ŰG&lzŇBpca MB‡a0^u jA!`2v.+? _`ҙV?I,UZ^X9ܔbb7.*5^!G;T{/,&vmBȢusF[\{1dsBޠjtP' JkYQZ`aE݄,rB/9L Gwv F0<0za8-hUTLY0,qa/E/*ԒyjB_i #iTä7Qsof4 +G}cOFDx6@PXf$2d( +^+3-;o<+'P'-tdp260ٺD a݁S?_M'wyq]3xXyelx4rI+(:']"TKg4cm^\]/ [,8 ^,NNg]|M 5Aj#S9S  c/r EZwe] ݋-g m1{c<>gE+)ۏA׀Z 2bfG\ܷ{[V.JS&fv>Uzys<5ka}5rbvOO!I [KGÂUF7!j{3^iHÒ$Y t0AujfCml&` C0̅e)c-g8iz!d6'/t@hֿO#7{5=9;S% 9ۡ5zLwZ R8X[KXIS|h.ib7k8aGJ-jtaEK]ӢweC!p`J&,3E`>oiޅerUm\ kYsMv5 @kV6Eb8,$}3۴::Lǖfb+rU@Zd<[8S]%4yC\+#[JwA8+{[5^tt6)!Ujɤ&m`ea(tz u" U涳 &*raZX@DMfRP2 Ֆ9WuLiY^5.aG׊+%c (uϷ4~^Lˉ'n5\mLTwj<)/ qlACQ*qJGڇ7!.)rj< }/ O\!_a+sTVE^ MGRfCd~ѫ !@jj2ثM/LM_ <_J.} 9fOb8͌UΡC4keq'<$Y>$&٬SgcAL9AZ,0=qoo |P!>A"}r_/Z!Ĭ n6"IgJH )2v*B{b]g&!o(jWXGJb F=Gm:L +*/PHؖ':AZOx)x-!+ُN*^S w<0[f1n~۽›o' "1(aw: "5ጽ\ļM!)-1E<- jaHQ^O!#z~y '¨#[_KU #J!9 !(vP C+y AIX_C4/Ȇ6ZRml$kdɡu3!iFvHK',HLcYu KV F/~~2"O8Xm! PDގ+ W&PUx f{%C$;_m.3=ZbHAZ:+4$Wߎy|b i+3@,*~&t58n7[GsJvŒO7 ,6dl4]?=WׅsSGpoZ$\a طmaWث7ՖO16c\61 mD84ehֲU:IWR0 =0CKd ͕N0n`!f P܅WV&/_f g׊g#&4dXؚq8ZR[ۇѫL6n]LwYTJ eBմ]'ЩP7xKC'l]Yn-t˱ ٪fW'9˚Y;rΜu٬::@x݄ C@yn7PY:3˰ XqmrJM%R#Q›Ax ;p{,>'U[kk' >&:/\e)q=a 4P?-f%+Ab/з +9v9-Z`ً_2ؔPv[ٹ7 {wbRT#˛G{BԼE_%)mJ}$$ DlmctΕS`94ݔNlG,"2$?wL7zZab=A\v]>uV)%-5Dآ,,sg`q z5¯n +W7ͧ?>Qŝ> »'+T#vsqm8D0=kivk#ki,@MeѶ@0񂑨 isnI M ϫb4x/Ceq}yf?U;zѓ3ٗ(Il_tD9e((>Y`|'*;Td.[kJk)xؗ.Tˡ(<<ˇ}٫+?>ǫ*&!lrٚ3cz, -r]pEX +| ,Y VJZ jŕ?`(u.x&a@UVDt]R)HЧ# m>X{F#I,3A/ĭ=:)4ifBTgծC7=qyg 31<{IOS[Lڒ iDnx?!z\,Mjр,CKg;)4/Te9L7*-arJ}ǔKٸJ{${rl?74 Ƈ݊[f[c9l@?Փ,"s)UJ?_XL@wR$ٮB*ҳR>LA)HYAD=OHVg]'?nmJjCEȿFcMt{x͖v6zٴT3k3dPjZ֢8`]ԏED̾c_w\yU +4*_`ʋwg}Wx U^MVfFbZijd7G=F}[ڍGuk>t:%S yrx#fÃO54/8H3vB/;T*;wa{46ZPBzozv7wiHikJXE(e@bQZ%Q2d+cDNi.|J:e$6vMʿZ4}U"ea$(OJMhn"6 c СrLIp㽁`)J%֟ 7jXct F=ٚFt.ڶQkaKkontkXm3gyV1c0O+SyC<Aӄ~-O5>V=2 2wTt*^l B"0]P$)G z#~EBP+?]'EB$ߌjC>DT,;y:y;Z׶FJ nBr6WRs!) +Ndq^i}Kiq1wB[%B pQq@K0Ǝypj>=[ό[3ڂTAY +U;͵XBu[-Rr8P3C쩡FѩwG2d)pMWY2|(Lc$=dYd4*jMhu--dX,Sڟx~hMᛮ]+ˬsD¼udF:y?NM1qVPFI aLJ2 {nPŒ/ +5[9RaTi` )LǶ[USQ/1e154NNo"۷Cԙ8~&(,]]%j:M |%e:OţJc4Jth읋`V BVzR!H l|bf D8 +ϛ=/Ǡ0UOSŠW??qpPЅk m{=>lrBm ߮cle{9T7"sXjg` `3 m9!T_:;Eu欝m; s&M8;<K8]Uݜp?61sZ$*By9h3o.Le_oE;-gLI9Y4{(>z bJg=צRLCnx\lV&czVycF#ItHNy|dĈv^"Oo{=m"u'/Hǚuz[eDh)7!Dnظ] F|Grʂh8* :/LDĘrMs 2X>89~nl`Ly"DADEL Ҭ+`wt?q} $Quwg"gaZR\G襑 +YK_1@Hg}/Çd[G6BdE/Q],FTr@J.@qᢇ[Zz8Or3mo3qXEXij8ޥF H.1q"+c̅b{~NhO Мq!3~Ķ5n}hw~ל$%LOz7b /;PO⼜Vsā4*K-+(pv,p%a2(]z1W-gUuy.ZJ@]70~;è\GQYZ•Hɓ7`Vg  +8b%cMڮoqᦠ ;7|Mre똷QyհC FS|<z0U(_&^W+1[8*{jj1 At)q +#3N4QP[%?F8sރCÜH-δ>ٵLc<lllONg{ +짻RVHN|wa#g1 +g!=mћXd: ;:WBFakYf! vYqA>CϧzJnف$&l@Bok} %a.bj0)& ;6~,`;$D8#WI%ʹ쫧Gq=N<F}hsVa8;_;+ Ϛx~`2wT +j)ykXD೔GgIѺZwի+ T;{}sW` +lj(;vN\aSҼKht('狳S&3V>Ǻ딜;m;""\#(#l2p*^qTqe+;%df-}4;#9)]SZfɖZY'؎)_~GI~N*jFm4 ZJ}<6 Cgyhqg,IG&֐ovCP)'EJ1ZgY;à}Ц,@tӒQDaQ%J׋J`%0K}QJ.beOra ZP 2T EB\{}"l pJ^A{pcI V$qb!(ɓ/0K{&>CEMҨ;5wL萦\xts[XTj1Խ,tI A}ʀ`PQ>g‰(``)֢m!{,u=} +PXlQ6>yAu]x'0zT^q Q ZmDB:h߽33M=B^ΪdsWvm^o+L!r+y2r??%BcBD24 ED JPThqN~.Wž&@P31)Bw?q(sB& xW`WYC`"XS#֍(j>E~X k|y@/WQ!QPw( #ʾڵD #f0u=z8 Z 9=Ի2*Ty7q菇tGD8\O\BP#yޓeSL[l4?)$1- sk} +s]Q$13LW,(Bm7tOhO1_(zlx]0(WbgrR%P-:| 4 )2kvb/3*EC_-( ^l@f2 yDCBdqV7a'8`#{XW{s*j݆p>2jGW͆֩X)<pRL>!E gKrj X{XLHXD~D)kلIs]Son&ZclT +9@d..iu:f,H޴S[fkuAXi_:쨾+lCxvcBmc94$7\N33A8q(Dpl!+a,- +@o{@)Fvq3 ^kDl)-vÀ \3H0n~.Oߧ4[04/'#3xѓ'[E̠}Q4&' WY`a ~B>e+;Rcb&LoANV;2j%#-# sb}CR\j1UdE.,_Iͥ6rH#Šz0j +r®տ9jCdjŧȟh Ƙy.h%aRtT|{9:KNJ)_:w.^e3ww@: DA_ӡ##BA(2t|2;mOK:8Z `b!h:`qjzdCEKk+!xm0%OٷO% Դ 2f !pFWtONqw s:lS!kֵVGӨlXz?\a`*<ObA;o_L\ldžb%OdXp0(! 0Mxj)Ԕh[&\$Crc;2t. ~-j$ HW֠ p;Gxau/qȶ?Errh"޻T,jNۻ2jkb*"\~@z>oQ;~-T2v7IG[ԧa5/h|F.  H8P.3> +QeܖHO6>+Bc ![B :L^y9@3Ab s]9_I%M4-ZsW7ck(__4:^Y"PNR(zb"+)/VR!\ձ**Vxqqp||_Vfc$QzUxZP_G3bgLS0|fͿ"T)z>f +2}]_|\n8QSaiHh~Gniwq?B/LOj*- ;ô?fZ^sUGB0O6ƸFRN2YL$ӌx652r;nQ08aj\@yD ը@_:IBҵQ -Y)%-11x]ONФFF)f>;]hWn/0w!iG7j[dzû~(_a=Zi {dؖZě?lazU,8!f٣ -Y(0\!.ɭ=wgD0 @6gIbK}ңn2`-N͋ݣ{py/D%5 u0+:_pd 了~ ɉנgWGs=QPFHY>̐g*“ˇ!aKܓ|#p?$bkiv*^kpB8Vo>*Z'|4Sȃ b W@ŹMc~)o<ӢkX&Mw2"aUK4_n-dQ"|&\[R1VbmTPS`gDzMHPQA?>UL/gYY +9@i-bg 2y-}gT=P ~s:?ڼ;:fR T߄rR9Ip5%%!# +9"Hԣ?OT&{F"SĴ$֓yw?v:[J8P=s|(iYU${ΪHL26'ֿF8?p| T6BT]1"-$@` щBWƄH4.$Vem_B$ѰbSIHKẸ21'd?;R&FBu?dQڃ,qf#wfvR ,;=4EP̑+1r_9H2D8N+K!VqCK + 1#~[-َ 9a!I5gc_#;hcKIFI`SF ێ6 A$oUB\zD4N%O͚یСy`sH從Y}vW'tqzpz7DDBxE8,Å=^ɈDJo^*ڳ3,W'B)Fh L345F 6N}_z>U6" Ğ>U 'd@3Ph(P0a`Njy23٥By$rb|}sx~vD/TGQe$|ZEh*Ae z4[ إ_*>/Sʆ0# 욌]=6K02)*l; F`.5# +S"vD*dBMX t2ʶ }skjvЕ?ha#@Xy}DC"k /\h R-" ++=ƛy-ń6fװH+OHPCi*$d BhA0}LH0i%H851_Yj* #r3j\!b>Κ|Z7 /"W"4隣Qn&.Z97Aa!t{ nR@U +GAK'N@Y~H;`CH(gFrp䔁ڎ#vAy`'%^ڀ wEtjG &:h3AKmtû909u*J yf 2FrD&Qs ]Spaz٨ ;;b biP?O6nЬ#򄦠vy %tig6ZZq!Hd +8WRl lRG0$PDqCW&BHF#'0xЫ*G0plmTɴI`(~^#0Nìݺ"( |tmNIX,@{Z[~^[xe@Mc[l09X%a`XЉDJ뒈h<, B +Umaq+dښ 90d|`ÜLGxx:=FW`AWCYlZU7?Ofv#h |Lyp0v +OD>ԗ,d+@{_C#V`](&P^*Q?`%P&2%"\c7 ŌQH: \T.\Z:731ޜaY K0|JɐaMN2B" +Ewj ځ0mmiVhW Vf5vW{.|Q ZInX֢ێR [p۩fn`Ua8mpSۙZ[k@]d +`l.t`So3fUm p; @el@ +b{Sm;V([k fjۢ V6SUfj4Tvڲ:Pg6c:(&r57mmil5dF.ԲJfB`|'6 pp݉.Y[sb{e0A?Bmo3Z6v;X۱b֬\NpK +X1WZ2Vds($** +Onqb_GlH[dtJwS@T\ie>^HHF H]ADτєV1#*"'O&t "at k}>O)܉nXBCZYVsH)x9lN #cI?C- >3),i"X`&\.jx$f`g:\hrcԉ'Xk~efYjTRB8 ^΄~"#q@@֙\>D0z ɗ/-EIcS|*M4,\F\@ڲ<]٢TzZ ~^NykDNcr($:%ؑ0p"At('c|n%<86>Ģ.+ R)4n@ vu\ϒ[P)&1HoD5aiEQN@U&CI冪Jشq py|V Bl T4X B=\HIX@qAccHڜ(vb?/\Ur.+Z4cyBQ +u(UhU]RiI:G +4)͙tΔ3teGQX7BE:N"2"NxLaEm1616"1q8d016QEKRyHj Y +,Va*OIAX:ϻ5L%B8D":I,%$kyy|0vkxyQf?&bQ63tU)v(2ydz @$DT*eyŇ<:vvkia:?g?/a`Y.*uPB @Q fF =VzvF瑱SpF k#L$"ukN3~3s)EFhT`]_[d@+MiYZ$$'p+\WXXWH:FQ e"K\]"3L($ lJ3UizG  .aBPi!.X`(,5m2ǡ3c!b;Zcl16!.Y X N2\l*dJyHϳ il)RhQ8z$Q #[O( mt)>/R) +-.]Zha\v* +:0*::OUa‰# LaqPȬ!: v)j 8 зţYl +)C!\fɴQ3|lYUyY?D ,q>CLB;*,p!Kak_Ǩ|r1"B@1PLc씡*rs3PVQ qu5&DX@]yc [qfvS&$Ye ˜ 4iV&qUK3ͺPօ.T4?o+M(P4cG" +G,R+Tር+=JaӡH%~ +-l 8v?̙r&tT"P'n9D ͙y i,Hcq#JRD&Hc4Pk55 &>ϳ$-XTm%*J"r[Z5O MZ@ A4ǑaqK"<Hq@vwl*زa0x)0 lF? -cS9lğRUe%.6yS1?B8MDI4cR2[%yS,]iRYi-,n–Jrʄ@h :i(@DY<*A==QԪ7ºm -yN!2VNX ,j`îThɧ9Jq&Z5L%yRr VI]-iU+BwKT)^@x *H)^@/|jNh&PeV#kEKμ5 I)W ^H%8JI$wH"]*pax:-otEyҨ@@#C3#v`榗>h,z)Rg=pZvi Bi +e1)~!)|kH$ k0Vg+|$G>stream +\M_XxN'x^K) gde ~^ ";#&'NU +v x`?n~?)^D1dW? )#R\0*7jо`ՎW(Ujn}: +46s6h9~h5%u[r"WqvdX9p4σ](!5{S4iN `a3N4B>&$:tqYnfY2+,Fjyd;~y16>3 Z` =7pi}h+." | c\iw8B2]qHy-Lȁ*.qN;T@ԉE +b3#N&vy] -ʏVA7ծX/AbS4ɣBqRha|@PuPPITyA +(,+2`笱 1 8y]TcD:A*AU eZFd ^#pK0U(%X8X0なH0 `(5 /AHx)ESiQJ{cgвA)|O!%X1`ƪ + /AqRo$].a`Mj1) ] LC.KV ,%Mp]%@#Q\cJN"`\i(y4J<&rY}U/ɶo +ZD|ċǛ0D26U6x0*x:o*gxlėEQ} +0,WAB4Mrj;tMDZt[8?{s[ožsLs/[3d{,jdwkuꭷǢܧ~u1?fzkž5kպ]=ab[⾻53{E?yxwNy$E7ot{s=g$$ƙ]=L/cq朓߭Hz~yk.^{9w9M8s3O{|so:o{Jz6޺E/皋ż5xw]w]k<띒8=͵IucR=dzxqz_s=9IؽWTg.ICﵿwгqubiݻsL|{^k{o[Ss==7CļkŞyɏǼ>Zoy֙kCο9'ɾ7'7k~Iqs;_̝I99=N^R$?{=*njyy=^v^Y';>wr|;|O}Y_,{{/{{>;{->Ծ{^w2I{E{{'yڇkr{ğԧuCή]%;p (Q)dp[:X\\.ǃOz}v0|yׇQI%1 RZ0V-5c:a\i %%AXh.%BXQ,WSFs@>OR8Db0:y:.FT`]l*CZJ*+TxɉmxA&:juaBf&e񂝠yn\j$/ 0Tr +<&(2E,jd>Y-Mh%H P,AG,4ɨe79+*.Sb6^VuxωcfB:8N1!^àd.öly ;nE XX&g P( EbѬ fL,F>B:2 P r$R1) M lͬ B?BxB4@oƬ#BƋQԡ)w7Mo2uvJ;dK6cr[=y+2I|Y#ߩ%n7.3R -3x{o/IՑ>O&o8ᧇW(໢8ʜ࿽v䃔XA%EMS?WG;' )+9ωH +!3oQVᶚD21^4ij18$4t+ ӑ`SQ.'FX#L:IY!b"ShSyLͻNu3`$vUbw BIw D wuׇÖc&">'sJ/6t*]8B^zrseQ0eU{QTÉ43m 22gc}d +%DW';Iz j.˹=۩D\2TFϯ;b0P^.OB%֠۳z9v-r3sVvl͞{쨭&fݓnM Uټ=IZǮ`:;'3V>T[4js%Ǚ 6%anLڪw:Io!=yuГ)O#CZZĕqYGztʹ}Q&<i|ng0[fG,^Jf} 1겝W@Fź+Tx}eֱzG_` ^};sJ)f.[zj +n(Uǩ$ũ.z͔ꧩ7' [OkzU\*QJ[5S>bQ/}z]CAP6Dzq?}OGH}UȌ~Luq9$bva|-SadJK[C']eGis.%͠R#=`H[ '~}*= [FgkRj-aqQHݡ\=l#C4۴e4S Chе>Ao]0tD^>XZ ~H!x}縴svfBvbڠ~#vk/;v^JvSl}V`Ϳ&Y4L|fs0qfXJ{=旪{H9ɥlx>r#_|A3׼ ۚGfn]Sd͗@d\Ӝ@8Ӑ-gƊGAʏ)y<~Żb:]I4rOuy: ;.>{wZ\_"DIUճ\nae DTc7%*]T~{GS. X]ڔCv)O˯*7k#6wړS Pb-YɏX—?&i%[aUҤ๋!U%:v a#'#y`T"oѶ߅pO8ȑNi oZܹhK7ٗZ]+H ej{?G*acV/}$Y7J;q>u7f%T7@={<M'xoC|^ˊC lG_<{qD0vqE2Gqs[0W< fS<0rqW'm}B<0=2*l]C{sShDUcwp7Dx\=RR`@=]ؠVHCś~b":R.ȖMV vw%~s$RW[4_ +hl>y>ISˉ8ɤ{MoO 셝O? RUF!J:3iPÞYVՍț8QuJ>uS}:˂OF +pRz6 +&f c_deȰ]i#{^KtĦ ncOew%ŊҖieGzhoxH( U)tW@U$ɣtm-L}uhn_>q:u3k5K_*e AmJw +璹$hD[}^^ۥao:|3L^UCƋ߆7A8X*[VJCƕTM<ΏZ2_fiV_Mjۋ&KugGZ>zSi 8L"1Yް 0B:g"bمKEz<15`bĊ&.+Gcr":m z)#3U^L >{GNa6U)B7ZL^ ًRLԂw!ϐ-k`G֖2P)iw#_dд +1z7SJ3) ~;2Hܳ)AQq 4oXL`i T,u)>Bx j_lB.p@cSqLJ2 +Z<5Kڍ"*U@ Pѱe@Cp IB:k$qnhX,Z]*孳oʅmd-ZK>UP-XD8t3 uH.N +hi#*iHQlR ե <Z, +G 6lEUF~!}슧j=hT8 xI($Q|??v4E-x9{'}.(#՝C}A]UfKw˩f7Gcg3h,A}(vFע9Yz.Z͓Z@,qItbGxV[V"yH6|R6zŵ͡Jȝx)b:2bL8;T: 6H*ZmYDFJjM<",h΅U]z|{xKI(`hQ(ν{r:uoXS D=u61 |` Mz(4.Z9 wy(i+f.y~c\Z( FSbm$Z^)xQӇA,"5-hCTf /C-zڥyOl[ˏ(LAL +'M7*c۠ɞ'37%[ж/$ՅCG%r$x + +R?NNi|uC(8CzG+Jn>R>mID30k,ފ0FڈKI+C{Au(), KBd0WAu 5|vՓ!t~Out"(Pvphx(PWtLV +O9 .o s^Y ӤIRPd!(tˍԛ|R:5:mERъ}ԊY}4*C(ItDQG_<*R)f_ Eh2@ّI Oߒ| L|b]{w iAܓ=BYHo>JRF/N^pi]X\>l'rkD; 6" `F> -?NQ2 +5d5R=V˵A!wRwOYPkֶ=P8q=S\z[ք$E= mO$HO@Ae=&=q!`>Do{~߲rTrj@g٘ \[6s4ևB- +_>ɈEPN +u WnQ O}Zmܷ&c1Yd-<W +k57Qm˼Fo Kk +0qfhg?M>M,XcXQ-*++͵]&sS6<̇EŎ]@0;28iMHpyx26 qjd=KO"9 z wf\ޓ/%0FgSi.:<0OSx"*{1d_s>"N$gxBq[Ejr:f%?92u=·bd\ں~xs^ߥ`dԃHP؁.ۊI8 $Ssū?[(Y?,) DAb" R4qUSӳͤ*]`\2@g"Qx FHDAn>ptkx\c-"i틭{L?83*s{3:( 6x\i9J*Orf+rj2yWU +k_p_!Cu|8eOw"7Ϲp<%@߂]u)(i?(zQNXW(u PNgROc_X *,Xf +4+3 q̃>_S\QYH1TT56`殖MT(/U*p:=ElUB1xEx4qvBͥk"?XUL~ =/2 W=*9(.H|̲'b`SV+a[̉KͧA֘AmpK ZssmDw) iӚۋQ%οӻ#_ -q88̂Vv6uIPcP`+/+75A(zq2)ln/^67]hEd~A fK\I'" ?_:MrD+mٰgãgR (ӟp VJ*/@!ȫ^* ,.Qun4QVy-W"VЍbOA:^r9hqy^Rr`w#QFpSEH6R"+U$sat .ajf+ +%*.`MnxTnh-KV;5cL#g#&"OqHH}z "w=̚ }qY R +Ri<?%B;vka٠;:#sA|oD3b 7WtkOtU&մ^[GtY5$~)_erķB"X٫ZomMr?-3g,8 *Ϫp3{ɍPNӢK7XQ'NX5bn G3G cW3?%ڮgDƓ`%1^C6w>nJH3y&FeESEnH8Ќ1lCxh?:/cFK(JOaIZ-CE)/ {m7BB{p<$̘x3(c 48),]gLm|)CTޥ,$ƿ)[~,l!(^9!:` YMVvg1~*9vl8C$Wzpn% *9r,x <޼yЙ)rSNel - Ħp3'TGXrO+E4J5bWԓ4-N-)!s4~9]6SJw *ĭ3MvX,3f)mm\ rzmT?[mpǙlςb~J@5"?##A;G 8šy'eIq3l6s"9MӟAYn/=3ՅYQ- +4hz\?8ރojx>W[O*IDv:vd;To:g(-BY$wf +l]N\ɴ_ (#&' HllkFӽ'oNB;Le˔ "+;8%'ڸsv;}wxM8X0f]b_iA`g>"S8Ol@cfΈ2+߰LNrS:԰apsL2J )Dai@S}G)X͡8" i hdet{qUx4(!/)?lqY<6d^e%t)ڰƒ'EP|h3֪+o] ـlհH(аPˈH^ SQe`Oa$}T6:~Ήn#4d]掿)}2 0nT>[|O"߭YQW(+tW{/iv9 V> tՄ9 +?]G__F{eTLKbШ#eTxGB%坆WW-YRu-D@n`<£G0w} KG۱HZ_ox6rRNڑ+F䚽c_giYL얒I(c6b9{a;R +*\kgKQ +7\5V,M%T68 _Ћ+F}nbx~2.u E$bo8~}|ח@Į̛  +0a]4Q&jIN^~=ո[5n= 6`~0,H}{G_C͙#)mQFT>Iʤb:hp @WUFOS՟ݩQ?Il$C.=Xr $n,ʎ,`6L>e̵ܼw'?&:V7MHPv㹇YyjeR8rJ@qlh/.SӪFp_.m-G}㬗 \ 3Z$(Y%s1tC7 ?`xP,C 3*Ok|gf7DI:טԢ߯xuHrR4Xdg½ʘLCi|;_^U^P滺*oB2u( p?A*W\捐U)ڼ#);{$"V``NrWe}SJV҃Ci(KCjIݠiWܸS2asHb͆o`%dPwVkT2a9ͣKdu*fN2NTb;'`%+x5ng?#@b ,y$|4[() 5i@]J/'lLN?#522jP<(acp =>"D:n@~ x? ,!,ha-#m-k 038Hv*-5+k+5L^D_<RLY~̳,yQ[(5:eyC{7MԊ}l_9W@WA>I sgnZʞZ 9=ڥibV +e? S#-mNΙv=r39G}6R.#ksM~$Q];m[zqyjF4E^L9fAW?_E>Վq ZpLQ>H6S|rX!Jrxe[` +b4Y`J_mVLN^'?~;aڐ>ˇd.q!Xݗa/f1/ 'N?h];1dK Y:qD5 SxLJOb0Ave6 +s y,aV2߫ljxWQ';?҂_KOlO.I' Kx/r5&4B|aCR; +`#2 AD"Ź!+ ˺\5y2oG8 a.mf-gW('B,aPRs#8}3dO0ESU(N +@i:hZLz +a~4>ďLS{u%ֻҀi]ʓ.,s=}d/sŴ`#KBN["$a*M>1'kH,)l օαCOك)"9Ԃid8&9't=aoj>o 3 XZ&vSM9%AcJq֊'۠ǘ}B܇m׃%Qi:3?j.=`a㍻8Ibˁ$RHc_ǩ8qPU7멩&)ɥ=w RNݓ&_@kA$tL'֩ ò'Lp[ʔ_xA1_g*ꨭE6Y4E $tq@:-_OnMk|O-Rvx&1 |ѿ042 "tg2o٦)V! ] Z߭IO&+)Sտ8Uˍ>mƒ+eP0'6_F ,,EFUto)Ȋ4& 4/%^?Xy$,}1e[*t'C5zق >)\2dmeuZ@*Ha0EGLNVPmߣ;)ʹ%71)z,Q<h}3qڢ[ l;jb%;Z)LPDm/@4?52@S?bcT3'4+j0 TMR `mR|UރB!]۫L.M5D`Ǯ+Ď˩NS̿pUm'OuB䛒 @joPF\moB6P^CdY.=cU@!iM#` (U[ t> E8-zW,/jIlטtv?a==b[|Mm(RgaKH|;Л0`ɌC{K=4D8 ^$V6j*Nd77|&ؠMEY28 MdPwW9&iSG4qkM3M:z7UKQ]Xk)JHNg"!Dx;A-yˀ E)w%kp&Cxp`d f:ٜ/H|p$`jEXF+Dw_FRKR\R4S߀;_6e(n];6|(߲=aZ-%&rmQTnƫ?%s-bnmbMJ$b +F=fb+.@GnL_P:/"hJ;`5a&2p[hvx&nQp!KJgcV0>zk">;t*B;?7ٹd6V;KZ̙^2P'wM߁LzڈtzsT5h,b +%7`i v3vd1ZQ؋nqR:*@W+z?!T.w3W;5ma=CUVwf? qrpܵ(|C̬_8^{Q Ö˝iB&,y"; }k=lL{ݤ +o4@*SIm!a })諣oD[ -)6i sM.ezE[d2Bw>×qP;ڥA/UK/)ވ =os_Wa@,7eX0llhcڷp' +X&́ԩjS#j4| oS`9m< ޥrt; ceM5PxB 0B_bE3OzKsuc&i P_)o`ݕCF] 0ƻA<0#gp"+{X4C)"8ɕԻK |]~s DA,80m@X =X. +c +a |>-2h_~2ʹжHDhg +XXkp2 Ue86YF<EmD +bѽOɂ.Bc'#Sid-M69>}`2T#']tU.$ѕSA&͹JQ^ +st>GWHP $ދzPҦen>~n3-JGy/7z]q|48GE4YވyQ,>̴-S/ ϝ>s7`U*wxӒc"_\0Kijfmמe{Ž*kӛwacImPMkAE5f uj.OR"ffÔ=*\s$(RèjUEʔ$^1 e3}@7 !&z >)9@ 6Yrq_}) E9_T4+XX?1-?[7 lV71@Tܸg(.cJb4WtkB!+ˏ73cDQSb ߢ▭ Hw{bچt;nd[4`/Xm(w.y;<6rmҽ92ͷ\$1懪,*%>:wgxqKwpL7vz%tAa5 5W9`enP*P\2Fe:եtWƉ{)Q-5|;yWzWQIWt`v@B@v9Kߴ2fr|]s?{2ʶ -/C@,-T.g< +C-,7fR[BecʮdНXA)D3d%fgn^|wILidC_hT('[;)=ȭ|Q +^ޕH|,I@V1 ɟd^FjH#.xă23p٦1)Çӿ,=g={DWr)*4r&N3t tӚ5`"ys8$p.Y9Ks,gS7[vzId6Reؒ @twۣܠuv͘>`h `tee" ըn5y7n;;9:ߨ1UӳXS֧ aTY9ӎC;M9Xo p X4p3lm ++:E +6 ۷Qiݢl/J${̴qӒ7]ڊXr0Wn-] j5.s3abtu[Kk2vGnJukf :x.J?vA+|T;] WHK* 1&&púwD0& ;PF@AT 2- cť*~To>|=qJNtÌvX Ӕ7i[,| cqد@TΪS,O<1AVEQvccx\͞o87L:Ç!l-* $D1 T~X[,8f#&7'=bpA$]/2N~n_7+,L2ZMC +>aeHѸ"'ߑ3{4?}-,|RA:>|hj?GFl-ߔF( L\{`+8@Mh7 nvCzr'D1EX+=vJ捏6D*\c70K&Å@9#& /jdGw8|<[/hՌ!wU3R'Z [87`z!]jMTsxsivX ^f"ݓSCXjk*CfJϏg_$sM[kj ۯ6C^D,y3k;Lg|hQ˲=ބN8vsepfʸ\pFuFJT L+"/c=C < +;fzf!n1U4G t8@qKs~;MN+LF1N/v!-`::]R[87IbO,L,y`fK~ K̓ZK-:%g+&=b@֛ƭk7XDn{ v pkBH/[FK" 7g!:2\9$j @pˊՅpCj-p,CTwdwYkᘯ~11qxqF 74;7okŃJ萳< ~S_`_s&-R,bo Ld1 i V!b30AķS՜y + BzRKJ3à !w?> B/O u2u:ҴvۭE٪<(6('MGcD㻁nkxփ"i8 xTP¯ږtw$LN,꠯w{Sj5kpݏH/h̎|d'Q)CJ .G|eJlWm\xό 2xR K +gg3fd2 x30Pf˔o2KRNo&%;&yuʔ :m (9lR H;y\ ;O?޼x` +P {'.n=s]F^B&'ðJ/6m7 #N^o1y5OC&;ک%ߥwdcnQ;ƷaۆB]vrD̉M gnFLOOz)1O7 +]r1Dne!B +|SҒ)/y!mhH5%,k][ka!sڱ݁o!whç}RCF)mz5# ͎8Zp%oUeFl.U %lp1L ?QVwuGA 1*(O +F[J)͠5@DO&-^ {T@ATx8a>jbbQxhBSy].`F {zkF&`@*@6+!w;5d0n$lP^M\s|[m$/gw̳{8Hrg]8?9g_^VA~F3E)Ki'gvH,2T;=ANS"-; iZB$O:;\T|!+p{YJWea]TR|:=kL< &gn8:jdz;|`e$$}ՊtQ擔cET$>D A veh:ȘJnGKR7שo@!f2DMc -5HVT4&afEeDc}]z EZ%B]J,8 maBj5d0[& M<拰),D4#pW%2릗]ܩ5Y=HRSMIfSz?,EgKcOq< u ℒ|/B/UG?Qa/C?skzwbR #ٍ`o%v܌`}=*W0SXRc +\C 2Eo tBv$Mbuٳ\oL Ĭ(@V3oyn%NqOUtL2sbrg>OL: +0Hk妍ib/ 6U_,Gr]h1]yK{a"꧗OXj ^b³D6_@(2)Gޭ.uSd(\)sٽx`GwuLb4\e` +s!r +TdUT[;cW3WP\ ) )\_@>0bKtaYՖ>o'vA/9cf:K"F}h'"FZ% հ\n|l"T ȭؾ"T&h4z{Z˔DbK``Ҽ 4B=vS pȦ4 - Xe,SQ-*uUӣ$1P&qnh)Zִ4lQ#\򁜓q&.@2}kGdab`~d=־{{߿I{{ο${==x=Wǻ>Opyc:IbRI9k ŶuUQ_Rs9^{Q,OE5=$;$o&IOz?{E3&lzÁ'{}[$7~aг}/OjŎ1ż/rw%95{ER33ygߟ[',}}JNdٺdb ^s~yjA+GNײZ0P Z9m ToUk +tuƼIwƚޓg=_ +p X$TsmKǗ}Qi=.Ϩ#]!*vPҠ(Á@J LHȁAFa(!H "dȢ QrÓrttRHZ8u?-Ez$ +˹Ӽ33l/Xq-Ut!kM!$]Pur"Y@60R@b -"(E6uXX,7JZn ] >mIZsV6;Y~vKT+ITCd9 w!Hd۩w (˓"f 5Z!W߉+̡ +"&< +/3O`NJ|Ufe6ᰫ#t,1`6Cɣ4#^Sc͢ݰaZ,`D!EU}5:L۫>U׮*ުAb?"Kg;8wQ +HKN%as؉ Y喍D6K%'@VQ~̯vPeq&!B1k` + ;CE +.8CI3`YgBo I$OQP *?]+ktwwS/c NY,NYP TpeY?W#gONKBpȞ?049*&0F`GT]*$Tە#*F䧵RJ">W8˝:5;lb_.j`3[񂊭=M9 X`ѧ(5(nX@U.7jL8q\'4pB"]\ B jјRSb}]"@)!unN=?0$d+ >eH&4p#8h$4^k:1*"5a$ xvO0"CO|9T_,Ҝ&hCq'n8QH#yW6"YOb*bLidGr#}7?K=_KWO_=_;/hۧdYgZi>[)2['}K!}Y1A%\̪_&Un//7{rHySv@=pHe'h߇kTq{&u}G3l4/<]n{9P?h&J_bx 2&^]WW~:Iչq,Yã}\ }O[;4c=To 2,ɢ%Sv;Y? 닜Sd~q6u'C>M dKgť@ ;?d.zFh}WgG:wG/_aԚ|S)8 TW4L%u{=DHm[PSLEuڐ;I K[?[!94Ry!ZQ'!3d'8HKo?OD_Oh 8!q!&GcrJۮPf6V:oX,Iى2#y;P/-YE{>pS`0{EUU*(}٘x^~u+vgC{{g:ٍF{d dyܛ^?Lc^z?gr?M&Fn#0I;98w9c$q표=DeM PǾeq 1U){ayB`Zؓ{Rwnex Aom}@Z_Y,r<e,XĹ Og<ޢ z19kݫMcuP>ܪCO@y`^vm=a:{M|.~tISI'#}rR![I h I|Aad8ϴH;7yuZ<E QS6?qZ̗ϗyo晔ߛ+269援~%q[!zd5nޡofrn~Ma`-odO~Y^0Ob+6OZS:\ `&I22TuZwɇ0.!( kȥ2!|Љ#O>!~5gQx^2kQdYsyS,:h endstream endobj 6 0 obj [5 0 R] endobj 22 0 obj <> endobj xref +0 23 +0000000000 65535 f +0000000016 00000 n +0000000144 00000 n +0000019860 00000 n +0000000000 00000 f +0000026776 00000 n +0000253308 00000 n +0000019911 00000 n +0000020286 00000 n +0000027073 00000 n +0000026960 00000 n +0000025793 00000 n +0000026215 00000 n +0000026263 00000 n +0000026844 00000 n +0000026875 00000 n +0000027146 00000 n +0000027376 00000 n +0000029397 00000 n +0000094985 00000 n +0000160573 00000 n +0000226161 00000 n +0000253331 00000 n +trailer <<0D512FEC10404A5D8C16CCE5FA26613F>]>> startxref 253535 %%EOF \ No newline at end of file diff --git a/img/tcs.pdf b/img/tcs.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2401dc1c587ab3efaf1cb633ae13d4f5fb9428f6 GIT binary patch literal 2792 zcma)8XH-+!7DkaWQBgoFL(pqMASwisn81(-gf3D-6Oj_a1;T_RrZ5x>CWDlpLf<>=iKw%-M+o=T6-&78yX+dRL8)S zE2m4AU?>0yFg$!=y1Iad1xWYi_yA}KBEbLv&@iUbI3No;X=Dy)2vQiHAdEnOu{kV| z><0_D=9j2nvafoh;ap&pZm6-G*(IGv@P>K4IBb2{nRD*0)}55v;J4d^S9247k96k= zOK;p;T$e`Opl$ioJ?&+Sc~|{LtGj~Y z-hg}kw;ZBRZgRFv9Tg;X1_bzt2Iq2>tEQern z`L+rFT-EVOrIs6|FM5-v{ADgJmyBNXtlg2Z4&~fE)ZpVi6~V0bEgwb9CB7c@ycgF+ zH0h1|qwY$DT9YmIfNV+kNt{O&Ejb_vz9?>fHw^n>+o2<1%Ymy25?rl)cT^$`k3QxEh@7)6p*KV)B337xxL zH9Xp<^vUZ?_2W^doYb1f#zr};l!>#{{UHqA3(|2#SDW?P{^E<9cQx4DH%Pdv*Us%p zDhK1E5_2x@E|y4=@2`o3du434G21p`NO+)}WNBKFEwuI7v$0+-?5h97WE~9nIlV{L zcxJ4^?|$#(l19gtuwTq)e~YQJ=oq&@@SBS6>x&_;jCPa)S@6lNjfSCv^>GOGo~+pq zl8JbGrl!J+iao}dm)G6n+a-?|AFBAYlCm7MvVi6OHNB%vPEo=6%xRSYT6EAzgZX9_ zLh;9tlW17}%#uP@Rl@w)L)$$3@(CBLd`v2zuHT|mJ9xvNVGpm`eazz+h;i+Va1irZ zFg-FMfuGMAZf^CLX-<%b%U&shhwO=ES2-74S+pbTQc4SnWeM4TB@~D)C@(Nt53VFv zUAuTw<~eI1=t404h+}$3tyq>_NuYH8#KR4z{GF7rtr7#{%mZuRTFs_qZX2e@AHNyD zfwUVl5t!M1X`UFQ_ZHu3yNT}>yj^He%I9Ut&@LpiKo z%e1SJ+-afx7`&X{VfXsI^zT6xp?!K%G}u-(b0!Z?M<$;3n_Qay6Srp6=EmbD`@CBI zug+60_PtI|s1n&x=ts4;dinnN@o|L7%aQDO?!n|eZiT1Li*x_l`v|XO7hwprnfuII zW$jks+$r2FWml8Z<@nB@%T=GgW3&(j3JYfJX`OSNP#e?EpK%5RcQ`&*z2<@^C|9z0 z-tk@3Np7qyet&!2?s4VC2~|ZRD#UchoSG7T_~*VY$(!=#U%T@eocJ*@n(7CdnLcKDLW?$azmFoV@~%~ z^uG~+9WGL}79a`3N3R`Q(-3R3H!Pm%(_8rnV{s7oKu|5HbRYGfbl4wQC>C+z@{22- z%P#Rw-Q+fFWgGjze}R|BNulR}A#%n)t0xE43@dLP?mcmJxsi-%b)ExnGHOt}(U zJFm8;0m-#jToiybvFt9IR72d;eaK_a2~n?Ld!{_9vl_gg9JSQWEI^clEV$klGQa8+!>fe($DhQTuc!77>8g+Zqx+2Oe+V8#sCsB^t6`o7E?*O+il zn(+KeTnwsU^Roi4>keU!%d~dZtef9b@B5|qDhQngIt-+He(AQ*o2XBVnzQJH+OsB3 zTT>(;x@vuE1=2Z?+Slpe80bkQ8!!R@X9z+97!+C^sf9wLaDWyPrLK)e zW6?OkWmT8RpmQK)HXs@|KF<~=EC!ePU3j0pt)gEewuNF~k?Cxv$TKDID{KaESlrc^ zM6`&Ilp*L(rGO+81ChvQRvILb&ET>qAR7?nhV&gr5reNI&)*!`tAQS+da@xtqBM}c z#m*Jc{?5SR?+g&3QHaA}0jd--mBj!w)iu%TT7aq#hr`s-fYJgdwFgSpS_~)O;jPAt%L}gg5E1N@RaaI{>VK7LTva*qtG3>u= CX{cBL literal 0 HcmV?d00001 diff --git a/main.pdf b/main.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6539cf457253f336c55fe1eeaec3d633e15c11fa GIT binary patch literal 331852 zcmce-1#BfjvMp$4cAKHi%*@Q}Yi4$vnVFfHnVGT8%*<_OW~S|V`?Z?UytjX}`r48z zm8FQRlu{X|PMpXhRS*%QWu#+;Aw9Uce1TynU?8wHw1DB^p;vadGoe?PH?%M@a-vsq zHgx*OvzV=e^?x=0uo5uR3klh}X)*jA#LCP<$H2tQ!puRy#K26)$-=_U!l6SiYvANy z?xw{E^A8`!zc+&pJ;21#*4e?x#PRPWqHa#&N=^n&CV%?|41XJ8!M|@cG9X~&`>%^$ z%-qV!#DQMS>aUN8iIJ_b3B8Po%`Yc27)B1xzfLfYP7Wpp)-Z1C)~SLuB<=7b&+ZXC z{$ePS;atPGeJ=vB>|J%j0r!9Lt zuN!i2duKSdbYGRT8@9Ap$Kc}f23p_7Tuym(BeFa3iAS}FH~6-ypW{uJ)~;-%UAQ2G zf7Tpj8Fymkf-!5Y?)I7ex(Kyvw`e?~dQLq!GVY0878c)#UHBc}L^-0wPK{i%s?A~8 zYV=f>ZQZg~=b`2GW-;RKsc~;$`%p4ubxtwmyxyR*9pk9muz5^J4BFNa^XNfv0i82> z%xmM!*NITaHTU?NT+npWXL=FVo62kYZYxWIfVSOJU_EW0w{ae=UFn^9og|-k)oTz| zkBT%;YwZm^^zx#3N016lI+J<}Tr|vp;-N5^-2b_yb?;~s@5|J?eeB2%1rm5nOti=$ z7Hw=Mg&N{N#)p3(`|Hk<{{o;=xSE;++=-)Dn zCo0svy>#8}tz^%LeG)T?Qm zzP>X)J-%Proj)$IW>Ij^w7k8@x2+;Q_WPue9H?-x{j^zN%C6qg3R;t1d}uKYt;_fV z<;}#KCt!czb?%h9*s9>R63QCNny~6Fg{lIXy-M((g7dxVeHu?s8=Px0SH-7-Sbw%UxYmbZg^*u5F7M7F&~9$ z8{!HOtOC;=Q5j`-vN1FM1ph|KRg#c!n0!t@!M)Bf{zbkk*h+QmxQs(;d{Hw1Wn9P` z6pJqzCv^#XE$n>v7+1_|5?%Ty8pkj<_~<~S?9{xH))X1j}$|{YHZe@5u?3 z_}YG9f-_AzkzR#;0I2f^@h~r*a;ONwtd!ZEd;uZ3Q(FZRq;f~bvf8bSvoqago9JtV z$z%DIiq+DylfRcF~#8ls3 zYnk1=zzGTJQ>YC0c-B4{_^0K?{_jiCUYku@hu0>HI*^?*CIHq37La4$z8FQ~paeU! zjpkui85)kk>-Otr{UeuiRWkPqpis@ImH4Gkodk_Wf=bOIr~*CvC*)>TTU?ICwm1~@ zoDyUTsUw%7d4*TAH#-Qt=7J`RC+)tYwa5xxwEK^m1okBj=N>7g5 zF}^n?)h|h%Yh4h7>$y00mP$#%fW?3g#g>;=0*oSL6Y;1T!_05x*&iq>x{rb)Tj1At zr)e-%GPk$cD`COG5Ms{2uMXzx1{RHaIhrG#+uf8K^JNoOP137-LaV6g8W%HQ`#NmM z*kz>1zY3Ij&A8BEci{aAx3g) znSXLkEMApI$`nh(YL_88hs+7g>4ooNIPC5o(>u}5R)eH^?aE5rFj?iMAo&(^0Rz7^ z`_*<8u9zxSI1viANm?JFn2YNxLG|8*#ZZ^*bOs>#e-!-2G^jY-4b(^!Vo)2e0B_3k z*Pl5}P^SAJb&Kf7OdL#ftZe_p6aK*v{=pMq{$F^4 zxYA!2roVmwK0bN{2U|N62PgCYViU5$e=RKkx8<+xf94J>Y|JeG%pESZ$6`n%k-Lu7 z4iJr_t|yX#?S-K1cR-~CepbZ$eW$w3OnQY+R$NsWnr0L)0o2lhLqpr!FOTB+KfXrJ z5qsX}bbKGrf7W8Sa_H4u-SF;w2c7$VJl+lbWfwKRpT~#SYQD}d$F-yf#3|S{gp0(U zYBln?^uHfp9qu0`828@Xb+_LXg@}mo>Yv3|j|(50_;16)fsJ?>f#uuZKuT~GOPue| z77poC`L(|gWXyI)i*>xm523nrY(ej1`Sre>J~z5Mlo3+f+T4Qdba8DC&Z}{koZWAC z3wrsCurQ}P33!2|#LLYEjue&*?}DPP?`BucrxuR9p+Ml2 zJnZCO?7@aX#UKXBa3f!yU`CL8oNG%`;A!b;A7QRsyoFnWUk}s59oHoV{gUrLN)W^p z8GiP9>1}7a5*Ffef!03y+?rq&@ztNo#UOeh)_->xauf}!0P{OF^9hj0oQ8)z=QHb@ zyf+7Rc0u?V=Eia{@5OUOJkou{o+gh8>^Ml^Hfg5`q}C-V3(f>NdClvB|3kL^7Wl4! z%75a=Ix8OVpJCk>Y{IH$l8;=!`SVg~4o!Td7KZ(Bj&z;a6H4kwC_Vs<2|I+9SC4-b z<{Q}U9@Tpp1DobiZ!UG%UAmL8j8X5xQ0aj1E!@+m-9ZD770^(w7Y@MzxaM&mNgBjx z&%Fl0Hq_E^u)&y*z^pQba0!Z=0=9u&(8b<7nk9|5kbJ7oLlzlaK~@#AR+Nd~VqD!F z1aohnn|TqKp*lMC9%a0RD%DnyhJ!_-(J!A0hT7AKadJ+XDuV7{Jba* zYOp>|$;jF9C{m>9qcMFS2(+n*BCC&qd33N{47P~7Oi&{D>Bu6iBkkubZ|?nealNR6 z434$BLIU1#yaoMWZnz!plHZA zHt_+TwEMbkX!MEXH`vv0x0dhQzORwok*|^1_3sDLcRl8$rY?&wOaCmZW#3+l?#k6= zgAM8|7VUeM&sp@lT&uxu*SF0eH_4Wbb{i!2PQkeKHrRG)b@attRTBZXB9S#HVHPB`L90iI z>Og#>F{HBLWQw3U1_hsfc2@KsR^;~hx=0N6q={J3f}UY8I{#J-D5^@oK#+adL>-nU>4vTs)8A+>kZ;r6 zexM-$lMQX8nVKpUB{ze8poxwSQ{F>|VH>wDQt%TH?8=~!3Itn!MT{ag3x$IL&>=XQ zu9%6iL$Bq+EcxVeS-U*uWDp$kT1UcE&%2-|*+OEVLi$M&TIw3Sab8r_Clf9LHrgau zFbV|*=adwz>gKOuRGpYiTb{^L%PyM;fiQcl1B*>ux?UMI9ah!46KWul*jzyoKuQS? z4Ew_BtmhYVPuBbSchSd)^>laj9}VW zAHS$fSji&XHjc$1}dqG>0Pq9}BD9=8An2Kz@h@1_E^&l_k@p@IywvM{y?r35@-X z9BkZ<9K!#CsFGndi!3$X(-)}gl>jyg5{i`;WovoVdJJWlg|WC!(_LV%s&M9%G9pHcCs+`63EXYBcg*=<9UBO^?j)St7=-VzD7t zZrvemy};QV&97#W$)C19+_}iMS=@4pQ`&M$*G&7_)n4ri?lPq~yrowB_6;k@!uyUG zCisS9gmjI^0`~s4+%L+7MmJw>7vCeg%hl!QCcfKY;~crZt=RUIL+R|HRk80)cn`A* z_m`%oOqmg3ODQ?n9Qn89cDFz$mPMJ>)F3183ZrD^7_Y%Zls8(=Vpa~?By_KcgK;e0 zK^RRWP@pYOi;NvT$po$gnFI=FF>s7IfaG3!3ve}-6)$2BXKr?Q+0k`3cH{G<`TM#q z*7e7Y5GlS-ps~`UtiDy0(?+QdGl2gt&2?t&75y_?RRtWl(n!W44t8sA2@xp%XgOf! zZY67Q*!Y;Dp|2G*$(Z=WIN{EC%#?`;9UrC)M6B^UGLf@vqeTx%sXSW_j$Nz*H{;hM zimBXiTMiY9(gvUuUN~LN-aGC#?(;e5%a<`9(i)4pu=-sBgTVWp?xxkD1P8IOuxt*2 zD`X|jof>7)s=-(e#$pPmiC&{p~h1nC5u z-FbB5-&9^a-_(xRF1Hho>>g`=v?yVk@k2%ZG^h>y0?X7qAu2QSd7ehOx)uqNnl@rm zikD~5Z-r#E9hio(uF5)(&M#th9jISX1oy|{eDorU*yAV=IlQnUct9M}G0C?9jKjiE z-+1CC437>Gn@>PR*^RY<&1m$5CLLwJ=DW(Vhm#~@gC-JNDhuP0f?*Jx}rozFgN&!2n5F}bN4gr zl_^_sI7T`@9lFHDHwP-*P#48eVPRAz0pim#8>o;3A*8|XGm+Mv;TT?PO^b5KE9eIO zWnJfFDj@r~hQmxX1}e=m#RS4^je^QB-ICw)Xz~YaPdpQBJzeussCCpf=@&Cqk}crd zWs_>lcHH~k_aR}xmMDCfAgU!M@K?Du&<^d!m$&05TldA;kP#{{WXiC%5ueC-3Z_4#)YPel^lZcSnc zmp7T{J7Z+QETvXKqtr^RqN{_VUVsh25v)(|Bzo~^p!HYr-2_eqF?gvf)Sk!iW)M3D zQS5=AyK_N51t1i9IgP)*6shDh9Xbe*Qj z$&NI!;!T|Mj{JVcy&v(2v9;wad2Yfj=DOcrbCfyGG2(i}UC^0f>}ow$H)z%NjQr74 z7>CsZ7==3)I>LxWNnUvDgiU|krZhhK%1JQ_J|d#f2f(1Yux`JaEoUv=D$Euv<-o0S z#ek`eFpji2p&%iVWG^ zT#_7HZ3Vuon_Jde1RBr`v>LO9(!v52tV7;VW4#JbhsXGdU)-K) zq2#XctW7dlzeq;O%UMvsHoMf!Z`4z>O)}xokRP@0ok0zuwKsnhyWY*rhSP##VCn0Z zRIc$i_{A=5WPPHKlCNYWQ1^n7B~qO;LYH5SrTyW9@GZ=`=9)ba+cU}e0dapaE=_pk z%KX8`{0ESP4`Xfn`W7#Df*ji*#2QCfQa#mWd=tDmgnPs=U%Np{DH8bdQ@QrcZc-*g_m^S1;1S#s#q#4($r^t;IeWe~Mc$&6Q z+!z-HG@sC;E6?jHNVZM3}ya`}*M=UuGz_QJi{uu`8ZUixK^FkbM^!D^K&a2D$hwsrca%?J@W;cfQ=d-ZS zby%CHtyP_9^BZLrkqtG_Y5XP@(@|4)=Mt)k%M6IpDylyVQWL`5C9Z#F&LRiM17S}> zhpoNEfVW7v7ON|^2a#ikEM?HW1*qz*L{v~S-xW8{I&kb+RVaRZtG z%#^1(&Ox}?_;>*p@|QbAKyXkk#4!JmLGZ(8T|Ye z#4+MSq&HOxwess`dR?TgQZ~rZx}Xb?Y36Bdxb^B_-~af2Cc>>o-rvrJd{v3MyIn5# z;-i;C!7uAhls$oZ340iR!<?qZod!ebfDSYSPUL`nX4k zTHHHJ73pUJ*4~8>U;c7napblaFf+7{@m14)Fi#OF#py%r7<^+F z9lLpm;}uCm0}`9G`JKtb(LG`aIQxOsWOFi8boY;<;tw#Z!fO`enYgECw~`Grt{^TGPFG^OlhAQc4Q z0mi)Et2o$}IfNDtfc(|9Iv}>1_gRh;+jwE7c*uE(tl>3&VVbK%_Ns0^LoyZAzWpC6 z^0dlV7-b8ArDDl_c~nH@$-!%3gW1MSXNReAbzZz#K*aQGGCTBlqvr7xdQp6^-|kO0 zDQ<7^ zVf*LnJsa2<;SLUwQFJK1Be&a~;mSMdq-*+A$_Cx9 zLF*A6x{dDdhVK)=Wg6QePz!=p(@QmT4(`;i*!*ib|HI!|N<2)4S80nQ_3yqtt~1k) zFm^SIbkah1Z?@;$R8+EUif%k<}f>=wjf zm`ihcF>rZOLD&j;vCY7vfumIw`BA08BYMMmp`4WRsa86qOLX#>$F@DD zalJnS#}(eiO6p9it^Gw{&YH;J;DB%g9Q`N!^lW5ERzS3?MaLs|>4piZY1A?!iszNKC-Q!JtjHHtW#~ ze{5(##+Zyu$D7gjp>Ks(Qm8>tkv2(%rj-WTrvznSSj3N&^mhJOyUWYwvdMFzO; z`ycN9(Bav7=B$t;0(&inHemx!((QGjyti+I^$R4M>EJ9C>-HBj{JEE^T@;lvuNr8A zLvhaIXQ%B@e5vQhoA05K9^aHy3|wG0XANklW8!!Ys;Q3~fs8i;n2^Ik4t;=}M8>CZ zlbR24F6QIwRQj`hli{gx>}=VV0L$n(K5}4}6rdTT31*w)#EEVmQQ`!c2^+jR(~6AG zsH-|Q=~a$8g+Nksx09AejQL{JDi0@9jA1aI+|_svgmyvqiL1?ZILU~5Na066Yp&!o z#U+Wx+@R!meM`bW!;nZ9$%zD=ankvKk=|lb)pQN5AG{6yaXTu}EGcE@s_5Yqi(9a= z@W{dEF1fJHSAyt-;Cr>W_)>SxK#9ZDI~;X6!MVZE`mjGjAXhHUs>q~cE@z9Q-6VEx z2OHxv_l8YIP0wm{EhK7CsNxv#kVluCYAoHi!20dv2=IjJJBqX8yj_)mK%QR(iYyZ^ zgnrVp$BFsO4&ZDGj}_KZ8YBk@pMEqaV#eqwqSQ~Qj8hx+F<6gl2~|UC>O6lhF(Ujy zrH*0*Omh)iv|c1RhVh!XVnX)GYF~88n8)s#?%w^oP zN`5KZ>Z)1eB;_}Enh*jOW=&qS!7ChPAC|K!bOoEzMr}*f5ZlS}<2>y(roC%TFKL=H z@2%SERr6+N5t_gpPJ@@aN%9!bsPiE0trE-L4MGE^!=|R_l$RZC%{q3qP2Q?XW5pBB z^Xzr$so(W{YX6No$XScJ3J?H;N5&ai@kENf{sIa?0mb$5wbB7Nl{B0`LGl^H{G^1ZR=G_juM^jJ)=}NHuf`2xT9A`#xyl(> zRQ;!S3*mt80882fJ3Mg6&VJkA?x!pEOS(@F-M6nNg6|g;Xxf}-TIg|(n5`qGchrF6 z`?1Yr6E^5FCgLf^!c0;9GfT_S^GMH3PssI*sva&GvluG*GCLOYw7o&_)l?cM{93XP z0zSK4oT(MTk_{WQBiRd$$u*1NGtI4E+!iR0{#fM#$AzdGbzk9{KMR#@)po$i zw44cSgZA>TA(RDmBuU>Cj+tp@^K2b#%8>j*Nvq0C{K zY`y61hgQE(x$}a}`o)mP6Jn+w{PIlyTyV@pVH2U_vs==3{@ALpY*We$JNlG_8O;9J zw*PGuT^D#p*U_Goz0VPd(VsWEe{@uqH6EE*&VD=vj8Y`SoJomt^#f`iMLmQ8iPLF9 z1*Kqc_*`O7fSR2i1}&joB)9~YK8|aAE6b!Ga=B>8D9H zbwj_Ak5OIoRYHdP4W`AnIzuaJ#01N)OLJqY6ccaVxwwAn&ZdWZ-nV?*Dq2iT7sBRp z0NA8Tb^;F>Ka0AY1s7A_Y(k05DF>7jQ2jnuw5h;pIiwlU!{K-&$(&XAaEZgIrY+? z7P+4j1=S9ErM=}0kS)+#qgHdI2oC<~F7kHkr1%1IzbR+utYZ1uGCXMyA5yTy<NZIb?F0yGGQF;2G>s$ZGRnhu2yI#KRtxh_p;6m)> ztmb!?&qZ-Vv7jj@$g=MYww9QH%5)$=@gNDRw#-^qu4J9011tVC4nB4Piq9)?pVUS_ z7|(|=KO%kaKjf5ws89TUav_YOesLR4(Wjs8@j+&Nq&pEn$LwTDQ3{np112;DAYrPq z;qLXQ+bjO6ORFRc?vRtUn5(C*PKL#{L&aA9_y85w0V+yeHi)9aW1Hti z>>*U%#?xG)ySHa0P7#o=tTz!#62g|zXiF}C9$pw|aqJ9n4BMYwlwJ<0cm~T_)h0K(0xiSm&X;UOVauPI8at0fA4gVM zuYdl9@SK1kEmevd{kGqJ8r!<8i$l(1nFhYFBZm7~=h;s7O^%_d>HE;@Q&dZuSnDQV z{ax8b<7++ZK!E3S^9_vZ(n>OOcVM{En$ysUn7c|J?bFS%X1(rkR9#L*c|)J;>1ke7 zSKEy&;CTKldKEA4 zvERV@y>c7>4JQ9n5&VD72>wq{A~xp#2$PwanEx4*FEyoY57^+kpVeLvMT#jD5%n2D zL9G3^U=CCt7`8Sa7KOjRiwp2uNcdfNGDT6UkiqurS$~N75WOnmf8iVe?aCvdLt6f} z^Lcr&ZM*e+`Tli(pL)D|ynW$E5G9D6qu0Ml-q7#H&*S@b4&uiSlmPU`>~{+Ub8H#7 z(v$m*>EpeXKrQHY!!!X80CP_TN7c>!{j@7Jah~{F+0eiAHy>qpIQ_1eo1c+KS^dev zOjnkYC5o9Wf8$p}@l*Gk1jwiicOLg2#Y9+FSE>6)GEvIL9>NE+=qT{pZw zSs41?{Y?O`U2ZDk(Cdb%0Nj*`9{Ixacq`VY%CTjQ_(YR3#@H;Y^hMTT3iN3!C0)K+ znO|m@9;`vlHO4{hpiqs3(Ftcr=nR@jrp7uRBt_-*#(9r_&`0cJek#$?yw)F7B#`SQ zlE)fi^+8qF=?y^tDFm{Z8fgyW10sm+?*kF28TVBSRYB(9&f=gBL1Ek@C`+8*T~(W< zb__&6cx#{ecvd7*J!cyZ;u1+!(DWBWpWH-u3Rf(1Oiz9lo0^7s4zr(Jos#k}C0o9c z7}!=nlE!Z4Ba);~I7}2|5F`tpQ*)ndwWx?3jZeWMl}i<};@4 z%$uYMb8-_9Jl&7@EDWm002|yJ?)jkUmXCa{Pt+G3=+OI&DS?`>qTK_ELk?{+3hCG* ze=DUbD(fV{EXVzM0>sgSofMa9fI!%l;b-hzC=VT)W;;wHr0$}FB^z=IfR=zh zj>Hpn$&Qu=D^GoDi=b#A%}0+cBzJajA;>uUXqIaXD1^cy62G;{#W)dPN!gM4G@80{ zLK80!UD8J#2M2jBTjdB#2gD*r`F?3;TC4aO$th*pqy549_2MIfjAwL26_>XXfLYCZ zBK1+YL!mqVp3OWYqU9Ne6I&zxHgh!L%58HrHF*9N)8cN$^mSxhl~GAfWzXor`k8Hb zL|54b80A`}1JPczk^Om0+Sw^kjRJIB$HB zERhiXP=G|Yra;l>>`x3LzHt5zk;NHrn_^dW@m4xb$TftvDs*EL$ePa#0$b>4?_G}M z)F$U5q?#%1AXR$!Ui_%o15jlEhy3Tb4`weukleXP&+zp#anm!fJ8EDdO1{ZOTSv#7 zQVf`(c6MGoPF%R(n)J`kl?_>OBfCNp&<|>NGv`dR@IKXhKq~FBwGM1pz0dJ}vsQ%| z^fg9Aj>@d-wrF+V-?a*)W)Uhlw^Iq$>nQdXYA|^MmONc-=06PscdCl+R_oL0c&@%8 z@6`pBiI&8Y*`PnK4l$M`7?p(w(Gge6+@g8A!hQ$9?WAd1aeT{6-`$jGfG@>YOP^m8 z()T%f2Z%=qKeH)+PVA)m`o6y()^2;mofa%5D9=LysJleakV-!DlfH5=#v|Kq3=Q4Y zeDo&dL(&%E1;CVYCgFiV1+sntl{3}qTbwgTFK?f+Ujx}=E9nm^bfY&|1=ZR}Ve3O< z-fF^huXBIsivPJC>80^3#RAvFyA5Hso4WHHdZBgH3&s&>xvq2Rol7~*uT6PXRIM`d zG(ai=ACOR%!dI>#+i^bC0gT^BqL)S5fN>!Xg!tfj5{WfTZK^Teqh-gu% zR&i+NDT7J_zA(?keh2r5v?v7OnEpTI9D3^|txglZpHhklzz?4H1ou2IFtmcH%(o4Zou7 z-jHYwVJH%lG(ALc{gphmuuGBJ3c0lg3w1qJhH9mBt|PrhZl?&4PNbw}AyC}Q8TK~^ zuj%OfjR<2y=+G!Kh5@+a1Xgk@oT{-X(tHrB#bzRfdE9yS<#Cw9)gqRW{5IC_4|v~K zP#vghdUM9Psso`as>Y3kjlKBEpzot!KdEl|ekw{g?bU*m`re1yWu_qA>#Y+B?ZwYE zfY2VJ*UpD!(xLBM61!PpAw3w1ahTwA{wB{dRPTvfUZSJR_T3cJpCcP!ry8-1S^JEL8I!8|)+WSB zAqCrJjon>YX z2BY&9Krv)&RJ4MetA|`1H?tw!!0)44+oh?@%CzZm#BDb}GV&(NXVKHYKp3P#x*Yq> zUT|^ynzp7Axu45b$1AsHutJIkySAUV3Hf@X6v4Q2BOP!R+VE4BL>BdFj(QUGUFE>d zxTNMNkhgffz~eRxT}KOGpJ?)=XqtZhL6^9>g(=lTJUvjK`aG85d~F}+r4!9R6l#{b zq@|kx&q;;_%qnI6G)6*HCH@=hB1K^!qA$Znq^U}Y;fIVqXRh&3K=7Oi!_uh4q>J3D z%hc5fKv+LM**8ufv+dx*&`O`KxghnBDTQ~^dp=D3^*vz>PQ}Tf+9Y7yR!T*P(Be=y ze%FGlLllNdBfU#j4)-|;)aH>Su3Q;~^+2K&{qDX8VmxdLPaln#Y;7 zbC|}+9M+~(h5mw$3b`n}EqhT!zcdnTd6dZikQS2fOq~RX-&vQ0KzV)-9uMv5F@H}d z`-xrSC#`Ki-&iyP3L~7aSUb=`;kXlPTt{tG#CUOup{?iskowctRM_s36EkxLPeU)Z z1{TIeo`+u9p$(2gTLl_*T&%#jB3jMfi9~%@A{sp_w~OfKx?*y99C@(9l4g=|wwCBx zu!WW!dg-~QduW{p5g-MGXpoo%C)$zYu=TQwVVHhR&xwjVhFa;%gQ3s#dZ^PrLefls zp9*FsTMDQJ^7uy-hte+>-RLuwV;h(^I@$5^o0K;=9*z<|hD zGZ`$HU+^{CdY})%+i=b58_mP{a;K(GhBWRf0{PSSJ`5i?K$kG5J#ptw2b3H8%Iyfu zy}8XzEy3TC(yg1%5DJ(VpDsDe zU+S=KCc=1G=Y_F^Ss4^^KYDQ0Z@g``H2SM=VCMF8HpHEF*iJ%!*W;7#Fo07%?jNao zC^eRlg~#(*JV?m3l^rZ1c%oac<3h`Ol(W7>Xn=|d zxgz<}oNDcX&lXRasavL8e#pu|T$2f|f1R|3lL_9{%?!H4V?&PNWnfqz5ltO0fHhU5 zW~aiJ9V3>OKV%rvUy!K6K4>Coc;@JDL~$sMwmlpiD4cqoBIHIL5>DLr%2c7HZY*K0 zjx|dj$#wR$32|Oj8(CLwSn{UFgeP|5Ud+5A3^!@&9GeB&?4`iT)yBO4Gu>FY6(b4b zyZ(ZIKNsw;!ja|zIn9rV4~qI+M_ofjJovep<*AgH?IsmM*0@z{E!NW-NV~unlMD@Y zB~8R<2S&DO61H}MymG$M)h&U1U0#C|`G<85jnrtqTWF4>{%4UhIPAN&ddKqZeH@bo zNBWr!_@8Z&ui1{darHIm^&z$fet?bZ6Rn~$w`alC2h4T(>cSgpIJ~-AA$aH(OUYp` ziB>XgyR@TcDUZXNDD+q;Y6?@#ON4 zq$j!u$rO>*^)wxLYNK^qMZ&(a3}ykG!Oe}dWEx$jLMigj%n=-|jY~3lH{(C~n?5Wk zdzSayDp|wK-jJLueVt#k>5z?;ddgHViXO->VLsN=(C+!dHunSqEo^jSBL=dkCk7MU z3}kiZomm#CK*=_6Y&YAPl0@+3@jVjiOl01g19lx?uw?|!DYNPdOCB_%7Tjw-H&5l% zNb5PP7f{jM&ekKc@nFlQ%r=pa!n})+9uy2AV(#(48Pm4jvo4Fky!KDOjxAGBnwPX^ zxh`;n*TU!ZjCvinhK`)BEbKH>n{8lH(a%?yI}7%ljfI=lB4IN{C0|MGy+4dXnIq5c zuaxPVZ~&AC(s$_0cR*xAn+Go^BBsA;g(He5M>b!9Tc8~;ZOT=FgR0G7k8>`biqk*l-rh}7B zFg*-GQ|`l796VUsuJ$pvMZ5wuNlTCz&eusZG#_O9N~rm)+KziSEY)Qp<@0npI5BLv z+G&~A9H>QGSn^-gJ9Y|~B4INJmrJ`%3_UYUtM5Cb(ogR(HzGv@+J9Rbf%A0l zjyNrRsydY|k%%g4sCQu@=OMV?QqTcvvV0tv4o^O4OxiM;{F37P4PQ<=6+?q~8uPG? zj9mlIuZ%iw@$pH$NbpJUe}!bGX9;n6E(3ouuLCJXVDUU@zCegBCVF;TCq`yk&9g;E z9UiBpeHf0MhUom%o=v?J9e539cw_pLkE@MJoJ#7AGU3u{K;b(9T8s7ev=rL73wPze?ebP8H7SIvw~2y!NeIRR;2#wK?*?{Yv?FY1y+h zZtB?X#O@p=;^c5>Pl_Jwd2GFTII5};J&)UBJtg&=EY0B_Ey3?ryg#5-gk+xR=3T3u zQ?%~!%TTJ<4VKBh1(&>3ntxSw!OyR=XMj4EF-r&iS=DWIe6l}lM(=#9Yw9MFJ$%V` zkX`3bXF5#K&~i*jAJto=nFrwfL{Lb}qC1&}#XNwKAXihx!r}DKHAM?J!+MG$_S$~? zFozez`Di7)ta^E3?Dc5dJ=vus(W^eWmzaqWg262ge?SqPPi)0g(BX26N0n#Ux*mx%d$GsWj6}YvyuJ@k7B$ue>2O|;7vn3*tuaPa3@0W#dAPoefxPQ+@IsPM=k&*FVPaY(z zkH!2I|GJK;KR{iKrItZ3y`kd3Mrj2$AsoX-_Bp2vzP?f7e~^y5II9&Zo;0A}#d~RM z57Zjq%Y0>q0tw%kN0`4nG1Gr!^Yhbvf4jl;d?$yj$&3}byWzSo$u1A=*86Hi+dF<; z*cLjI@zcJJ;TY{O4EJwv)V|Pk^4*RzO+@fvxFikE{O0x@uyq>PMV&yWL~xrD{mNM( z%)`yKT?-;-n;S{EWx*v{I7UPCN`0^?z_>iM_oye$4UB$V6@DO)TMxbylx7pVM72bM zYePJsk5tbetzd%`3{n;Ci|`TJXe4Vv7GXEcQo{qijpc39hIEi~Q7<4p*Rbe*eY}-N zxZ&6^w=WOEY=OuH9klE+hcfG1c(M*^Lx(TltF{z1;+&4RbfXw=4WL~14A1*}o>*T0 zsULx3`>}E`t?K>We!$$%Jz^T(D5H1M@Y(l*N|`3#I1OZM*i{6AoAcN+o+3bfsD{e^ zBu(Be{MD)CuKXpO!z%sfrC09HpN9~y-rUFFwSd4djp8`&yVO>}=6)zAKmwX^S*oR{c_9ZIM#&{zMBN^9 zFQ81;*YeuJ*TyP!3M2q5%$k5Z6PNtOfNTx<3;sc}WI|W>i%7?lySd5YAeffZDR~66 zu7Rte!&-)@W%)RfzJQe;{+@$W%IW)46q30sSO40(sJJF3ji`s}tQ*SChy^{$J|Z=V z-k45{h0&l0<==(eOQKYQLhFn30VpxXCl9;H&s7fZ<&2CmMdMrsL*50~?Z)$Td~3au zwA12JG(*oWbiu}`l<88sUXxb|Q-8=B z4me?;Z~y*saD3zjJ>NbJKr*C6CUBi5Nd?M+);uUyswTl|ZJuxSsJ>N!ysYR@(K2Jt zZm$1S8JER6o!N-EDD3Yq)upFt4%Ia+E96|KL~yOfMPDLNJlT7oDfZ|@S^$J5(8Zou z?h+ZWdf zIHLyj7MiZ13s~`vWQA6Ysv7kxByZmkY}}$(xt|x3|7bZ{qY*WqNmNyUlWL|FprM|$_GD9CUiTrYGGZFrWIGRIvTUKjs~YQE6=yoXRbByJ0c}yhj^lZ8 z)e=7{H&E%Ad9H(lPH!?a`;xyd)oimsuG#d5d_LLz>VY0OTc>Lgac|zCzesD_D@OP! zN0_P}BYCCc9?8&BUMEy-oja>bnM;$X)#|btUZ?eBtVrhB9NMT&uVVD`59WLJ zzhfTff2O~&bN-cu~Cx(^{SgN;o*%`B_f%!Uj&%Nxhd098r4Qb_+F7}z@(hb& zb`UwfuXhV~vGiIMKFC?_SE2<}91NgT@y&Z{eW-+Px_u~8_GHSZj^W1p3qZe!MX+SB zwNH{Ej6Rsv`>o3`WQT-&0x)Z^Fh-@KbNb79IE%^oPrr1lfkUV7QbJN z9S~9uFPQPq==LYZ)kKy?VaTfRSt3M{jDwabhru4kuS0HbaF8jGbWS8S z7bCD1tHgFDj~TPX_HK}C-j2J!l?*`CWR8wKSbBonCW{cct@~#Jatr zZyPizwi<}B@-!W#I=pl0*m9S`9x~GDr7viX@GiKV#B`)ypB&w>#5GVjD98qD*70$_ zSR*K?|(`F^j#WRXK~uCv<^GBqNDFH05^$NOt_iY64?FS}$D} zz4FGcn3BUjt4KdoQp`o7lw*^MX?tP2I11;A0gAe7$~dU%b29S={3~VIf4G;>2<9n3 zZCr~vj&X=mWO?wWaH%=RoEY6?J7d^4LjBGoZdOW`JYR4)C5fC`SRHiT`8GU(j8Zn5 z1?H&di@*uzlw;s`i8?J{J{8VHlVYsS7wqkR`7vWE+EIq#Pe=+tBLBcRW)^6LjyWh5L+qP}nwr$(CZQHhO-tS*d z+*!=JB5GApm3ivqb86dgd^=HmM}NmcIfO`}STbAX*;$lMXTmJ^Ge&3nsbGk)$M`2^ zJssxy7P>#!l%XPWFR){%zAf`$%MZtmQ?16hE4=M41*PD;fwUZx<8|b*V~nwBS?r7g z{Ea8az{Y7|Iv1q1D<)^_1dPEU^y55xs|NW_=G1Jy; z;0-ugNO^KE^AKfJzM6=A$k%}|&0d4k5N-SW80*Z94*^<+Q8j0>G0tdi%`#8byIlWt zG#egM+|+DUajN}>!ekUEqlKW#Jj1MYI&|Hj2b+k{?FJf*hK@JV&?5E&{2laGM(;QH zthmk!h*llL%=g)h;JTezoPT%FS}!_c0)HOwSnLmU9~*%Y!cyes&lq=g*||Q;ijrX9 zvZymBo5#Qu7lF;EQq)aBg1ZdE&mY1TOi1a_XK+#8nb4&mvw|~^z9vG@+}n5&Dgx=7 z58^f&jS`CQqcMPn2t%k{I^?QUi&1&&(sV9&BQ19QT^(-d^Kso8jV|H~TrHGZs zAi~gy+^1nlhO!Wx7p=@m@PiNMDu;Jcno z$xW^4-CqUv_zln10au@&GC%1f*66Di|3lAIG`J=i=hrvxcgdXZA;Q=92uq+6r3yMj zUK&5Bx8>|xPJ*8j(~&{bC+U{6VGhe%>U;E?pV7aMoW})r%P;9~2U^D7;2C^`yB4k1 z&V=;co2UEM1@tdmNPCvjx#3~Nkg*m7TMWk_o}1`50+~3`GNJE(q@{#+l?37WAP)Rm z=Sd#|>2gS+w=vzQi8j#OWNY*aJ^`kghW!wuo;HU=zFx)Ih{@XJaJAY#sA!{n1DFuo zOw08)(`D!5Gt~uK$~@>x!zlTb_{FxDcKQNV=!8P#usfmTF?%+ zp;N#HxKTCh3D)UZ1p7QR`>9jJiBjU`_Hil98?nf9ns$YA`#7a^O}lFj*2!5wac<~o zmR~iJ6F94SLZivZ{}>>-sN^Rs2FA3ml2GC9U5{;vxY!yM8>3L!zNHz$EUkWoL+f~2 z4bu1h-xn+6)P-;*^PiW-FJ@<5;J=DzNIwvJcxMcq{sd|uKOJ94{o&iZ`zJci8c`=C z_@a=Y5RlPqRVhqo%|1}C59Q?rsc%}z5YD?*3SfTQW9>puW3 zseq};gH)t7L&KGt%oU~IEP?n;NC)4Fu$WAW8fke6(sl@G2hvNTVx@_VpKYp7rz$~n zKjJc_y%;cxk!lrvFsS8AIeGlxl}-D%3Ld6SBh;r=pZLe~w7V*9pdg&ub|FXrMr~-K z#!n2p0LKnuHTLX6o@|b2-FU)J1}fAE#@})HKu$<0sEA~MFJH^00M>tuIJpMAjF+}1 zhnoX#tBBVH#cRBm;m!M%Nsfw91m*_W=GiC~z=H{n`*GzY7h>)RKB)pzB0VjKuS=IW zU(_QYJKh}GG49Gr!)`0db;%a|t6uAD5Odkbgqs z-$~>Hvd}gq_m4_uvCg96rq<8omkeqneLeQHJ1Kt1jOXy3e31<*^juXU00q5OiWCv1 zgSLU#aj)ap-#?z#LHVlWFPNLtFGLk=zwk}yT&;)<*XtmI(ZD8=+* zbT3@I`MZ-&s9sh9ve!y!aMXx7X5$#w-wZ}MqrLgnECgy266DHYS2_qyhob4Uq_te6 zUB`Fd{+>aOAcB%WyH#=|9IWiSAMGBEe$z8czT(uurnByth8nfW3jzU>R3j6MdmzIL z3?~p~z&646d8#Mk2EjrT^P9sQ{ac3yv~zP+zLE?LyQ9O}y=`8De}5OUMPV80P~k|E}816s1=N0i=Z=}poT;(ZY%j)bkKHF2XPCdWZaxVKQ4 z6>J2xXow$c6~>>dp(x(78O2iSx26UhgLV}DiPl|qxp2tF_esR+p@#Uf;V7;abHAm2 zH1^MJ)cX^!fhfrYNdE^D*_bly%Ni~{UAxo{Hk%3N5f9?7d|oOotT8Ya>a56=VB%UK zo5V#MM&rOm5f*Oh%P@J6R$_#kXJb6|lpDqFa|`Rkn*1D1vN6U5djP1=vbFATF=k)X zw==;5&J?{3GF+Frs7?M_yv@G83f!exN37iEXM2-Io#;%$aGQ4Cu8 z)uC^ZrhsR?-bFti%>(gm1TJ2Jkgk^TD#6C|7kaKz?hU z8N67=-B*o{TyUAz46yR)O_uWs_MNk0hr23;*>6=izf)pcA@EC+(#vvdNBeA~&^~x{ z<$Z(m_CLV|i*-nU^DVWlEYp(=W%y09!IdjdQ*F#vn15Knxb2-92Lv{KjC2SEC_MYM zMPpPE9wKfQG&vmYR%j%mzWb*!do9g-2m7HjF#7o}+b$7b<Qx73|DSBh4{UP)H++whPx;|3cOihRVoJ?Gr9mrOOutNj}N&&;ON_% zDULAkLKSar=K(k$L#=e^u`wF!(^$Xz5!7PT1E4Te-Rf@ZOiaSMWJ~YA1~KW_ufIPclI#){0+Lg5`C_GgfEQn0mPdU$wrvNfI4@4GF2W$6 zrE!W_DV|s~B&rxM2?h5imKnc_cFT{uy;AD>wj)MT8huV%Z0$@Fg`V_R}ae=cy}_SIyMFtNLqQN=B96U{-#h>R(NAFzZvigLG-p_2dgtnnh| z8;d9Z*mkI=W}DSaIwaU;X*x&8a)rzjYmLGfEE$#0`r&jzP@}PZi$q6scainRqk#qQ zf!Pa^(^R4WEd?&Z2(niq0|)89sfyr5GYyE_ipR@fPncSj#2n)?xiKh6m)eJz8e(&h(6RdZQBWBdi@A@fXh9PJIwW}Pn(I50ZZHalp<`cD(;w|7WyO`CGEgEd<>1y^{GwxH-e^may5jlqDU!0Pv^Y=2@OgWxFENyMH z9zJv_8uv3Q-A!_irnT*MLZt?Adm@&$_TrS2|!H*^RDAhEanb{lItACO9PMSXm=Yg9dWbgqWIZB zSu{mRMw2zsy!B>>ws=pbJpy7GIH^ysjoqQgge^m+VchbKg;KKF;yPwxcC&**-D*-qEr<+&u5uY(~1@Q-&TS~Db*3^-Ju`6)VStk zrq3<-X?wcOvhVFMLa(U6Wrs-}i2zpvq{_*Lqf7KMj=?{gA-J zK>IxvGhEj-bPthFPs0#?{dM!%5|#S0mZXo z&Z|6i9wO8)$#z1$D>>0x$RZGHe;OK!I`v&PTMp4pKLh1e^ToDTd$8(a)W~o~AX$>#J^5VsP6if;esXP{oBPM!BL<$?;S zt%80#se2kc!U`z`$9-9`IT)g?jik6evD`>X-=fRdb# zHW@}@Sf7iiwcr|IzH`!UXf_*u@m%9x=qxuGVWa4EP|(f5J0DIH8Ofo zsXN{!1+`U0HK!1Ba)bOW%hL1^6#d2yORHkzJa*1vV5F*Q2zUh>PoCZ1L-C|gw%FVV zQ>-$7A3TkPv4Q+7rP1+va;8_UC0fB$ra;X4K%)d{i2V#y`%vDkm&pB?@&k6nuE(*8 z98FMPrJ|k|RILW0Wj}JaA#m5dsKSSDMJsnlKk=f8c5(o%?arv$ihKjdnPOg}kqSf+ zJ`xfuL>XP#ol~7-l?81QfyBkN+788zL(GMC40v+H*u$y8xD9P~v0Vj4PL2~=M1CK1 z&jTZ%P(S^)wIq_aO}DVaEz?HkIK*Ps}E&9YWJ5uOA6rYCB&;jQB&Wg zy`h`|{WxxtDiOeEQ{B-c3Ba`UCB$9?0axdWNh831U}y4JXy|-I{9#bsz@+#p(7~Gs z+_r|52j#%OSmoc<3UWykBY1CqXUtl&Wf@9ktwjy-L^m_l^;nG1g23?8?$vfTJIdOl z>H^{7y-P#beXCLXRitxPm^*aOGn!egoL$cpoXjF}Du zf$lXmaF$kPfDY{}+aeUis zW{K?7@%U=Ha_%360J+PbP0A~*A4 zsCoa4#*M)v)e~qADkH%0r*+!2sIDblyEyUHp#vS=)h+(S6fVaBPxrJj>*FF)t7 z0Ug!VZZ=NFik6ZuWI*+y-O*etYa0$0I3-i}{BHvu}~t|dV#P~K8flR%#mp3Ixftm(-o zQSWsRJe1dM(BY)dJZ?15B*N*ImnmId1zkrfwjIL`1*|;_W!NM|G!ONva)gf&q*IHJ0doO+b614=|~fH z_+9`Zkw9YpPN8j33hOD!B&yoUy}4<}4)};?}HaOP`76TpSu;=K8E-$6cyW*&mneIGh?NBr&s0=^QDc_C^ZPzt%$ zmeED|eZARP(AjVvSYgr872;#i7yBKRr<>xfR}5GR&di7!S2wd7KA|~5-!*zDnW<7! zm=UnybE->?^NH$vWD2B}kl(tz>c7ygVU?fsqRU3p-+`3)FX(i>MM1IY=C4wnjI$28 z2KDGsB8P^WImYQ&&`-pDhfa92U*Fu24Rb{=S&cMufgtn2R|Bx_nL_qhu7iy+#af?v{-Snjl=KEl9F`2myE0l6&53I zxx4I?N@i=8EJJByyi z|55Hj*4e3lpXIccG%L9U5wzBEnkC^8aw{EZgpNez;T!E=V6mG|>4dQ{#zzOoOd#~| z7|H!l7j*22+W1kQd#CR#l5RoYWek`gnGJMHCTkym*!>>=F=9hFB=#A zCsLmRi1ilF+GDzA z0#n@;9499x*TFcQ_FWp`YH^HAc*bKCkCa1j5x*-{S8ibPXUGNLe~r1^>X6J0nBzJ8!uKQ8(${L@Lt4w zf~D=%IbG{IOiF0R7oDhjMz+(oCa|JPnJjfoRyr*aVTwBt&$D4r9{Y{%7;#(xOmwMd zDJl<@RC}3SoV=V3l6?v&a)ucrM^`HpE!{Zg z(kzUh3*Z2;rejM>D+HhC3G*gPn-W8FM;_;XRXnQTw|gxiNB>=~mZ~#JgXzCc^rCSY zQ!gyq`Q#s@4m{=m`lC||{KtG&8B$rX8= z#Y;~T`x?c-m*wgUvIhTgc~$zb6Bp2Z{%AXfk|EM!#V}j5UN%6vWH`{ctl?sra*z+Y zrijei4QJX25KOm27MEV(AA;bWjeQd-@ir?I=hGt@Z{XFYP}hhV%f|e?bsrscJ=-3- zM(ycPV6=pEFG7j>UhKl46gn7wp@QV`w2BQ}29&CBNYs(9Oim`I*woB6_qGfsw4e^P zq{cJT7;LA#)|BozZd$sc3wQ|LnZ$>aZdP`3kOM?ZBk88G6D2yMLVi&RlOhe~=

    Sd@HYe zIbT#RpM9Jd*1^b9e#oo8AbgMW=WHw?uxD|Em5-a{`ghMNMy+ zMQRGm`$8YK7Xa?@W32!3LG1(K0T^L4ue_8eA zOy0A+6S~ngWk06a4Y$^G)P4Qi7O*&EU|02$LGz2OF_m0JAvSMFgO9wP#P)H8-}tzy zUne;7H&y^j#F7`o)rN?Ml?R&7w}q!-g(5Z%1!q|S>$=?wXt1&~mlsNaj@JWt!ePYW zKqxr}29Nob);n(aLNH9fct;dTo)u0L(qn$<_SVAjC?Lkz$--bB^r}Br_D}w2UgwE@ zWJ5q3&wYV@FXbi2mtPVNsh&{Yl%hZ5W_}|y1+6Sh%0VL}`^`~Q#EVAoe5Xe>#%gRl z8ApMMSQl}}LBW*nh(7Dh?h!cw>(`)Di`v8>8w2roZuIG#xZtfhbY~(k)J+hE0V{rP zz{0VZUTbXkd`lf;r!Bje9ZQVqLETh#_N`kUNs&g^(~deH*c=<7bDfdYud!WjIFA*6 z{8cF50w**^LP>&h%C4M}jV{@%#i*mX)^S`V-KIxY^dKQ6I?;W8#@u02t|naSkL0T=TTfUHh0(5bxDUdv?bg<-XQ{nG(J+4ge5uNYoY@j+ zSWd_&GUQ(h&tHl@jz-1(ijRS{*yu6Jn29SWD|M<|cJTYY#y8UhT{7vd7z&XDTw|SM zDnE_Z4*CUg<;ZHG!TFfNHBVM%ASoiQtSCzNq4$2}=ga3~gT(a?w`!VDAeOya`oPkbm9`J*bkY$G`5@2hP$EKJ2Z!J$!8L zuOgMBey;FcM*X`Sk5v!|h&H(dy<|K*2?wRvgI=L9R>5J=^U%xKkq)x>G<|OVJ-c8% zTP)!?7FcOi8W%9pDG$&T$Y@G#Wp~z(CE-kf!VHCvTwY>4wz|20RRna?wPyp?7!P)U zIif3Om=Zw+oXLgQh|9#&CY{^`8D4Q8gRC367j@r+TUA=qSPff7$I4W9=eZlg+B~vz zBFkZ`u_0r3)7Z8H$wOYr&lf%x zrbWH`!oAtm(Fqsq8TriRr3e6$MiG*oMfq1>G$XF1(Z02r%(aC($db7`eN5;bmE~xy z>4vg6xJb9KHjOUPUAhd+v6rtM3>1*k`fQc{1z2twCvtPAQH^P{kn4ky6T-!N7>l?6 zLBquIpurkLdvekmN{%ufz+jF-+HU6aKL7J}IW)96%VEN*+P!D^=n+M66Ce<#m(^5P zTyDWcIV#U7>40u|l4ky>-J*o={RNQqU zcB)?7LNVVq6h|L&IIq=ba)#rm3+&jn!(mhpHz;6aXOMBNUK%(>9hHZtY?CylY~x?t zA^)C}$7ABc8`-@9wQ%3%w^fDgi1>x_e~5zW8%Wp} zRWCl_krWS85=8w~EcF#()m;_#op=U5-9)J14|{Q*AB8OejcIXvHDBp{ysNkzx?8LG z7FVeBt`em27s6sCAewERU~M&fuvDDpQsUqyt4Z@^Vz*_eI3wYPG(Iq_u~%hW!_X8Y zlq_WUsnB<04p0S#KTf%jih#rg@Jef!^o2{s;@F;l`PIsGl93iZo+KrTU?z}g78am7 z8YzesMfsB$8-k~HZ~8oK+Y9ZlSGlCkKsJ4`uQhc@RwZ#UK(qy;ix#mkQeT7zFvp7O zdlI4Xi~4CL&dQTAP7S@Elr7S|(n@kw4kuHSni-Vicoda}u{Il4iGj!O=yWPT5%c3r zd#K?pJ{3~p+7DMa@g?XzG+Gojf~N^QZ9On}6t{@)gA?{RFPkPB$uh>X5cgmD>TC*qn1NtU)swZg%#BWtku8U`!? zGu5%{B_&w`BGzkF0jt%+N^QxPbvp9NXSHA0z2y}*n<^>|B|fIEcy$$qKdA>OB5+Lq zGH;pnBswBF9qGJorPi!G^XzTT-@_xjPB+1@3z z9Q!$rp>o+u!mvR5lD?7{En%{Hnr%t*Vf0E#H5Kr-meFj@QkZMNkUZ$$P~ineVRNG4 zef}L%gEM$#X#;rs?^k}2kYcFiT0o6 zOc+n*DkLy@dDj&kbTrpjLJ(j_GI|#(O-6jYi~e55uGLtxDgof)`xHcz&v?tZ!g9 z+^qXV;_-GF*KP6?Vi)J6lvDAXDA@t3ldfmj`&?4Uf_ZoGcI|q^_3a7fJ5U4EXtwrD z03VLO9n#EUJ!l@rrJ3Fw*5v?J<56cih47Z96!ll3bFs~-*4RA1k@QiZb%lvOIp|a@ zRPBn6F%*(}GmJvWXxGS?xPGS!r=}@ZJ}J0)p?tc)?&Yq1jmy+Y>_9j`T(J zo|<*qSH!6rW12hN^bf%zZ5dV2Kl$27*mJrRbz z6Yy>hgRAOAOgA)zt0-8fN!X6pDCucV?;tK~XphfFIzp!;Iz?S`iAYK6v~v>{&lz=T z=d0k?XMJ?86rit)Pp+vKbp;u*tr<>s&+OG&3G0^ z)5N!AN}P`_IR?Dj7|m%j?JQ4XD2=;+ZhnUtbpEJicmwf|St=z30Pa|YG`Tj~LL(jS zoNbq`g|LKQIyde;03dW8S;k7YPvA~zf5`HUJ5}p_YZG zkhXv{^1btd)z^CwTFbRbwpOv6&K(nh3U1SSOEU{^CNF&;P1Wr4vk2+3>f+u8U)};I zI7DQbQ^l)MgJ=fQK@bfaq`9YhX4$D%2b$Zl$gSpGqW*`c=sj5)>}W6(u{9>uy{5&J zwu6{doET05C_qgi8m(C*Up} z1JaShw8GeVfoN<;rlE4J6D6y?0a;(?i4%vg<05(&>}4!9X$#ijAB%&IY^+zJS}@6(&E)hkHN5dCucl70@QU9TNqiaB?x8j8+crzd@Dyi{>Hcnx zd?Xqy;*ZO9ZpA|p2P1i%4`=4ci>Y(K%4!q%KzKtpW3Ljv$xxkx4v84(_5LnFZ|J6S468T z+827kM`u;i>b(L7U3{QT(p^_)KlJp7%hoz(BStY6S;+W4XDX-sXt&zS#UdVx9i6SfP$WuZ`k0io(zGE2%}4+&or{W`*-c5 zkp8}7;nOIbemVRd;L!X#7e;LWU=P4e9~kti0s+!gD}Hq31nBDpCgcV;-bTe?cz8g>>F!wpUr|F0FfkU%|XpBEc{H3V86igF#$leF&mlj6h?hF=|D~a3VEI4sNmy7||A$PBEmMcxakHz(F!rjiQrHW4gsa&MeND5z z9mvBy_5d_e$}ju#MM9#0Z#3inov8nYKpgsGN~~D?PGkAeST1tN*W#|;9Yr{Na%ARx zkL>Ha^-=h+G| zF9FaUoFYXUGRD6YtoAHK^%TG(x4=6#gV6wIB9z+~h&6XjavJwZTGSA?0<*M~b{9yV zANkpw6vuIa8hbXq7}~x?`kVNwU4D;M_8mZjRCp;^1#x;*8Up3}vtdQ!)*5TJh?}=8 zITV2eG0)g*4h;zeoS1e7Vx?AOTMxKMlfj|FNNvDP%{z1Eh^h1U1j{i0w{zW-&Do-{JWJ8IoO(c(}c7fUF)+AATVsR5Xa|{wlaZp)T{@Um zCR)=)9RQMG*e)s=MD*!6fGmV6ZE%lVN~-%u*wF8dB@4+YCR!f^l+1g2n0Q09%}2%D zT1$UnrQsFU#N;Cmw~~1oSLPiF{B#=XgAa`Y8QomJZAH_e1uJF~3L)uHxbj&%D)3m6 zE}|%AqRz^ipTc=#N;nR(6}&clkB}zM69A{tmIkSz$de?nY_!ZW%Le@evfhl?yU6?| zSbTV%3Xuw?U=(%Bp*j{{Z7()G2+g6TdruOHEQoZ*j-}~`41hf4R3jvwm_3L+sJ9(x zC2A}cC$}<1C(w4xu7eRXl<9BkMtB?0+8gl|2KQC%Y&jx}voHJ;vI6ibpE}0Y<7N%y zd<03!bG?LXt<@Cf9-Y^9iz`iriHfr(% zl?gR_Ov5^tU$|M}njq#av?tY@`4?13oma4p3rYz|(bcM@Ra9}#$gRactUb5XXt0t! z;HW~bD!W*stDB_*haOomuag=05VmkcG^hmC(b3>D7BMC#6AOpiAH6?(?&=dgM>6fl zcGd2)*lv+gi{kU%OjtWA6O$7)Yo&wbp)5qfX}LlEq&c_)?{z#ZiYwHs)QNPMz+5LV zhBb4=mTYW zZ)pt^E>PKgY_gZ$$cQ4S?F*=8D}Ga9bY^n2SbIRj;jZ*?nVqE2e`rr z3c?`=g@fmaD3B69!nk1OzsZ(@f=%X1mCZ0g1EBB!NVpUQ!}u+F7W%b{iAiMBv?Q~8 z^P0_*4e_h5j0<@s84J2M5F-qz^=CTRGTl7K66|-O`7comV0UBewa$y z8Lh~m1TPvA1xe1N`K^+!EXBBny{iIg;;t_>pDvS-CzqMlX`mQ@;vLG%RxdRQ7hzH! zJVwGROKbkgXeo=yIRv7k&}~EW*Fx^*jGxYy)p{z!b6A!zs3AN(sPn`-9vEC?7O>@> zm=1qC@9?Mp!{cZifBG_lXL`274H|G+c%cyLiw&(h8oEBWl1UEj%}d{N<>5BRIE9k# z!Sk78Zu&2#aky4IbL7hfJM#eplEQyI(s@$&;19Bn&pXbA?4Y?W1UxnAT~= zarkJfz?ApJLNmjpHm$yLYE6Y}1$lEeY)0<+3zyTMK^Kx}rV`URpK8VS3m6@Gsa8oE ztqU#6n1B-bDb@KWinvd4NBe-XMR%s5j18exM3jRJNV6H0!X)8|0*@zFZ_dBnqx{IB z-OIVS>2d`^V7&Z}BfE>?RnwM&={dwIjC^(ZrF*n0To zru3sw!1BE6^8j9=#;@0*%(>#!v}ithu{7#+@ZHl=5GDgD#g?Rcw(v0l5DW8Ym4|(s zHGxjAKCD6~jVmS&+ws7mBpsZKoYIV8Ln&bgmkLdD1i2EXz#DgNZR+E9NJ$tdCL(Y} zW%bm*v3i*lLnp63??#Jzu|mz$YJ0O6jrT-kt?&I(+=jB}x*4{3;pd{YmzitSRlh#N z<_4F9CW=t6((*rl7V&`#o_>xebTbLU&b z7PZn2uDP_h-G0o@{4S)l)a8nv304N*trVo6A9Yn}+~L|#Pz_-am$ZkCByl3$kn?iG z#`(R>ukgQwUs9J`U*A4rj063X3$jwvp){-zQc0c_{D50%*cQ#D;>8zwuUjQvQ9d!5 zGqD|){Q8u0XP){Lj>(1!g<2~keKGdk(X2hS!RTzc54Jn1joOVi%6%v|KckAPnoJG} zWc#}3Abp@EEfvD1+l0Mt3N(AR!+Gf{m2KPnE-v-~=enIXaR%sh*W^CatinJK?FJiE zsQugwN+pzUX+R6a8Ejje-c6Z}nZ53qLL{1+TYlJzT)QHS zq}vc5PYzJ8S+zkJohZozT~Cj-gQT{`ZX5p1_U9?lzEDPFIoQE!TA2pq$>9bdQpldz zTGBWSocR_O)n;Qa)uM`==Jb@wp&QI?pdQOA-T(pU(zO8mx%di8s)R#mwzibMvzC9QZ!OBqm^*{O=^7-xyGI#n=m0vrv2N!O-I`r==Q^wI1F+Qs0uMtunRh)w zmXjL&_53rg@^||K_d}N#aH~}%Ot*v}R(SiHXH85Ml01x@pcsB=qVR&Htn2v|>h>^l z{o#-B`pl-cy}Qbl(Y`g&w}VwT^ivoaM22-0yoFXIC2=Zi`nx|TerrnPfJg3)bD_OzB)dCQ*9S>es9S3ryXGz zTiB_Tq$ydwJ>TE`9S+%3Y~M)lP5F0mP02`n3h$8Id{9w*TlW+`gm~pBen&1kmNuwo znk90CE#e7I52=<=9rDZ(nGY5q8JQxI2x9ztSd-)^K0W$5N|toHh7>W9xrTqwO`IdY zBTq+kd%oGfuQrs`$bw8nJIquw)vLq(d!_wN{ml_f7dg4VTnY}KY-6iaZS%)v(`P!H zT{IuhN6$}m?>C^>fBt%XaN)E2IKU>Q8bC*~B7_}MCYb)|I8R`y6WW}Yxx+l8*6A&b zt+d^+Sdg8n6Rl7A>6u?+n8{n87bK7^FqU4#RTKZkpQio6Zn}@yd$4ftlv9=%N$w8+ zqDFYt>(O7q+4tReg?*tvc(W7%bEnDD-_9WBQUQ|Vc|p&q5#RPZg;BSGyYIg0JZx+e4SB5%bD-ZS~%j>{Mam?suq` z-F&g$=*}F4-{@ZRxQ@ewN_2J4revw_OTKxSmHEk!eeK?roCIm;>~m;^=04=GIr#A( z1Gn_t`HcKjeV>|e%jG^H%q0!6t9m@3gi(?;xhFA$3-d0z{wHpd&J1X?mUx(p)Uu(o z@N5ppw&(y|+lbhEV!p@d2dH4L~>za~-`xu|^JS$vwA$7DelBlMk{RZ=CZ6)um^ zHk{5a(G?&)e2aa5t}#QCMvGbfO9vz)O~i82G(avcuI9fHW|i9hT=<20i{x~B(dNxu zGV6HB&MLz@Er~M2VVU*J_#j&^J{V*il}Ti>Syo@6evQgYSh*eL&jh>o?i?4qyBgvr zi55s3@5$>oY8YwV%R0oIasZwYQGiNBfc$4Arl#YMu4mcM=5{viDMHk`Rsp)Engob+ zS4W`ARKdMDD9Yz}@$bdl($8Y7*Hs)NY18jFyg7wzqxp+4HWs4Cj}73af6)}+Xg_^ zbx?yvKCELk%$%sc6+!tzifGmnL>#9P5t-dIxQ{d5T`t958XC6N0d1AhB1L83H>j=G z0ZsN$79^xFrN~(97w^A&dzBRo2`TmbLW*lN19&Ps1w%eRR=Wa6wji*(r*1|brr&+T z9AckU1LM;qpYSO)wiv#g#Vs?6j)lWeIM}dVI08`8PnD&>82V{eDOHl4wB>=p?LgkD zy3m~i-Hwc|zHxpuyz((kH+x2R8VPmSFYy`l_e(B~%qk!D*wWH^2ZrP%2xAaZ3c{M7C3ldRb3b^fp)lqE+M=f6Lx~WX0UYow|3&B{ zcpf4+G9Fqo00A;sdfxP+Fb5#?Z?t1EOlo_3)X85c=uVmMKk#5d_G@UOCFDnVmGOWh zMjirsT!(bzIBkWBNb@u|fp97Z3#JPHfv3r1ar;>&7qM}|d{SaXf<-K|KSj2(`O{e6 zuZ6f;K7M>ewThuQ1jG$cSMdB1K=Q!>&H%=;3A72X$X&pp1J}f*^;G4-Ff4F{V}<4F z@J&3sEH+UWRYcqhnwi($HG6Wz%GCeI*f~UJ7H(TRww+XL+qUg5wr!_^if!ArDz;BV(Mm@?H|F8&L--U~ehfNv5 zujlpD!e+pb(MynLVD%V`1}y9i3ELV8**Qi$pvYjrvctxHjS9BHffUd+MHna9^M%kg zuM2_+jEQ{z49ZhU`@vybdH6NgQ$XEU=#4bb;b5 zFXRI=O+&gGSNQ-==84i_x_FE?{^))``ghyF^4^CVgS)Q1DJwQAI@Mc!V20c5bSLf> zTef*rq=D^xxY>Q}XUMV6G{7LxN+5eY+V=wjKkuu{Bb04I`h(md(Y$|otLu#|^fkr& z-f%GasH3N$bF}xUJi}6Ij|D5JR1L~_ znJUn@ybIkBbUrbLJjZP{ssg22V+2%IQ>3ILzMV-l~B8=4<8dhku5%=veOkro954nv?fZlur1MT@%04cDo#@H zsumPOPm{?^x8zvWT~pCdQsVvH^tws<5x!cto1Cyw&?rDgvJWLK~EC zUVDeMZGZeE?IWZncD~{eop^ck&e)%_*HJ@Q@0ik>Do*z+84fp_h`~RSb*6o)qUCzV zD)Jf}{?RBvG}P1U{WsOSavCU{%}d7&!-702Ve6e4dl+fDYGKTWbIl!_ugM2T5aHE^ zM+glBB`=V92-BntBUv(Yry83iv7!T5X7*7u$x<{$z>HS7iefs}7%FrQO=c8fc%KI- zQ4L&?9Re8%i5Q`bKo$&{HXC;P@XCRS{9$nbs-y*axgQFOI!+tHp(#;CmeLhi*gVXc zi1-e7(e}?Zs`zX-Wpe^-4LsCF2rf!wR5Vu5XHg>Fs>0jUw04Qthzn2-JIM=cr!AyR zE%+;2nB+#$<2tyS*WyS1@}&ekVwWGmAtLk$Xv{WSe>k5-Skf&IDd8lr1Iao{-n$~* z-krq~i8N>mH2Di+1XrMek8%JM8F5hkB7abrC^Tjx^FBRPIR8l_1LMSLh+QpcJUAOW zmHe|X##QeOahG@h4DC=Rwot{k9)Wr3+!%2F3@0rot0A6m7>Ft%2Cf$Uuf5q**SLN{ zWS(5~VOEoLkQbUhOX&RM#iC(<=;F$DaYSWBZRiv9ml6>5YA?KKICY42GD($9P68Pr1lJ&ghM6cPpbk9B9m%G17b*X)oKn@7_&!UdmpnX=H6+}LS(eu8qi6(E z04;Geq+NA$t*M;bq`$p`nqQjV(KrW7FwG$`Pfwf4WPwEYSJhuA?^(NxLDc2ZEKQ?l+uSM$U~!O^0Y&O9vN>q(uqQ zPY*b)Uz?vSKqZ=MX3j~^Qz22&PxzS%h9ARi1r~AqQI5OGn8a?YJ0Nh8#bV(;sDUpL zat3C-T*MToyciXQ9?62SC!%)2D1ps!L4|0pku7jNm=1BTX?8JR+CkuC=^%wtdQZGl z;g=4(+=wRLwC|eMSe#rMKnpji=-|`Bp2-qoSR=M>Vb)7{Uw%?LRd!-O!CksQegzn8 zR?7PwyNLR=Xnr-`1r2}%%Lhtk&I@w0=Ol;H0=4Qi;JL>LW!)Uxb=kjoFB%1zZ3d4J zb?9|86;Q0Isoj1)fV3B8ZOy|T7C0`EZE=p&>9;jH?X?WSuFi-@Ufdz%DTGB zwdxGnGF*gIbC8+c69hszZk)z42fJgw+(v^E)~Z6gvfE*xp3i6AyO%!mdOEv%HIpH5 z;2bU!Ohef|pLC06w*fS!;ha*q2o67~?@=S4P%^nfq^c(fesrb~iWj42R>VXm31eB|Lq}0rhEWiE5)Ct0o4q(z{|$ zjggV2?fcDfiE0i;s++^hO_?+=+O}@q{9JPlze+dmpBNY;<+^byx*)wH=7Bv&PDtoX zy{J*)JKB~xSGX%2y>Mn1KqKKNKY#z~S0%Tx|2Y=q3U4E`UhM;6$e+xDIr5BN$~6S{ z?-J5^cII(2mO>pPH|+UsVS9PLzhKA7jJ$5BZ16%lWpG_F_*6z2WbuI>s`PEQ<9K6= z|NPT&q_?|>F!XY!o zRED{PEDO(6fk*^2jHvxeUrAbROVDzTaiCqfdub#)XZOnE%kxH(Uc>?&v_X-|zBc35 zdG6wlLUj6Ny1-1J)r6Y>7up7)-<(x`Pzrh-o{VqYT`m0)h0tI{(FxhotQ_n~w-~95 zh4gZU_zimJw)XNL8aT|%|JAIYh4cRe@*Qb&CDL*sKfR)x2F?jfZy}@F3igWc((%Uj zp62BA8Aj`d_9&Ftl^30#uR$W*8f~ktoJtnoz1*E%p2*q!7$HveoBbFe+FuLoMH1Yc zIm%F3Lx8MS@*Sf9N3FV_(w9p?aF*G@qZx%#d%Pf;t<)s7CGQ5*k9iQI!DCd50wm? z-=q#=2W~wH!gAHHfu93d{Uvd}+)mml&>MC91H89HMIc{_M3Cm<5TJ9W1PYyhaq!2}khNTF(gf`0%Q|t(?vK*X3Oa9 z`7?kd#(a+2+Nia2t`5Tl5 z6wwHY`k?Wx>2T||{Bx;|kgr^rCs%X2m5A)L-%b=a;iH%XK<_(mm2joAql|NU`JNX$ z!LHmT+hc~loi#vN0HDcHl{s6R?C2FGHc1d>q1gTk)?#^R4C)*NY!E80H}_-luPj*9I0iwET9qn-G$IItH4yzCO^Ot59&=YRxf+Q0-sW$O+Lv>+z+vq5JJ7tlz zX{Ri}=}o`kf$~OoeL#+~&hh>?suiI~8F=mA2_4jhMQ%TGESquGAc8maFQhcq8s2t5^}Ar#6`4hP4SUM54%N-7YGNv2lubp+|i(zqXnZg$t4H6`;VG<>e-WPDw5gwU4?qxwb z{Z27=w=7-Up{^KfZ0I5PB%6%_d~G)une!e;zkfeZH0WochN1|ys-U7m}K%-%7lt!DSJH`=(4NhU{GQsp_E z)|gJS>1?*6m>is82c>740YH7rK2*O-bapI^Kr}+YzDvDc!Tg~N>47+Bs^4OZOS|o5ql@T;V$~4@by=ic^4NwPGf*5w zx3Sok>nwJUr2fzMA=|5Gmpi}q7^7*sfV3pYj-FKBr5VvSFZDNeS_ne9mIr%+99hK* zf8QQ2c|{l_xtFW#S8k!<<|z?skDphjH26Y99U#%9B?Hup+PTZpn;f`^nwQT^9U!_c z#}Al8WQ{|rR@>BlXtsxus|&~Msg1^nwlVEdSj%r?!ID%+0d@AT{pkIW$;!fd78Cq*$+%SHu z<*UxXafnQQBmDQ9zcQ8QRQ=@nTEc(Nw`btQ{n)p)L)`Z0df}x}R`7A*#wbHIxDf3@ z#4wohbYvpRFKPUgqTAYAmz)(_&^8xjok|=7>wOhJ5ZMGP3~1yGPe@@@N?^)RY?XB+ zrD?Si&Zj?r?H7++bgrnAU>9^&VkMJ&2Jx zCL)9d0PMXb2=JsL{K=xS$(LHu6d=ocJ!4J&@##HA&aS9 zh(eynIH!$rvbCl>9IXfdLh(hmjjvBA`<3B&K@TBsmuiMysR)-e(M3RS7_GN^#wOxo4wY zBM+x;!$-d0)k|+hpr2eSS0{+B(Y8pRni^>g3$A$gvbat+SIst2cHiQwtOF4)cELcY zdUJ7EA#|@WpVJgqEB)#$xbmY{_=Th4yOV-Ly7(1gMAKnZI83Tr5SgXyQy@w4K5bN; zZpq9d48TwbZ8J6r|MUSfc;2MVg*|K!B$*5IMZ92D~NB!q?xlqFgL{D&`#!UqUe1 z9kQHuksqtUEZ>)uce$0CB#uV|-z>Stm8r5Y&|wpfoFkx%RlJ;Hmm2GoUioFo`&DiR zm4tSB9rs3WGwJIm>Z@l9nnQKtY#hXz!WUb+?4TpQF;}?reO>@=sH=-WRJVrURl_GP+)UNhcp_Ya|~h+OMv1Aq(>S)v$A?88IT z&+iQcGt@5FG3Bci#o|Ug3_p+CW%a>YOBHB5o~E0BMLV!4ypU@jMTCa_njxkYdaJ3) z?C>@jPJ;ccW*3z;@^7%#qLI6L%Bpti{=l+Rv8S?z-<<4D3~H;M*@q7y@9$JQ)?B)z z%}j)nTF5)LsiK8*F;0@u^0kD{_$G;m> z49v-HAJAb~3C0$&{9`67A9d>=X63b~$^8s2B%X!SkGb`OdDyV_!gumT=ykTlecX^w zf`uH07JCdNX;L~ z zRN}FgA!!AEX9#`(5}8ZKdu06plK?mMj-fTnaQBl=IeIZa5$Q!Lbs9ob6IV$L zebs)90PX2_JR@BqUvkAtMU}>J&I&!&bhr5Y?Ef_o)(vEqEO}TRNFP=CH4 zz$fVv`JTh(lS3<#n=4a?+_^vKt|b)^iv1ym^qDK~-5f^iTEEfSw`6EFEL%ZGGI5 zycIMV$BS_0W_YHiGHumJKZ%yIC~4x6v$#{AL8BA31dn&{Qcy*mxZz%>IB7oJpUB|F z%snlpnV12$h6ai@ zi}mJ6hxbfLfeGQ&xSd^BF*saey}=mRz`Ze`?3r%r0lP7Dl+41;w`N7=IM@K{2j1P zj0R+{7xpjEySS}R17`!RMa#^UkL7SL?}lHg-wfVTS7}dO7ArWv#*!NC7Y2ThGI`aB zU(bpNe1zaTFrbfbRfhow@u0;om68tFnrI`pJ9f1Z=pstg7{yHzUbxeSa=ul8H~Czu zP@<|9XeG~5TunTAUayaKZa1=85$$MU+bfPH3?st`4Y&U_*JXu~lF6G7;}s>5G1Fjc zkm-x0D<_xWA;1TYYHHe(vw)ipTJ(q$enJn)7Ff}sFicNDiQWI^&i-P0Ca2pa@cP3b zXI&}AS!cXZTS_1TsyzPu@XzBkIjfw*}eH+fl94!|sv6*^cJ=w=Fc>XIi| zn|im9ytoB7itwjR-5es~JP8^Y zp9O2j&?U4Y;)(itgNY;B%#y=E5j-Mh_BY0UHkoOGy&=%$k`2e0&WjEAs(Lxn@nK7@ zS)&TZ347|wGb?12YO|9^734@;{WO?$ug5GWFY0mR#qh3UEvr^iNp4G> z8ElScrGtc-I(>;U$Wh8=KhvA{&o!7E%{)U zIVF`{UOQVynwfpy-&exfrYJ$8By)Og<7XFK$fymVRFz2gNN49()TLv9!+**}Ci}^8 zXimPlao*#vVR3L7_lOPSV#%FQy7BC>Z3(a2EE`2au5;g6$& z$VRf2gQN(mvcsg)yqq@~4dmClFvJH&qh)Xn8Ot0obLZ4&n?wr{0UZ?A+_Eev@nU4A z$}l3>7yW%|L2^=(nJi&a*(+K?g8(U~B@|ho%r!|OitQNb+~^3pTTJOla^0rzW?KIW zTqfq+kCW@2M~yEPjV*_sk)B11ua{iaphQZSy4_wrgOesB`LlBs@Q-^oCrP&rUWH{&G2Dii40ZM#wd0qsYl)ye*upolQ*7{-)FsQO%&xIWw0qw z$)!EG25uNVaZ8P(4_I_k2aP}w0XXo%6{BPYJGJB{(v!^Ok)lGIsTGF$cq^_HWIfx1 z^3AWgWjz3LiWfY&4smN7gWc4~Ul+>%a__7YE$zA@f8y2P zIGFtKz`Owt(RiFNuAUs3=tN%kJHcD-Om0LDUwK~Dr@9`1&cduQStzqfCj4>2up3s#$bUt%k8{TiRG4R3i(@c`kuB+wQ~o8sL`MhHxHAOZ%kk3r|bCP0hjdF;!mfe`nA-X;%_U~z0(6RLx~QY z?KP9;V>dl4xBp=cG}t!*K`3uHX#2;LKvGBSBdh_FYW+{#j@MeyJ}zvUkz6!B1Tb9~ zZV*U=7XeHeUbjd#F3bc@T?Zr>DeaX;2j;z&wRPI=SF|*?5|=Pd%%0XdDERpZL0~{j z@&hHUMeiH^&1RK$WF}{s_HO%X+ao9l`z}H{na|k$spbBlGHn2e;EcjrXyQ_Hsv5I$V% z&k>u>c>8M>64EIlodvR_3R@NY7j z3!7cY#q47Up96ZjD{oEo1>LtKX-I0W@ZImub<#rW4{$&c)yL!EN2HRe)j_)Yos z1qh1MkX#q-vaEZNDaP%ovuYoi6Q?T8G$r9&nUEbFm5RTctz{q_M2^K3?;;{GLyOqy z83roYcYeRGrNg_E%<+qF_h+dH&=d^<)Nxqm!i$FzvNd!e=*^=7b(X~ux$@nnYsD-` zV+NP3y6Q4?GrGdk$+ju_=}oPy{9=SMFJuWtNRfi&!v#HS7DClUmqwyW%2Z6~l@gLI zNu!t7W){gwA81givDa;tibV@H9TOSw)zb!>IV>4ZiRS0?X)UCQLY0dc%6d5A&)CDX zIsl@Nq8pp`$|lseW4z}5<-_cS8CC-;oAggm%zssn5XzKeYf|*5t=`@0Ns&y=^6F!? zT0LYdn^uM7ZZ%dgo%@q>PLu$R5AcGLnS#~(oAfoi)jCqN*P5 z)S|tCksWxdY8Of5h>rnIJzhB<)}eIGErxY3L*veZJmr&vZM|!?CKHJR<&nGU=$1z= ze)Q$hN;980w6^S9FWVKZZdgh;-uREiU8fb>I3bUS9ff18YW7^-l_3N}_gAg`Gt!kijAV$$t_fh?ox>+b=YSw31g!uHTEHF`1`Kp zFwWr}qD59LyT}3A;Uf1VZUz^8#!5!`KU!l?i?TC^I<>0d`BWE2iT0t){O1YgTabQKVTlGIi zp8MIe94Fr(U*gd~k0!53xDtp7-qIlv-C9A}c6NUDrqzp-QJ~;&px&CY1u~2dn_C2C zX2U{K1E2)eMNoXB3LQXKBIc zMN%N`3z1-)B3w5g2t7Qlk-^OEOVTofn>OlmC&q(8Db)~RgWyDNP}<0?Xsv^W5Fx=_ za2YX1rQVlVBpBULLcvI_KOTiiB* zb#iMBsF<_!ZVkW~j-kS-Mf!Ix)XzAPoI>%o3xsy`aNA2&XignbStfwRdS!pS5iPxY1ZltI%7snRL2izTG};EDyon|cxoW1COCmS2}6Ou zxDsXFmQ*L0Ip0R){eafCP__-wJb(u&N48}m5=)%ybeXbC;P)(G$RvULA4E0Fe`j*Z z!p`}>>E&k4_Mb#cq^VDIxXV1t1`jl7IPM#0PHhk7fxd@_7*zYZc>kT)RMCoZemA!{ z3(0~}BfMHYbTWQeIy65mM(8J{5K27(!(I1}@3pS42U@=mImrCvC~B+Qj}SweX!!lt zkCjB_Y04w?8XSLbUMw$a#GIstmv_w?%gLNrNSP??ui$vanxn6m=X-+vl@mvE<4<@=lvw#at2=Q3*rMwvakLmNA#<(6IXJcEcadI|<^88wH%!Uo_m9b439%H!fE=lI z25iIpFMaS&W$;lu?(FIS0^`AKKU?>ZN^P~~m&Gdj>ksU0C`&hwbMc!} zm2@?Aa}9z{>37X+GkG@)lDOEu2E>|wC-@K<1ud14Gg3ef4tE5O<}Ae1Dg?+f2Nnl~ zN?u7RkNX8;)2EVQ&@zJTdfL3=UG5@(sDOKxQ(7(6ZH3?SE#Q zHf)<-YVe`%js0oBv5jjh+t_0P7>|t`wo^GcMheg^QsM|N+UceQ~NH!-=F(FOX56mG>@jlds@m=Z61F$XQ)J@Nz$Q1*Ob)}!YET>5rJib-^vm|Ju91+g+4#w(>AHdJwLnurZKh)l zRF;cbYv*cTBxj^Z4upp!q?ae#Tc+&nX<%oZ;)7gJiv8J6;hGgkW@mw)#J$1tV%Y2W&f?Kqr_1l{CZwS`O_%!|4jS9B0 z*6&2BcpVC|#9q>sEE9uMw-Tl}^fy@*?jxuHV|mCAZ7Td~;JYz^PNB>7o zsA+8WxU=E#lC$5fee_5Y9Ia-d;|-fP*G6S4#7I0q5dm?la~+yaOJy!ep?Ehk1i~>6(rQxH$>?LJ^nL20Vxghtf7aG*?tN&Hja&7dm*E zEA4<~2=SEDjAptWUron`yTY#C&(SJhx5kRoim5Vvq{g~xyjbG&w$w96N4e}Al%ISc zdg!GN!;-j##dr@`g1ZcL4n?PAT0vfq?U9+AOzV&bdF&)_#Po8?IKd8y-BX)}}8o;Z-$cj@$uY-PwbL)&y?|e3@2B zuNhf+(4|k=!tyx;l!u1{(ZUFfu0Q@0ng-D#mYs=1k6A+mz{8I@0c2Qyr`U>TGzVmj zpCzSqF{@8arcJI$k7o@*Y4}a(b)JZ&f4qG{MA9Ns`6In@!Ryj4-%Vz?)A>|n3;uYV z_`Ri2Ilk*syk*MG<19X~QJna4Ew1#k*;&ZV;q<1!o`q`x)GkMr1v>ux5kNr8=ZnHY zOf(ta3#rAm>$ZgMP8jBX_^Py270Bt&e&)0jPRACtw^WbdbNPkATV`Z0UEB%ZrEPp?V#LWZhKhD7%*Y1yYx=>oZl zyS8e&38#|`hT;3`>3LzNJNj=V1({fqQu5Xir69<4O=0S(Meo*l)5N5`FNo>R8I^LV zD9^2^akIka{0lcVQZ0W|*RMQBfO4|3R{@_&z`eA(91JUUPqowePKCTUEBhIBmxL$3 z&??g8;BPqc3e_9J|`3b`M2f<-{0V#q#Gfl$WgFKZn(RDA+JMM+|EcK?hZqp!n&mkRYO58D>)65SL1 z2&rU?kr2&o;f+3*H@ES|s=sS5MVnh{OeNg?xiT(6b01Rf^&ZY{zn!-Qx-Q$UySid! zSpN=RdWAfSuX&s`3oB4>!G2~dhz*>8q<749qw(elP7m9MK1NCnChZA zN|T|u5rv0IImzuvoJt$y7I{H8+`CuVsB>T~8%>J5X=Viu!!rwn%u{_9cZu@5TWS1E zOm}an_i2ttC2?>q;bGeilXgxG?c+`hz*iz(S6JdhLoE+=?a z@0;xfPihq(RFKdMCZ_aL0qa(s%5nzuQ*o(Mkx#x3qq%m{znU%(i|BD}Rl-oHt1c7f z&cFUR@u)l9tzUBB;fm5t+*S+7g>w9YzTW_JxIPaJz_B7szPYfg(3Yk5Fep2aN!BC| zq@4EsBY6;Q8R*2lS!S29XqP{n54x-;JFAnLFHI2aYWMr+x34~PCq{?nq?}qw*t$9X z)5h(uzmQuDyhK3)8HTD&Qniu`( zJEF_Z%SWtUL+ObvRohl4Ot!lP!PIlg?t@vm^VGBTROJrv|7P%;SUvcNpS ziZsd)a(0fn<;LN=W>`zTmApwt6D=&?w1d!N8P`GHarnnV@^@SL^pX(r!EIbFfz$sD z`_O?$=;_uBPph-)iLbnG7YF#9INQ5QGEnql!If29kfvR>OCF!B*HSk=Jo!>b zn=y5q8aY`vsbTF;)UUf<`oT=1u*|(M)|$j+AGkB_ob2Q-6YUwrxTz6uy+&@IFIH99 zPh|SP1EH>0;>)Sv>HOVOKeRjJp#WX>W!#P!RB#btBt^5 z%^X$XXv{RCs3~-8f>>0^oy8TEBB&;y4AqX0N=LfqkBIy5lHmc$qGtLsrlR`D^Yeac zz(@65TVvPlxaDxEC`Dq%ISVmk(vI<`OABPRIme4d_nkqcOG`9m&h+ak{YSKZnJ&7i zRkv@N4TpH@kE>WR&5i9`g4CvSuC~pnXrW}AVSXZG1YA&Q$W56+&ZB>Zi8&7-ure99 zyH!+J8&(!MTaDsSyG5GjJO9O>AcQcrp7f8bnz4l zVl4@TJz}4TLVh(fs7%>xyOI)EY(c@%iIg!Ro$#O-9E!-Fasf^hJWt&V&>-9NU zW+QtZaN%%2(8Lxdd%$_Ko9lrVNE`^L<1J0TNCBeTM|C(Bx<=qr6qyr(pkUDnt`8{q zvJcF$-0VB6Z z(oE89Y7&L%@NoN^R~L*(JV~WLB@zW-39+}qPIaC@hN)m2$MvF)GoAE-?&y#=S#Esy zfY}9;xcO8rvtnjpH2O!ht^8W*HNYQ>QiUmLuFf274l%MSc<8+BF6kC8Vr?rHS5v+~ zdkN4qCwFFdo==lvaT=R^?qix@8vVK>oB=f9lm5b3S0FNNlUrikf!7IBWp|Qe3M!a7 zg;)W~=1V?Wf!A0>*Z7DtzQ6|!M!+R`dX#q;OxLJFwJIDYpa`fjQTUc|T$Lp0&GHk# zu2fv8;eWk8%PrN1o&XlC7LR2}{AIM9shmO)bjRNCM#PFG8IgqceUSQgk_(Qe{Dv0n zD1@nKq1B(_OX?{6`p?`2S|sA?E43_2;VTQrb~fafQud_tfDbif^);uUOjCn$cR&GJ z$xoHIJot&g>qLP`91SP%)HAX=kfk8ZCp(zjPvmfpW{w{nlbY*&axCxIo!w(sR!yBb zg$WS z`kj->0GLwD?uRwk!vMa@wGra*zJq75XTpW%3MbA;oV76J52 z;?));;!esYkf|XgZU0=GP7)z;|eG*OkoRK_?9%}O;jwnS!H-c0DIo%>yl~3LL z@1)*HJLaIIr_Tv)D2A42F+>3}58Ldy7my4T`a|+Oc?6V~x4)3CCJz~_BXiO$6Rv$X zAZj7IHl&b z=$Zn52f^>uf*PHAa8lRa%3edPp2p(DeSM=va{fg+^f*eIxlsJoR%8!)&SAqd%qL$fq&hvwy!Ezi$Cc5E%9_8L7U6y*{B57xi9K;gMO1z>!9w$X2wXlzN#1#=V?JFFE%2C*Ep6mQNiw(zkAYpxT_TExSmn z_j;aSzwG#EKu+9YUmYM=n)I}}EdKL!g#D#Vi`i}VQX%t>(J_{-|K=KSrc3>ZP6~g8 zk@=`YT_RK2P`8w!(XN;XwM*A?tAF=F+@IcsR5QxVqyI27%#Qa|p3qGIvQN*A*0SAJ$;QG9X# z?VY)1`vwBlkL|4QyA`2U;vY%k3Sek@ZL{O4V;Zx3%9vr@Xg3h8L%eMMCF$3>WcNDr zEVr|tAY9rsXq*i^>hi83{?=)wbG*{?L9nL?nZQzQmmS7ykR4JwMANAT#V6e-EX*e2H!n}l* z@9QNoJ?>X{WFn?H=>6W^EzRZ&H2*i?<747^BKMp8XsB*CtIOxRqZ4|7)*W*y=_&O( z_xo+Q{qyK^XXo4R_2L=UTwd*m+$nvUzGj1;hWj8O81MPYp@MO}mDR2#7VAr|OF&u# z<|nwhy?G6crGeWt{g{#yP?n(P9p!>zyoK*Us}UP&K9rS`D?hU~13YVP4*@qKe1US2 z@mEaLz%?7nLySki_=E%P;u)qV$&8I|4Zu*GFbPRZ*4S^-3f$+xPNhY zg*wAZEkRa1_c27(Vy^s6MWo3HQQc2qi%!f4+90^y08}96-_=hG#Urscl){9_1Sf4# zXS$dzl zXOY!VX9zF}5%!kqM>+wyO~72=%S9;7PliPXm$CzgGm7uRApFdVDJz5>AjgCC?Njc} z{;Yp|o3OX4#3Op@Aa05c83k*sRQ-Cs?|FJZF{$b|`+3G7IsZ*frA0;UV?L36JVCOq z{Tusy(n`8^rgx-B6z}l${v)gKw#r!MZk;Id+$=gx&5w_5iz2yWCEi#OlNb+#Xi;-S z5X!Zl-vk_WI(Akt`cVEpOS~FM!|1p(J0fAT>f`L)ZsE(hp;{wdYnV$_R_#qI;5vCa z*}8{5xTf7%SIXOqS;|?YHDgwT{x*fPwmrEb=TGkAN;CVxWM;63+;j9bj{k!@_u_Ew zwd(MWzCMVnnOHiIQw;g@0f|2A%>782XFd{M;qGfUKZ_pDbf*QthhFc>v@h_8bM40A zagPh%eGgHfeMNGa>KIg|8*p zL==pzOf`X)?^TvWp!V_0?${>40cxUC?SPe@v}*Cu=`(u@GG2 zcknhG`QI+OFm3T!`;BMVP0sb!#YxHguzuhD+r|Kz?&q5%7Q0}(l zZ?gB&ZiPyz-eEDn9tk`T*ZdbBs^=w2Im&b-G!Dqzl{xj~9+~!^EN~vB9Tin(cu(cD z*~&z=_*7I)6N|GqU>12w9n#d?L>VS^%)EE$D`d)blzPQ5rxNx3EjyP!(y=Y|^CU7icyXso^8U$*RnOQ%Ivx1}Sq;sY08&|M61B;wvG)4+=6x1doc1%k< z(G*^4T~m{(+-fEsG(!_PXKfo4z6)R!*>vc5%FsC%gV>RJ3|UsQFR~)_s6g7q!#N-f z;#KN~qfUDUSw%%GVN_Fe|9@UibuAxm*ZdQ+B&G$o9w+$5V`Q z7Om|SKPmQkRyC<Pb(#otR=O;QZMkVlk__52t;EcA)u^FOdPS>^ zX&b?sQFaA)N`8TmP-UN*f9%wF9h1hDN!blxceS zi~u1oMRo>$ZZsnv4s&5fh};6T=?)wgS;a2p1u~%qy(I`#dSE*`jCc0lDMdSN&uhU@ z5>-4Te_$8_#qyMBdK_;RN6v0(mgq$%X_NZQH+)+3CpsLCLS&>(O<8x-*OciF5BAj8h0T^u{f|>S)4tX%t-Ysq zg~m{IUZyBVhHyryVhNE~Ez?r}F!5|r8GFltfEqGgvEgPAI<-w+Y#$v|X-3bG!XT)X zGonmH8DJ{Nnr?3xPHn_w!cMs=(K^(oh+5P;vtQ(PNg$6@Voh=@kVeVxf}oZ*kCX$2 zL}@_hjB;%8&9CA>=|Lu7ps{p9BlT%P9CCb5(2gp8mR|eEr1HMBic|#lcF9hVUW{<> z@!*IMG>9FyY_&<7@}%_~WfytV^-ge@?Y91a+f8I9FV5ExV;YvzX4)^c86*5x=%6dbjn+tUxvysD3# z^{hBjgrB)RcQ&JQ4GJu_l`O5|R5R2S*z4pDYDGCJg{aOAl=ZQ=DF&?Sh)qSRu4~g3 zW#2NrK@TdE?|U@bR-D_Zm1#w=6x)#v;u!<&w>9e-_f~U6cYu}1{?UFM4@z zCCcts>u812n$|a5&_24>wmXv`_B=O1!;#4KjjntDXDv9^NBT9aj(a+!1BolES!e~%cELCn`m!4!=B^5=B9=hg*j~>*b6Dp8!c6fXKBvl~fO9ObQ z?2|>g{_VP&Gx1?1pjN|kx1yJhZccj{{>Z{;wx$3cn^c$m`0^3)6Y& z1!yVo0w35?^yM0meOnJ^TueP7o=SeUK{THj1cG!a%3LL!s!MhiN^gsP7YxZ@zC#_T z7WylHK8PglibLSd$F1>!0sk;4=WU2DO}` z3)P7JouUi31B#!A8V|S6z+&ktqYE0h zotJth`Eses1_i@W6bO+ltS*}gl2=hy5@6j`*7L`=%NHTj zP&qHfgfg;4*yQGbhJ!|87T2;O;tPXsdO+mCn`< zZ4<3b4DSP4Xi$)5sr)%pO`brpEoz$&tS*PzAaJb$sDt3?nHf5MTH#+Qh^29GS#Kk2 zo5(l-fq(3n60|BO`pXIuXc8Hq2eRwgN9(t;~*<6PwJ2 zXGF&Xc`iLE0e36r|>hx&FqTQM)}7T{1$*MzhzS6G$ZDLInv1E4%8k(KKTk3=6QE+3B{ zknHjMg1ug4$CF)wCaRFfyQ5)0|&t*7iDX!ArF2LCWe&v#gTmvCohR^x{SOWGkJB;6r~kL_h%gG zp2adL0Xs62xuj7S*T%0IW%en*%;mqU!usiGfW#0A3E!izNHLoM4~5G-P1n<1L7Aw++#*diU9mxj{Dep3y!jk}3H4_kF=-2V(Ypz15$LA`m;T1#}dX zk+CzU1K1}w7|;5?GNcz9XkSPa2;7O>U|SZUI8c#pQ=xP;KRRJ}(BCR?6ZJmwbNtRu z%EIEj3yU2pSCt{q!ak2t2rq>s;_W>UWZeSoGQOzTWX=66Gmocam568bgI@{GluDtu z^+PWXqG;S4`pOn+Q58@uqhC)^;wBcKPf<+r<`#%Uy>>#846A&uDtl~A;_-4~Jt^#H z+X7M>*Auwqs@%(d;hk5zCjwst1>LO%|7AvH``V6Ud?pUlqI^e!ADQ#(ys9`ss%4 zwAwaTf8X~39!~yj1A0H(zup`+r!&o1vbw)KkCb{jdw2YKf801mHb1@mzduF=?0az#2mtAl$y?4Vswkex=N_iBjE2uNfta#=6< zSzwwiD3sArAHv)tcm8uZ-$NRB|0)k5!~2DHq#Q^%5ssl`VbKHfxTtUi@RL)vA#A)@ zVN~r|M7{kM5~Wx5tzZjIHv&+s$dI{wr0yLj=CZaD0uAy?R%=qj5le|$j(Uk14e>!N zoUh?0ntwZ0j!Ou%;vADr=B9Hj2}u)lnS0-m6|iIdo;-t+0-`1uCn3r6*gQ$%A*?Cl z7HIHsW;NG-t_VC!n3Vc-LF?nFwN%N}mm6F)fi#2*3I&;nQ*B3h3a$YiTlQr^kM3#3 z?%qXFKuK7TM{llBcdTFLNDAbWdv}FPbX~X>0-f|qxKTJ)34et(;Xv%dk!bMUQYqAJ zAjWAiglRE@rWmsOWV-EW)mOiZjS1A!S z*!p+vo2fR=5S*d--us!mdH6;9vg<;@Vkj*8TiH6+h4+B{7{Vw&ZLYj-Qmr3I=<70^ ze}t2U_h{cB9a6KQ6%Ai#`F_r)Aa@xE1zHy-s<05>L{QYELCBT8OuBefr16l9cdu~;r?od;Ys*%Lpm<0OEL+L(+|v4< zUu67)aB}GA2_8k3X3^yufZmG=RFBI?+{xbOnHha&kr84hYfiRtaTAO^{FBQY)}(PV z&QO0>l7@Ym~A`N`XQn|cPSQb%NIgjH+>vV)1C9E+fxIwNI5p+ zmaI9a@QP;>kUh|rz z$!W^4e9Qe#xa(+jXQ4>M2sp#I;}jcrcl9Ckb20Ntj10kE4zLa;*FxQ2lhPXA+}3xT zjBW(p{o~@_a%{XU)2%^60FS{Pi`83 z7bw9ytAXd<^>4J>=*;B~<}ZuDfNu^x&f|O#(VKJx7LYLFwVgd3KYqc;XzLB1T?|M| z!jN**E|m%KuF^}YNNDfV__J|6>ofEiA8a(>(!Sj|WJ}Y3{@_kTU(jy+0}yzvFx=qC z6K1PKPmQ-xs$*`J0EjZQ&l*RZ>6(vW=Zwxp%8H9SqZH`pYN4$Z!-MKEakONE;jnhm zuaC=SADzh|1o{mVsea4gZ>-hH%Bir^E7&>p2Z=$kdfVlu1-7;n#B`fSjUL~u&s#$W zlK}H3Pg$hfNaW&sG)3Q7Ouq_i!t`YL6)>vv{r3I+eTJ2&Mfgn8C!&*h-e9ax@6d>v zyLNQsN?sPZC^GbZnJ(-4=|->r)wm8&wy-{mi$=NH>r_>1A^AXZSZ8w#%Y=djt85G&T*Hi6 z{B)blPg{j>gL%ogpM*4aT8XyYs5}$_3(b%Akz;pg-q4_7GVyr9Q!6z2H*8pN?`3zHr-l8u?Q&LRCXSei zP9wB~Vum=qn{RyWCOHW4yW4OypjGQOv}gh+L&CW0jd}o*Hz^|&d}v_Do5-1YJfb?F zKC_vScw7G-^1R=DEOl_rUF?rtmavHdwCR9YBBGlZ^m^)g;Hay21woDDw>Anof3c56 zgJ@c=1P?PGxe4*YB67NAn_+M3SK*`V7a5e2ks3p?zgy^EgZW8H|E8A=7h+R%Qt`&! z{XuW!*aelw1l_}PsEnvPnWcQuDB{8Tx-koh(_G$vEqL6cHq@}uhpA*x`ybOdERdVh z4fZvy;ySl4Lh=o6>c(h^k+2(jk zuq%X=;x6kQ)J17qZaui#{$ijPQyLbjQOAJ>;tHdgK(RrVFxJ=hPt|9hCdDcq0$0UY z4d+AHsG~{R7%jvM~pb$MsSm#Dt_1zhQoEFania&IMrm|=vVV&;jV>!kx zL4gOeGqtoW-AKy&>#^tbSfVGMdXz;*S;*kZ12Wrb`oRQEg6(3+d>W8{y&{Y@)Ub!Y z?y%>LxfboF)te=|twK5L3z$BdBI;+;Cxx;tnOL0wtaJOyLF1A!A@*D(HV&J>Q0lT+ z8O@p&I_{&(VcGGe9lLhx#(5ve8Eho54hp5sxCE!g&~9bCp^vr9DoWjKBslC5hZ@cV za|_JOFY^^mZ4H;%+(g7ZFU`Kcic8`R5syeDU>z#X?2~FyHDjHj{{f55op-_SR*-c*%-qw!kTIDdNOIAh6q8(5n;)`PS?2tqYT z5bS}E2ODo&C0VZ7VH%#?=Z23nALuUE0o5LdX;JA7VE>)w`dmf2lh5kN+2~eXLm2hz zGfD$MRXURsn`KBA{mR`zay;4o&iBP#3q>-y`m4RtKxO4UU(K}YLYHR|;Ho|SLDERt zYLfZzY+Dp(wQEg0bh$Reip*C+sZ)TgE%9Kw+6FA4J@;e3Fj1TU5$m(~?PqSvXLSiv zd_TR`YTLr};s~y5Sz5j++}aNzDk_-(0l2PUSh4n!FJs%&cHEMYhcRIKu4sBd;p!sF6W+>(48i15J@8428 zeMJ)q*7#UI%Y9%v5m}k^u$F1`k~+dD!x=1%)MkB9QmWLRiIktQnpA-SQ@VEloB-x0 zp*j(z%41c=>qVNi8nV-ULc>Qox+ekWne25M$FK=RHC)x%PJMYF`45q49jr8Q|TEFXaB}G)$W-BY1cFH-J z-aAPj*~6^SxS#0NXRgLqjk~zoJS%&vgcOhEmYBV*Sor@TS!?n`7)tn#wNes;JuYedzL-uWO@HoZTY&0f1g6JJeCv{3zCG{>A*$=8R4H|Y_X zCZLHJXvvgJiRB7|Cl33rG%M29K!_Zf00gj&RH$a)M)08NbZV=iu?xHvSf|bxR{QR) z9)>|mNc3K%pI@C@y$m1)f=90rWnYvZKItjX*^{7yhOHUFZfe6StwmG`JpwW=4ahr{ zVRCy(yMLRcVR=h_M^`#HqzjA+=ZW<)vS_*83J6>p^m5xj&Z_F_PQ_U|2hjbfX$UZ) z{Qh;E_xqjTU;;epzs$_+{}Z->m4%h-KXY9fhr|DeZ8$|p-}?Z<9 z`18`}vetbGKrj$%TvP5OQ&}+HZP1ZJj~@2+RVyq%dx?}=`Y}n`OPY_<{48OA}Tinwqy(@Be8MM|B}~ z&1xK_|L!&Gx+t1HO!k_Xo=q;@p2}*`##D^8Jfs-5mg=6B{w1xv&lXh@_H>>PWgX$qWDj`+O|vGUOncNAdJxz?^?UKr; z-YkH07=gVd-@9#pmqS*yh^VRw5%_-LSmC z)r)I?w*Ez;zE*%l+4++i9PK7?43p`tx0{2w^fGJI_S`pU!P`!fX2M9$Ng=C?x5v3RF~ot<0|1pSsXatwF|h!2ejoSEp$JwIlz z7Yj%0!QN@aWOr3UH-abiKJYtkz9)hs8S}W&E8N^3@r{kcK31V7!_Y<4eFM|btJ&BF z-ShLSWxFC3>tpphkns^}9l+T!aaBTC^WaHobp8oMRyURi{u>u%Rbq&y90yjl<7gT& zN9s49VPKiKD?*%R5DL1X-{jyt63jWcB>b!zE-cc*Rq-k!NIVA?dVRiNy(OCs41Ad8 zJk8=f7=%bRk5)#$ZM}8|Ct3)AE6E59f;^(w$4aFFkrsPkB1&ZE#Hp0M-#?zE1?oB0 zc8>gLV9Q;ZoKo(xNY)EwjB<6Th9vV$A>|Ax9UfJ;!h)3bi8ult9yLXMAXl;J!|pBJ zx-zKMYzI5FZHRqy5S}rqF&gO3mG*MR$Ak$10>oi70@j~kau4eeju80;H}wVB`*Q3L zFqPwGB}pAbLU^X2#E$I<)h|w_{<^}Q*a(;IM%1zOw_hG(JFzj65*zQqK1MuPpoD6d zbYVa??FY@a4me0h8Q3r{RVy^MK)E>sJp={yNAhbu*gCuC{QRwi^M0)8`TLC!2A!dt zc9Q%WMzN#=5pviz*$783j2F%kBfy&5S|&LpBWv9Qt@&~7+q%`eQH(SrfxtxNe@5?J zVsm7We5p}WCp)?1^pe1BeU6Q4dOT-Ju0{noW#~Ry6JT@4m5p2&t~;g|QazrC&oM+s z|Bd=yqaPpYWVDf}srzoX(+ZL)?g>&-LG`j*<*MY{Mq*1`y)hG}_tT4h$qlNT5|aKt zD@_}slYWb4d_Rer()>-)!l^N4N<|-t-Uy_0zy`;<$$1`a18_p4#P3x8Q=E6NM-#6fuN9hs{)#}wJHb2 z^bqI?;hLW$z>57~3sK|a+b|6TwVT^&z=~1WT2bTGX>92TjY9d_1DdNwR)81i`CHNB z-RIYo1+^b{bzmedsBNhTYgYdq4`BN^0$CZv(t#E04Y*SgUKQ521h7J)E&(r4V1E$O z-Fl_&+o|9BTYi;e`M;WsmIyA*IBBL(2s8rb_$jNxx>GH+XAhT3Ttg1;_}%M{eg)Fr zvhs^+(rPW*Sc24}-{@EDBoS=LRDq zF?ASh>ql5zQ^v)vY{20dAR!MMeAm{@jKm6Vt2sC#KufXlvIy|wr@m-D4Bu|3Hp}6< zzQIRY4f52<0YU4`qaSMiqq#37YgAii7?nDlL?|{mpcPS=GC(aj?~eP20`UpRv9QDg zJyVnB9GX0y4KIdlBx9U}vLTusDA97-mNy==xDrevMs>M{v2f2w0`<sivbWPi7*er`!y7Enm3A|ef68OhH!viD>+|07nl(74+T*~YIqYNXyPC>Y@oOQ z-YqQUE3r2P-f&Pl<_#}QW_m;X{IYJb?jUp#*)c+9|1+Im68_;c81Ze zDL?B}drq?%#H5srcF^}ZTFq0K5REp`00qta?o7Sfj_`(O=f|6!9ng5e0WYcx> z?M9=kva6jYCrvxCo+gUUX57Jpi>RNV|IPx>JFIR*IUK^lf&02x6sdI)hyuI;c9-+1x0|Bsm%P7#^C}Pa?>4&|&(tDf#hsV92n3qF z{*~vrr^(OBv+`L4ub;%g$>XHkR{By2+U)agj3zv@^pB8X+sHo#vQzJF+s61lxl)d2 zvN!e_SCoTvO=SGnYe<^^PL+pCIHO0FBdCauA@J-lm>>|WOI$muG#qsAW&tROv(*;! z_S|T6Irl?y{biNkxN!6szSzH*zhXw6_Kq6jxYh5`0b8Ivv~BXT)mch-{<`lvJCtZ? zZ5TwJaXFvw&%`CLLSH`Igj-w6JnN6q!-G1f6#9!4M!P7#U&_xiH^RR66SYGIV&+TK zsCago7%X>no>BVd4NJ2;IAo)Ga6I11)n2tFZ~7;AcpkHkI&4ub(2Do=Q~G`&#%OiX z>Ig$`sm3VBn42RXI!o^1egax`ySg25X0;g7?qwo^4GZHbY5$J zROTNWz}xxuTravg^y;tj@(91NR{mOfQMFpVabSpAa2#eouzrAM@ke2;!kNN+WpbAX zZt5cJM(EPSff3Ov`zQBqykAhCOp-k+0DBFrZW1aYgSj$_3__PF75UK7&TqHu`XZO5 zY*vT@Mis_ld56pBf%+YegVZ9{^cX!dmHoqGitTAFt*WB-FNk6c-VrgA*VD$o>+=ht z7+Ic*z>WyeFOhn@1~LExT6J)1y)$i^>v2MQbAvStpk&$L1nVuFV{TEtjRbH-p59Hw z)E@sWo2&F-OZWpR5X2KXhU-jp zMXLtpPgz;l3WW-!LFpPP6V>Qmp%UJLl+iLifY{GRxICq9)dg@wjNIBHE)Qu(eJYQ} z&LHYmi`4L+FOSj9&a_Px{Hj>%ar(79JNzpae8vVucY=60gEz<_NqKPZkwvi?s&P5MpveYmMf>+f4j|bnAP0I6T+#a(*?%8se;p#x^{W@ z{Y?E%<&V85Pa+rw@>_>09K_J5enZwi!4)%FnWL5N5?PHx`yhcx^RKP5(FP`TKLr~S zz(E}K?`2fEnZJqC=Ieh{giL+Q%If(Un1)OE91mG-ArRtposIRp>MSEHkl3fOwM^xX zsnn(tF~nL`Y?x$WLNM~pu7NzkEYTji+@wwA>O{|=>j*VC=CF1h?J@`j3Ff0;Pj&@! zR5cNAiM1f~qeM@Fd1Ke!yTPmSkv@wM9@b}-eDWgyQ3ie?+tDw4FTE)BknU~gE&YD$O^p{&8-y-TC-_GZOU(d)VeT6>0aWl zGXAwM{KQ1h26_S6tI{}6N>eCwBUUM7vA_XjcX)Q6S=+a--m8=D{R^aFjZoigk9DjJ z8X|ga3V2ye%?rHKxkkV!(`FHr@fDQsLs-NP#cF#2brCIc)Rq&uL_Yc9GR!Vp_zZCU*~YYEO>-JH-6$(u{f14-b&Of8LKc#++*X7NuuE4+5GG+}RFmo*-XdEXWC zna`^#bs0BLT=rCp`L9XTTCXIR2 z{_`iYN)nx+fo$4mHo8AwXPb7#uTkNLFC(c`zy;b7n!h4l9`G%K@GbuH!{7D&?Ee1r z;s{*R1>xcSQCwz$k*sj`=>ByQy~5s|%k*z&;Ti4Kx~E%PM5FFZz$&(H_7r=vTj9v> zw$9>$Z+nkN2A@-v*PA9V6O(18{ zTsRu2^5BbB`Gauet&tbl4g3J)S;-C+aCf>v~FF6>d1 zwAU;#PJ&&@^rUoGbx+dU&y&Z2xCn4FG)m&6sSsz*dE@%l*w|Q8OS)Ey^ok<2Gdc)L z>{OQry~LpC>9g?TG8)gtn0fY7QmLMp4X36%RNXOA9lKgXJFixJI(s8VXsG2wla&<2pem-?%e+q{K|?V%uwFx%gy>6B0!@PB^p z=}fOv9ig-0d4YYh5Rl=}j z70ILtzp@;zjYL^5I?$grs-Q>?d7_apbT#6hrUou8)6V)C_J-(?bI$e4EGUg|N%JMI zpk>NMmCsVC;IoF6=%#`h?lAnGUF9>I=4D%HUDpW+?Ye_H+>!fj`uXH9b84ZWwUQ03 z22@iJJxNBSZL~-a-z!bui$jpm1`p#b-WYw88e?RGf8Xn={r@D28WWoqTQRQxcYv%EvG ze&QEqz5z$XF}UdDUgB1C5I;;3?Kd-nn(v}4qFeEf6;e=@O4U|i(QYU#&3|t_>P+s_ z3a$lHAVj%T1KXCiUE_qc396NiB~H~dqS|%%GU!r7p8a$Y39^@s5^>4DXt82CRK+sn z3w4MRIRoW5>n(FMJG_U%Br1Is5y(z#QV83yadc+5MNvzL0*fkn4n8)-`53oX4f9Cd zE7*-)s1+?@1)pn36qb8dK=0TJXe?l4j=m=PsuBN* z?I|eBbfvqQBaJRka2A{I>d86;5JP=qT(wu%vRZy(GcPPwR&)v6~sJ3i_DZJ9{0@*avK4p#WiR~c7P&sH}N+wJm64~dH3VNz<)h< zQBVxfvZ#Fm#syE;G)OgaDejf5UP<#Owu42Nj}YLi7zWX^rxGuy{vGE&3G5bz%7PA` z+D~6m$&{buo>_dtxpo`7$39~v4CxhB1Hd8yYYeC#j!@z{_>F7g^VstM-AJ<-Hcw}p z7O+5pVdLq=ez^*K<4?u%EKMg~U9DY23yQyAWf*)q?}Pwf-NH*3L>pE__4n);Od05E z8oc_xb=sXJlk-frY44E7KjXkh5G_OSpkh5vj)KQn5$GFNyN|!0hp>XvpMl>%*KG6y zsfSbkGj9OH+_(1bCC1(gqG}LfjO9$^h4bM}46^?8Nrto00-Y;NARbRi%Tw4a)%}fl zhCoB>Q{OjwVkS(1iK^uX;KyL=MQbz$2nof{WOwDPoAWJ8jTQ>!BYKI!0;b$0c8w`? zS>%v))LCwe9Svknf5%$iR!z$T^B>^?JG&bG9bxzPg8hq25p(zL@uZgIz7%=pM2+lo z<-UzF+X?2LEu&7Uy~PFzwJTSl_mj z({TW<$IPJyPl`UN+`%(zE=^5MuTDwQYZO!!|&BbJ;^0+Jn>DAGDMQ#G871R`PPu zCjo1;d45^A=dwdR=vlEb zQT?kBsv_EYEj!!4P-s@IEM zg!r%`{mq`J4Vw%B!@);TmhXU!e~_W@w)axrx!{Y56NKSVf+no8CY$cKyXexY**_3Y zv5(Jwf|UhNE`<4bSg}k0-2ctYh8R2UZ_9z5S*jIxW%s~Z=HjNLyWF}{6KBgX+8!Vycqn9$9wCMEl%ECHwb5|b7|@b_T)tu1E9(0PaLV{O|4 z1jse;e|@Br$NA6-M%_V-@Y1%q>o~5^%UBrarOU>Up%m-ulCIdf*TJrs?SP1Vd>#GU z_!yCpDCAkOxliQwFQy)U_h7+y=%1&z4eCgxFusC!;p{8InUs~ ziqfB^aBd@fMU+Q`HNErVnzoYEbFxnT`409;)i1rYo&nssFp#NfDQJQsOJ66>T##`v z@l3iT4vLX}u6~w=2kZBCXGXC`J5563zmc}B?UPss{(%_|s1}8-cBVLkTVltBWF|(v zZ)ujwr0rEBs!<}k8?drKW=KKV-D(YXoJV)`)s3vc5bCVCkQiwEAdF-@C+n+-pIVDM zB1a{MtDzAhOf&;`c0iD;cudhrQp6M$K;mpdC3uUAFK$qPlET01i8s{_yo_w2!4Z9I z3K_$oVaZrJW1?(^i?sJLEZUBiqi!k%1o==l^uKD&zASW!2r{D4G)-bi5lCv%+9RD%s)*SzcSIZmD21c|#S4*69T%)aV%yKev+q~~qp+_xk6n|Q+ z?@To-4TV#nObVlg(A^ND5D0<6&yo!hM3`$@rhq=_r|EN6J;Zc6#wb(Mcyo%4!cG&V6u`8COVu zt%<`nRsl%Hg6{T=(mM#N$iSSbC*4hs)5v%jx50MapATkGRpX_j0GuWhXKi4pYuG3y zOoB2cMWI`<@8|JKq711-Cr4v7C~!|rtKX6(3Hb0W}_ zRxOf~&U`g*Wzv}=WIv;Q4VRALV@;1BPfcu^qVIX?c>iufiJ^}|8F{z(G^Fwocy&87 z%s*-}zYQL*X+ELVpb7BukdSCjk86f`UumMYxxV9`9I>0#v?(a|n_v;&MhB{S5hYYx z4RkU87_KfLs8Z^`7$YA~k z>uAD?>x;j2niad7ZxMb}_4g|3F(s&ZU<`cV%1vXAGHu0Y?#9FG zTkjJtVeJ+h~%FczL8k|^sAFt%3#RRmFHQz4g}BQqrW6P|+H{V+>AoUvY&)Mx0OAfmW50GEq{pSI2_^xpOtE zlAYT$9w`?#Oy~Urrbp<<8DDdufuEmD_IeXhnsJtBOI7Kup$gm?%B9DbW+NISHi?3N zt!rA89OhRX3Ir8Znnfq6RTjMP0E^!WBDAAKr}%0Jg0uL2)byeb6T>Eyx+vl%x||Z; z;i5zFLB!BX)-foSQ~($Ibq_FPFx=9|P8hbYI0nv}9EDWv6_lV%!VqUr7n(!*1Pche z+@jF6j!|6m6Md>-3KxWd=}i6vvQbyRjCK+ckowucLn)d2t_Zc6@01};kK%ZVmqvN1+4m7QXJ-*V7a3!|>0vCc%W#!zgdBt# z6%hgVIEY_bT@q;Nj>jT-1w_)fp1ySenOan#U>zmfAPmG)VA%q-)inMPQ_VshU$HW0 zS@y^u349sqQkKNjC)88!7J=U%=Jszb3@GtIjloM5zF#R1CD?X2o{;OOF!_9PG!({s z3}vcjGLx%Zd71)s#eY*6RU=2HY1SXY>qRJ#ehA5_J!}QiG_|*uoWiW^#E6Lm7*b~n z`q?39pCszLL_}bLWgqpZxg)D)-!4=O3;1WFcA^7x=9>$7eacFzJ7(S@L3wJ<(&oe1^n?`_C{R~7{ou%n{Q0#__=;T#J`aQUn6}U&K2ld| zs|_CI)mz+Z_1Gok&*Zka0rlwKOFhqPeE7$gTLUf6_q;o{kF#&>d{tgv_&Me6kR$~? zeb07eix-NIGa*e!f0;W!zkR3eohGJ%@EluxNNwVuDM1IRlco73PHXgFyQ8rp-y4!6 z>~9Q=Pm4`5=P#)6HwAK?+7W2@gu+ZBuYsudqD^Dxo9>R8J_RX-_<@tV(XqO%P*qf#{tRjVRTuHVei$H6{2yB%kVKtYO z!Rv5N${`j}<;VLO{_BoDO{h2ucef2ZvrGM_YX&{l-j%aufn_nL4p2b{S`}&ou{xBb z#+M#Y`YRY=IzdI5Xfee#@FIBd0k+Enu0-}0%{mqrK9d8`QcKp;MR!!t!94U28%fmE zwUK^eY39h#vgfB9T1y*fLk10GzXXPBO%8js7Gu;sR2WAxUXD4eU zbTddKFzcGPU>ujl*9=5Y?xelkjS691g=r^8d)^{$LWk;ox zqAFQvvn12v{P^u2`ZF5Iyar3>16$}hp?`x5uCgOL@dEPWz6Lh!piq=05=esrAA|j* zhmEXgv5u%}#oT{L5gmGqDY;}64!W|z*3CggI z@KP|jK1W2vza;2BTp1|y^(2_RiPq)injl`P$P?-%?4ly~2Ddt7(oD&UhH!iZQij%# zH^p~#e;@zXqenGoUp$@qYJ4mn+{!DnlQs(TMm-CeRv${yAG$v4>F@!SKSYw+!wTNE z)B<@YMFWj7hC`2usv_TZnYBQld7p*DZUL>BBMNwN^GFZXfl>Y9T(n86k^_o9Cp|+b zdlGyIp#H6jKcBYU#)aRNT~duynF~dIw0!=!01fhH$ermS&mbgv)mCd!kg1^2l)Bp3 z^-tN;bivV<&1ZaD`!PN#$7HaMdLhU3gPS#{WAB83aSWj36-PiAoN4gJkUG&=<1+H| zeB9+A#(S5splXP>P4btaIP&eJ+s;o4$^9#$6~fGAx1IcMz1m*@8QR#@dfeh7PbQQg zJxhPY$i0Y~m<0Ytum7F0saNWTpYf+^JTCRl9=o@8>;EuzPTiS?-Ik8+RBYQ$#kNtg zZQHhOCl%YalQ*_)JL%eeut)FF`{4Tp_sKKHGv``!T~mzO?PQ6HKVfsf|MJxSfjF4q zw|)1!0;=-&HL%VV@Re_Dz@4vL=ty+~*}qF>z4y&ux&NvooTzR)Jc)|%FmzvS@_q?) zqnW>AaIoOmsPHP9ktk+k`(<|Gj+cq4rrQd;ycET*RC~Kg*1kb~;nDScb^MhgNIPqh zJ(YfLr@&E_tAmTctq#>9IcEj^xz%{+45;lve&x&MaM%^8yRI94DgiG6@IAU!ySOv1 z?RMXC{xrpV9Jx2bRKxQYSi3VzE0}7b&~&!ET(k0o!y!-YFCT{TC<7}U3ADG3NiGqz zEfzX(z&T{L_TFw>3q-r|erQSKuB-d-zl_`QTHf^|k$|OIyZ-99rcFz6;TY&Vm}yv; z_oFVquf0gF5c&0_qBq2KiNkiZcDulrn@osfYaZ$coa06;W(k##$vu>Z4#mIkG;Ef$ zy}qEj)Qxi%Q{g4orFhS?3C$qT3%|=S*8$(7)Seu0-GecyNwfIxEJ>>M86lW-B_Aif zAJG&@gdeKMl(DuIAw6xTVa55hXe}`wY+Vc0`=#>-hz07`?*HONIsc;zNM?2x_W$8U zwWQ;4+W)JB>yZFS7=5Qt9|4#h_SMwbHWaZap;;haM_>N!qk>q&+gVvjI#)8f@0OLc zKB{VElsJl(!H?cD;Z>dvAN{5f%E99U565@-q;>jaM>ni zzvD%t;N$vQ?#*9ofMX>PChLY`D_u^q~FyoGDbI z{_?B@MMUW$zm_yDncKzZ&#BAYsxjxev6HU#I*WMCw3n=-%;R2)3g&3al?+-itnMYf`LgxmST3p{KW+<&|6mFWK3O~Dp}YzvZZoIq`&ErAN9{8bMsECQ!aTn? zSg_>y>ez)Znb?YMhRD zJ98sbBQYro<#AQPCe8}y)zGUp7u4E1scg7h0`g31QYHy&e-loD98@dCH|b4A=Yc$w zI3O-#W0}&Lv(yyTlu8Y=_Sct4XsdCwo^EQ3B5>V+LHH2cQnt$y%h4B%CPS{AC!QAon$K8*?>7kxxFmX)zB-w>>d{W$U0G&bQ4Cm)m+B8m4Pp z#`e_djs4>kp%>5eYu_x=fy;`j;Z1OqeNdaBIikzp9R7LfrN9?s=sM+%KM^7^m`fJO6ugjy!sN{)3b+WG zx6S)X!zYQ03W!H?SkHn5%=G{@QG-we!{myHpzTNSEWaW;Fg^7j0Zuf1qS1qqkw4Od z>CS%xVgc!^bFOe4JuUYhR<#J9HP3vD*He26f4U0B%5COfAy*f$;vN=g+ln5Pru!p* zt!Fd|YEH(_G!-MbU4_~b8h}DL7Bw={LSU#?z;pd&+gC}PVP}kY8v8~=OJR=G*Pi3w zvtQ!?1GPc7ANcctgkAiUzGZl9G|1sS^ZNROz>Uxb5D=hzJmn-bEq(x80Yf1R*XjQQ zNsx;mXhI)c1z|#$?vpYo;yXFx%@9N;2PLXW#6?t+eOMhpQ@1Ht0X_GCLi4HwhNgd- zREwcsvGnGv;vcD1G$QQoQ8?Govd_R)o4e7oV&4#*c2UdTTBxI^3Z+PM&#^5I`UPKT%C7tD7Omk#yP$iIQ*_1HNN>Q%mM@^EWl&xMo=9Re&3JrRmjCns;a z+@#_Il%wl<%8OyGK)$Sf6VDOm)LGk*5p$fJOnE|&&8A<~5Em1(kX-w~$XMBS!6z@> zX3VX0ge94r=jOn>Knoi|zK&agSAPYbuE-<%#wzS4yT)kXc-2`xUXKv>~s8F7xjOpu% zs4YXG8Z4bbM)?)mmJ3DI0itjT**T2nYaxA%@xs*ngHua<<6vSWfTeRQ}K z#wt%?+CtG!OO|kx#pulEMpo|Wk+xWO76hTWBGjZ& zQ4UZWsq2}X^=a!OT~OXP5|Xax+^HC54fx3Du`RZK`e464%A|FWxmoA*!2?-}HGWU9 zrRA}7LD2?cK9@;B`2O=4kO_3086}ZystTdxj^7#iYev6~un=n|B|9PN_n$pj(PY6B zxQfc<3J+zvIUQSt7dE*nP+Fa^dp_|Sw&V?~0&Wy^|wiN}~l!&&{3bp)f zPxhed`}|I8w%am!5-nAD^=tb$jbS;{JmB$zidJe?&}4(WkP?`Db^7>mBc)K7aa11^ z#L;aqS|h6hLyFPyAF2y=cIS%@8dt??f2qR7bG*DnqtTJwbF9(}+y)3&h;IdwG>C^e z*$5Y%+%Utk&uRu9=@gIXA`<1zd&z342kk!_udLoB6Xl?x8i1iA!*a38FK>10RHAI4DHp-- z)^;UhOn-16tZb}8L-n|mC|R8xBHp;GH>@txnlCPF1}^BJcD-(~jT&n)X#;aq0|$9B zPyz@I>{IuWEJY!j)@z7*wNr!EJtzP}#dQ`+O;axSCKlFk2^+VINN$^7vr^5Zz7F$L zD+IfWoHTogG|kw>2pbF2@?=M&uKT3Mu8WtHi|g7TxokB4S2OMGyp{_vP00?LA7#GC zf6+;g;#4GM%))7Wh#w9`w-#Sjj18zd7lg%js@&NwAWqoR?kTMF$UR9`bowrhq)};P zx0v-|Am$+OO(l(XQZO;t-c6bruV5^+&S*ahv^E^~haqsKJqze&h1cx;<}%66b)#=! zesdWg$ho?L>0!L+m@ZRcx6agWsI@7#^6zv0zQp^ipexkKXp3c!@cknwC9NYTZM~Cj zNKwNIw{%ig-_m_Ee&KYt$!(!g{aY>Pwm(~f>K{jItpd%2846RFN7*5&0BjwH(&kv^ zfxI_M2jq~7+HD&M$P}k^3kcT<*^~Q&@wEa9v;m{S%&*K`5%wRqNPOK3%V^mvwaX^& zIKK(Iocwaa9W_>;F?!`^x{=CIE(zUoDu9P2uiD45+}Y&BOu&W6pnGu2=Yi6G#n{RR zQrty)@Q4gVhs6F(13@dEo*-Pi2e z4|9S?=|%I6I??O-3QzIYfusdJ=UCi>xpne|2`KWUczDnhK1O$v^p^8EPSj4)td^Qh zpq~}$JV|Pa%nj!>EGFyu{L(VEn8dS7KWaFp3B#yziYS6Fda1`7T;Y3ijZ*R;=V7Ij z!Z}gar0inuxmBt>QGPATX_BdmlP&HiHASkl$e#!y%5i+5Aj(kVgYOg2u+@|>Y-DDx z*I55lzouhEb*%8Dn-ug>gdH-aa4}TZUG2MGVFtJcgDchRz|LM+rv$KK2S321g00v( zJL0WjCT|?*UW{j=huWl>#L*4cS8dMFmGIre9a&X{@MaGwSK+mRN^*Kd*rH46@UTZW zOiME3N*210>H+wm4WQRz!^`KTNkQZvcA+Q~$a!$6fGILWN|Ks^z}jKq{2O*}GgCp= zNMkP0C9pq|%M$rcq|jsJX%~oB$l3p-^s7jgk&l$q{#Z?8yVrw*Mr722b|arRlQ>(5 z!7y)TrqUZYJM2jl^ho@kFjS`|iYvrAW2X&7B6n?NZi`8VAZuH_uVBqW#;0U>qoRTZ z2md&dRG@W){kj`pN?yU2{;3?pq-6O4K~61S?KhuZ53}y(GrEl?j@jkWyLj z(|K}Z;5J{K3pbTnNn~jV474c2W|43T0Xm;D@|q#1n1KWNb>AU?;;-#1&0pL?p_Vg* zoPD|rN1g>3yV|^YGI!GZ3+OU#ixe0(b3hlANVJV@tQgI>l16HG`rHtp`PaCL1zI1Y zPwPQue4!~`FR(z`d?~vS8ZZf(s`>IApvJaKEy#3|P$Qu!9-j#bWn-;rS72|gpNiUH zcDiKTw#rQYlo?DLJvm2-%VqGmcE{3Yy4_Z@wSHRcu^l|Q?nIXV)b&tkBN2lX$@NDz zfc$|N$rF1lNTi4ieBfF%M6aV&0!*@!kT(iq?9JMLPHHPrxL?t-xf^AOvkdGJ3f(>& z1!ukx=YFDnQ}DNB3ZRhLF@T%O2`xTjYY)8|{3!w8>WF!P(#YK9G+zQGf9Hp)amMRG ztWGj^tX%C^jW6lAs(z57StXv<-vb^!MWbw**QffT7bS~TVRNG8)f91QGtyl#kG@GF zw5d7EOcDb_IX^{<0xmY>$*`K^&0-`VeOz~_k^q?p9q31boEFN>S2h#CO-3e^KivGQ zxLr((3YT*Uk*=K-c~4!WI|b_rs5{wTUJ2#YPBIvMN~%#xggLTYbUh~j;teLzp|>nw zJKaAHX5w_ZG+;$mOCMp{a-+wgxv*g=HI!Com(_xX`p;MGCF3a}R_$!2dM9^V)5i?R zc5{&QHK7tk@KewW9(wUFPFL`$@JsowH70Q{JCK#8N=pFX8 zI+=@v8N?a)oE29<^8-(w(ys>%f3weK?1M)^Xr4@yj#Ioi3Gd4v7h(G8OqxB0iJ1JE zTnizLuevDeS&!q}c8ZVrr3GDflcZ69fcFW=q=aJpOs*6_&4Vu}%n@a8s&jANxn*w6RZQ0j^Fq z6BpD~TXxP8S-M1NB>Z(ZhnjK`clNzfNR;1@ayL zbwyf4+DS<%dhf><>KnC^9Xu$2>Mssy)@U*-AhAN&&fmhq9%z8Mq)MlU;cyGOa;|sM z5U67I}b*B6?!350+DMDK7T@D60G1RVkW-#?`Zkh!jy zT4+Az6roFuW%!u?xIVAt;XEP$ghuNt7KZv}ZSPP8n5e#J&$gd5ptJo@5V5BzwxE(G!uB=p zMgwP3iCH!ek&}(GZE(^{U+a(VM|K=QP+rF!j;8zokGa}y0QA5<<%uq9!d~_4H!`{a z#$16iqlI%0Wc(3qO~B=*RZ2G2NA~zMxOL`z4b0SckhIvG{G45i$Qsu62Rw~S#J6s{ zsk7#&*sjv#+5=!?{Og=mP=xHl?CZrQVEHIf&{d|#LxTuI{K^xy3zD$+37Ka~!U;}a z6c2@&1lZM_+oJ?4Q#~HlA=ay`l$n9n6)=P%*ZI*mUVr#=4q8wLt+29;-1o|FV=?hL zBXqmCPzJ3kQ+IvfQXh%sV|I!ld1L=}z(L=}$Loq($|$qF(zC z`HPMD^DgKk>i6;#@$g(hH^nUyuj#+D6Wc&|=R~KN z^+!PtGgh^xzh~M}=TKlcu-k;iaHaCAH(&nRljp0>e^;>QfvD@mx74c*6HH1QA+Sl4sBux*+Qra zjWJ{q9kNG9cqgNu{B;!TN+pw3ioygPu}esL+PrFO5(&EY-l;>IMQ{|*7&ryl_Qatp zj>$Y9(9P#KIgiY#x+!jHU7B#hc4*^x(%jL**|AJIo5`rQb+s<8F2pvQnbxHYikI_t zi7V+0cDqRYnM&}Nkzru-C762~mI;i;I5P17Wb6Lv5aqEi?s;Kfod$58rXy0gDYBObA zp=Q|ue6~jmHZwoy6@}S8Zd!7C0}J*X5Mjfznm{aKf0qyvT%fqaqnFzh|JD2wlXQCQ>2t%K%=EX+Q9S0o_`87&Ax&DG zqQ^WAsP%(lbGbm9_qp$-<4PRNBHA<;B?QeDH2QSL3%-3}wFGbsdbS#*<~zFq@%FH9Wrf^8_o+&VblOaNwA6I#r;|DZ;{=#<8%< zWm|nk+srlv%P(0yX1!437mE#!ot<5>oLL~7RV;>)KxM!m-la$r$N5d1b5IuB+wslu z@N^b#g`NNz*Hxq85C>sSJE#bLtANVrQ(JP;o%C&lqHF3H=g%S2MYf|nq|s#-u6~wF zJTt&6nr-40>Mpu3PRM3{_|g@&;P!Ls#Tj(wbLsuQ4!zMHO44Q^<`oQ+YAG=)k*P5n zqdVCWmoUfnfKZ=A^@E$RBY$VqT_gjvx#v!0JL1!cJoIp)KH-|$gsR0-@NrXpXcn=- zN05}KTnD$?kn%~J7HLaSqRC>Ux^Y?^ZK-9Zf{4QgM~Z8iJoz$bKSs1Rfh4Zg!9iv* z7{x~3ndUYniM#KctISJ)?VDYsIg6$UZ{t!EIE8ya$y|B!wcYjP1{j+ z$6and2i#JLv+7wXM{rXfA2>jl#p2!~%2S#Gj4zKd{NgcS z4=dd)Ihuv@n=|0{LIZw>r!oNwJ<>}iyH(@Z{#)zB=CuIB*|FSivU$E1Wslm9%Q_BM z_?CuUqh=1z()dwx@b(;KtH+U>v11wnDNCIH2rs#mi<^3lX#boL8ZbZeu6uhuo%#qN zyYk5E;BY6h#w*oiM{Kj>4>$UtA{KSyoU>ZzK?&619=JH{@wSBcT9wT{A28A&~dF4wi0G~OEic$-*@oxYb zv^9kIEFj`$8u+(-t$7BHeW}l@zuSc^IetDOBips3W%Y8*gEsT9q&*%3I<#_%U&C?uo9VJs;k7!~d`JpK&|JRY<*(P4c|34OBW@P?P#sbW2%xwSf zrfN%TJofSb_DOt#lq67Ef?~Ts#e=19=)bd%6;!5aGly{7&VTgu!t%cHA;?7I1>tM;KskZs5Gh&T z_nr<~F{tJxD+Hx*W+A!3{!l!DKI z+5`d0p^}8p4WC1j7)ZL&xdpV0k#uQ8sSKQ-Fwf$C)^*BnU%r4^PB9+f$?Rf++wH?y z=okUEYyp_CzxHPj-by09z{PQ;ssX;;dt`pFw*|@Fb3e07yhYwo!y{18q0h+d`s-r7 z8|;$HFhPvj$>{hG`s1ttMn3TY90iD|p?4D>nT#FpEu^tG)3s-^fj&s#EpfZd&wF4= zlorJ~-*!kBfpZfs$WbDN`0n}R!4rsyEnB*qu$2vm_rJbOGOdzgwDfAbE74ikJWn;f zW!r2mcG#Ad#zC_KFF9L)x#7JJ+B?CQoosc_ia~5ZGkfAiEqaxvLL9e>%JCvCY}KZ~ z4O~fOc4RQ$Fj>DeuVSUu{nFG1H7mE2-Alu5$(Hg4NpIPc<`M(DFWDpDH3gxauf;UI zKIyh64{?N=T!mbvUMw`drZFn{q2+UT%XkAA6}+U@49j~G3Miw!1?;T`ECK}&?TK@B z2hPYQn;M|yUmBwkR=`eJAwpm-U90V>57BbCy}l9&S-?V7kmDyELv9LYcehHcNn?!i zZB(#8)3RfX^Jjaptcs41sm&PD`#piLxyvBALEV2}kNfL%l4~U|9h!M1qOT-0=|}dt z01Q9hf;DHH>d?uCBoSSSgIO4`N(LuRPCs8oKZQC*vCD|MB*N-CUe=~cljBM0H5R|R zjg@SaC>U(uO%LNqE1CSh*u^PDs=oXOt%eu8!;J<50mSdH-20yYkcvSHS7#EZs9^80^j2ga-j@yH#Q;# zx9o}8m@o6T$f(mmR34X~=~kBG?T#i8%jVA!e8vE-|F+>N%)>*j(W7C1d-hK5RF8d8 z_TGWI|5ZVn^SH*zfZ-6!|Bl4N444euYNb3!fHQ9d6KTUz#&eWZY=Hw}*9M^K%nBCY zW2QCzIG=0%`t;B}I4)D>U$4sx!EC|bGM}g&aFVrd94jwDnOM~}rd2a*kG@TT39N`9 zLWk5Owb-v_YfV!ubyU-tv5mJ(nNvOqBDINnn*8fk*r=O<1K)Cyf^X7G*3H*NjC5oS9v148n8FmSGhO0 zd4iU6Yg;oSlg@NJ!4h*d10nM6IoiY2Wu5YE0h8&f>e=|LHvw2X{C@T`WvtoXq{Pth`lbiNShwoh67$=Ul4?XQ;Z`A z*CgL#@+b_4lup_&ZHKtH`h7X6mr+9JThmv>46N!&a9~;BNhGMB?hfNBAhb|F#9oA6 z+GEDzgAa)p3z&-X)TNSXs-~!C&a6a+>e4wNrBE!BgAyzg7Suv>bxA$I9}w3z%aelv zPCr8|US7`wNDET%D7G?FtDx)!f0_q{G|c?m?-JcpT!zkG1voIjfREbc)4TX3mDdw30rS& zWh$JBLJoyY2n2~zyxnPR)voaJ$m82|9X4;PB=<}rG3vbcbN?- z(&3og?012Z4 zJ@7Ci3OiE?#~*5Y{xgkykT2TYC25crVxuBz5wWITiu${|pN{h}W60?J;#Mg95Ex$3 zuAt(mRI_Hao={yDWJY(Eh~Cul`)^Jq>N>zgEsPKVjbcHu>3Q=ew&7rY%e0XQob(vW z$qg~lb<|&$>o?KTe7rV!?ds~9kT4`lev{?;)9d~eZ3pK)dCoOZ_Xq973gRX#@v|!+ zFOjd)BT%qlpi8tzthZkgw%8 znAD%aMX7$5bvLeQ**PoF!dJzHY06j{Wwyr04+8fhNd1<@{eW0S7U({l@Du;!DM?5+ zhxL%}l;-dD@-fH+GrhU0{fAhW#OwNjNN!Wp0-HDh8Fn^;-u=^C`vmJZi^W|xkMujJ z$tD|J8OethynR`%!zmey%4W2lAev5n75F77-IOtR7Q$Ul5d*QCbLC@Odn*g$eC04* z!Hw$M`^^*gWlt{0l`1G#iW?_4ey-J~y`Ki_hQruq8|LwS{9oid#&E}O!*6FZ+N{&( z=PTQ=3j>Ly@|i2;p=>bPuyQ|B+gQb&vZ#{X9%{@3bgvkmQE zn&~thcZg``00z@VA|9)c!^oTEcy8$mn-CN7mdcO+#vwrhtwf1#%LoqJwV;El#_sKv z{pr?6A*lGjb>ahu{go!^7>utbu|O7}nzL8!P3naLYN6W&*xm?>E8{pG3gx zpj{q6!q0aX)30oxuqy=yvfScD0scV)5im>9_i5aUBT=a*nH{1h#>gJ0tmjRf3JzSv zUA|(Eebimu1#SAchchFU^Q%lWV5dqtx_8dnQI-Lw8)n*nlU?V#SN^Xm87IRMQTxnO z7+Oykz5L&!#wvQW`#1N zO$OdFyX&%3s?3f&#bZW@anRi3qnv+yuG(t>|E3@`eHG33@$C1HM@n4t^)hroh&San zMcY{Y$)NdfV~y+22_4j%6qn6Iua6fsFkvs0)Sms+TjP!o3Xf*ra&ErdbTQZ?A{3{r z)MB;?go91R{gp1UZcXt%35r=4#UKo#U;`0TS#%-`xbaPO6i0O5jc8l9B35`v{%A49 zEKNt(kbBaN-KDMKyrI&gwynd+?ogU#SepTS1u!pQx;ZEeHf0#R&$n%YU=&^n5|I3hONT7+-1)7oDH5`jeE6?9nRRjjuRt8i z{H}P2n>NfDLj4fW;6}0UGveHN!|PSZD88R+1sW_Vn##@bMeXjgMcM#E~S0C1?S`s?$gg8IL8Tyc*at}zBDHcPl*`4-Acf9uZ z820yU4HSfk9wJAwQ%Spru}xNVkQC}h&qY0mAVD01KM>W5n3bjz-j!LTZ$_rCMz1cf zO_&GPp0)}PNW#1(OHF*iT~SRFJfv(n@C68BnWkn=%H544G%CLRj`5)_Dt~HpN=KP| z!skfdC7%0!720V(ac;Da!@;1Z!S=1x&{GPLfeycU0{#S%YoxyaLMXE3jZV`PT_dX^ zc*v)46;Q{e0;$TXp0bdNcafJ*6G{IZ9j|8Z%90RAZQCOC30Da%rkEFu_3=@oOb4SRLurL*nXxNf9#KC5Okunt5^`kl3o1Oi#Uh z_#(fWFmF5(i=U|t55IxU7lHw>tK=LzS=^>W*j$3EVjIki;qpPMYQ4(#hFQND-l`S8 zE@hPs=1nWL=&J2wjhjt~lg+>kQMGo)%qQ2)~C*kSY{7r_SvabYQ z$7II|BXHS`jCfz%-va|lH&(d90WEq<(cpmCLs==`B!N|N47p{;7YUw7MMi$ zf?+fI4BfKnOMX=I_;kDQD#qOc5w;9?Bi!n+B(t0CMY zS%pn7rJguVZERT0Km!)~M3D4Sth#(S%{A9ARRsUg3@K8eylFP@ciTsoqn zX<9+gDTQk=L30ze=g-yi*5YEBBQ!;8G_i=(hL!7QuT^incz^IErQz$ejEbPT66E1K zeJo!*`I;e0tB0MH$btz)7FI^>;w0An6+^b>ww4zY zG`D%4x>CAqJkKzWsz|*T-s%R0QfPB}(0p=5%uv-=LzOPJL|51T4&jw=b-%cKsJ<@i zJD9LRG?O3n39HC^^ zqYZN;Fdf;%>CsUpg)^1sp80z^UR`{!-3Wz2i{FW!hPZOF#%j6Or)L94M8quJ#!f1~ z-1AVUCteqnhE+o!jJAI^_*K>`?_`&>i>I_IF%Pd~o^yM6Un{X^B~e5|iNGJo+7U)L zAxEVm^m9i28p*M6b&vO;!e`oa?RMaGYa9H6m@hYd;&KMzSp0qN-J@yeYFgHO!mQH9 z_uJ-mg^J!mw>OfDTD{PQ32>Z*22*CzU`}(Oa#X)Tt3kn{?W$@L8e`nJTwCh#*1k|9 z_mEn;MAQ^1T`42%xL|48w!XHwcv&TH@;H!@F+qluxgashb)I7xaAJOZNuq%`IH$ZIGnqKINuW`XdScsxRDRx)4~zVD64X*;qEY@D{yH@x`Zl=?BF z>7xh3lyRpCbgW5uAS9)MODArvJHe?HN1{A(SpK;4^Ay+9db5e!;(NwrewdMvs49(W zcU(-Rob5t<7W5v^!|_yboY)cHNa^T53h)vQN@aRvR+zj*kXk1{pvu`CuTa@-`wi)< zwxpj;F_dE&DCcy|9*K4n0H%tgd}QasA*vrVm*O{LZ(@Iy+)u9z)W4XYJc|dN2W+XK zZ%6*G9>-B0M&rR-yg>}y(PJ?Y^EDa$@UfvX>A;~_XS({^Qi_ zA66g}`3iT@n}N$WTxeOTH$l4V`gfA*9UrHlQ>y}Flaz*0nORc&ga+gaI`q3;K-;hR zrBXt+v>d12+;XtJCtB)|W7P>a3Op8X4+_=+;>>0Ot^=F&<_LAezo|HkR?C2n2vJH^ z6J4q*uUz<)djPV3fmhH4fNd@%|81-2MmRVo94Cl26qFhQE^7P7L=^lE!1II{f!J*-7`s04f@Ot__mDsQ4yGW$Rt&X>jr9jmQc`JGYvD<-11MHf5b7oS!P;B9s*}|jc zXYQ;cnlDFiSNP6Ld^g7=NpJ=&6QlZ`o9s(2Bg0m3rNbw+?i6QF7zT^y)?m~&tz9{Y z+2l?UNOz-l$cfh&ALuf#@y);YsO|r~r<(89r>c87&>HKeAU|dcj2EBJ_`KO<)V#|BQm1g{7@#qBqhOni+@m zL8vq3j1(Y6tD|RfB-PrS`R1_?$*0Ji(#6{*VNQzj$^tQ3R{(%)VrYxMHnKl(C`p|z zJ{2m-v%U=`xZMjolB!QANMj`C?X@d5rcg_RAqLaIa*DsJq~P0ms$_HQes)md2J_RKA3wKLJ3si zh%hag)%^(ft1?mdH_XlKh)%fGdNm(`)$#*k?sH@_9MYF_eoo6^tx&z+H-3OU!yuOb zH-q#aq6gTS|A#^PSISKCU)egUcW{xUVLyGQFrfN?ZmhM9fv}AE2?3;k_NX?G`kQUd zuys{w*3SCA#!vfnrjN1H~EXx2We#^C05)QfQu@@5jBz`)FGA zM71fQ>;i~4?CjSg%dMu8L}|YvuOy=NFi=bNR#~y=>$n0}i|uRF@oOhKrI*;%w#0yM zq~?jzUF?;Pnu`tF?gBI|i>M;qg{kg8p5i0fm1Ry(jS@Ba9FtA=IU6-*XP_lc0ynYE zcT5K*!(pU0N@lTb`>UX=e}@$jb|q#%m=D?+ezDxH)YEurflvc{#FQ+Uw24=$k~bwQ zk~h*(Lx^(YV>Z{Qqf+*S5pRhTHh&tHM!Stk1H4xYDqNEmCPR^e&xX5_75OLNavdx$ z$GI*HjRAr0$oGCdzQ3? zj+i9lB3oC{+DNm)06dhSsXL|&;MQ%{<(?wRZGy7zNcSjpvX1<<#KPu7Lcmz5@v{3s z)t(rK5g$DE4%IcSr+aqw(mS0J{q;RW{d0lJ>96a7V~#+| zKed#7M-Wrz@>nt7lPU<711DG|duKHDlM}@fP!KQ)q2M8U%0c{=(rP+5i(puCs3rfR zkl?#ys{marrvOB$+P8}|*VsaM%{If4L*N_#&bR(CfoCg6{01TJ2u`a%OEq$$6r&%x zxL+%1r{zg7V(U7=GS`hNFqvoNG=qLD76;u;yqu+?MH+xH*q8AvEBldC$^OaNKRBb| zxwq0#u~zSSqs-%z*Yg{!W#RjR_4U13^aR;Ue-bzzvBRRFva!_eH;;n%H$;c@yqwdW z{@sjQz@@1?6lMlHDryeeU3m-|&&t0*nZS0q1RfMw*qd@RT(#Ii-u?ZR`AzdvLy$DV za!t@=Q z>U)PtUjiNJwe($j=bfbBa_Iv)T{Gx|*2FH|T7vqMzz%}b5A>8i>Di2Xz)ZjBKU=eo z$ft~v#G~*5(i)V13HerK77m;@T`vbq4%FhqF3o|uzx6O$&yr^>x2l6GVafj%oqEdD zK=w0k^>elbT)ncv+bC&tmbGUm;)!2I0${1bzw@X~B^jZTvnF(nSy(|$Q2(i9<}0$UwlSpdldo$?m)=(A(pbBfTk=;*i=hs^U+TkBYvxD{yA9I zO>5ac;m^6>nOG>hcemY3&U6=Vu3xD*;U75PWQwiNXc2&M*bu$y!s}Ebria?3S=sAe zGf~Iw0FJ@uX0?HA&q=g{4>%xY^akS4oF1-x6)>3Yaso^Z$a_~E2xCTM8a$3pXZd^G z6|}Xar6s`=oqz0sQ*dwoN=K)Ajao*yzygAelo)o<=BfYJ4C4_x;t59$O}>sSL;qS& z0FzLgWNdC1B-bECqy8ynC(i{6O9|N*3}R+fM>YKDo8qK6E5;*|9-R9sO@c7MUsg12 ze_&sD()QiQWO*GFANJXTs6s}YagX*j>Sc%Hpf&Z-XgY)fc89tW%Sdcz-;v%^Lq7ez)k z?~q|<4RtG!xHiP6M(UjA!3@{U?^ZUswL37ARikn4HoDqK(@9J1IOWfP*8IzC>^h!h zmZV@ttvvitD6XYTk&wUEeR#uK>6r0|IxM67XepItMb`?~y~2rj?1(*Po2~30S+A%5M?qwI7IdTeCo@DK%4O z!*Y*HwcNj4S_Q9{K_^miH$9#>QE&UGzF<4aYLOigk;+Q2bP@eM=a0Hc>W~w72eqtl zYF7@e2GFlW$YZ#?RC{fLW6Ub>c@Fmjgbjbx1IJIX4AoIZTEE{t_CvH_T_Yol_!a^cyP0AgE2H(2o$OE zA7Xi&R8Dj%^W-4I%8}p<~qV3|;`EQICYJc+zm09VF zXz&`}%8`k$;<%;S1|Mm$^V`~bP@eua#oPll4_9Y-&w+Pq_D~$xuIm}IPQCKY?RLw> zG47FZvLykwm_Fy$Mp>|))eeYw*!Yz<;({;Q89E1CjK;JIOhw#XuSovEa2;j7GvPZA z?-Uh(pY@gRT`?|d!{kHJEaTtg!wcG%v90aANF9oTymZMNNA>M(+$sKBy* zFQFxm_uE^(9yflZbvX(IrXj+~1&&f{Ll#cM#Yb{!fS6A#xwW9j0isF1{ubnM`{7w& zS%1A3`9PL+e962ucyuZUmm%aFHZ|NM_xuVwl3{~GB{4n+=G0Kg2|kD7=oI)VRwiuu>CUS4G9^n&AVf5nn(?8>pB2hQuC_BQ7)X zBLLpApMBJf0J&ZrC;ctqh7mPZSJJTH*-@#l#Km94Ntt|grIQa?4Y<$FXuZyKs|E4i zU2z3`QLq6eFmO}tEq`R)#4hON$0*vJyv#i&x2vB>r<~1??uVbjL22PWvvP5q8sAYPxdj28PMV&HByeJ&SGgI2u9~jrGj0HydsLx`) z(>O$-gKUHE7n=|ZP(?4(Z@H} z##xB#PbAYOaJ`O|2>YZ+NMUP~svDE@A-vO^H%Xz4udo?!<8Nmc$G#M+=s)h(jDKOT$P+kTL)EIe+f3PA5m#9F6svggnNUpZ9x6K%v(}PkiThN0>lr(I@ z&*5b%g|Q4F#!jX9V*n9?EjW9MV0wI2RZ;tf0l6b~;o?Z&V<(O{c?Vs{S_pyV35Mfdht3u+=l`dp5K$hTu-G+{~|Blq_D z?<`pZou-0W0%)$U5t=6LGZR{JJ({%_y05hs*isgyJMKE=*zfB+T^%5B7FXO-o1FN! zG?eySNgyShfqN1`n>hG}?_&d#nPRj68`PzhLhIp+vM|M6WfxYOHA%jF#{)6xxz3{{ zI3A;h$;Mps$ETb5?bpHxHW3mA#P=~;rVw1m{)XT)zX#sEG>$GbW8L9}9PDUW%;&$S zX*jOCJ&P9Rktf!qj>FZx$0oWpV>!!0{w2NY?^QptTJ2alY^pW~?p|$h@sgsAYwaUj z?*;uH|A`R-?6TjOQyf2QMTvDE)SQGY=L6i2`%+oPWKf_PL0MQb)cilMk zW?Uu^2b=v({J4{6#Lj>tMR|3IwWBjngl;zgmvh4qm$+54*^J~gM~2MZdjVSOCh947 z&KAoJt7{LJ2)?~kSt1DpRN!Q#4rsCC#OdoPr##+%SFB>Jq}%xlNA47HfWz)%OMtGk zR#u{h6qAkxHSJNOtw|&6K7gj?+wgF@zS7~gEek!!EE9wJ6RDlHl2X?c!~QYkh?3eN zPHaNe!mK8LxK1pcu!Kb+5?8G!~NprmgirxQ_K+zcIVA56hvJms%qAPupZ zO-QzCJmqNH3Z`}*W_t*7$ENt-FeFC>rT$!~Lii&|v73EjtnNytNNBn7;u2>xe9DUe zM<=s23V~%rx%^V+yUZccx)nEwgc}rAF#3u%ls0BAE;U=ObXZ7q`szogEysruIOO|Q zUiy~3y|<&Vv82tI|HIfjLT*qT3wI;OF^*iW*BkP2+KHdGytCTYfRpZKE)a@YT5DP?B=Uz}Ymj2!>>)lPT9j)WblcTW8n z9%Y8K126~e%h+yS~0(?$5nxIf!LuOBLl%hk1Dg#l4S`lv30%5Iv!&*4Ngg!ks)nv~D_R zlwYT`>bF46k>5 z>Bv`5xDGv~zbf!5R`&X&GzXZ_37b=8UTHC0=Cah&He=)VzdP*j|Ay&j{kJPv{U1>Nes?Hd$lHuu zIRcDJdNf9Li$)=MWUKJcr@s!x>ZUveGg8c?IzHXwY#NHt-=f!ux*>W$VsC29PKcmc zOYAq=$EW3kb^%VhO{>z??b%&7KlT@UU(J4y9OhW5j`7=TraS^SSO?VC0o&-UdsObJ zdtLkbd0$BU?oW_Np;$AISybS}m?xSbyW@v@;oNcqjCSGu~!Mw?py zZemfqL*Tlbv{xPxPS=#TxO%dz>g>5F{WctDh3{OggFE!3 z@}-16bgxGYgOF~3DYW)Z^%ABohBEIi)U(yOi|znfD|>!uq~e4PCZI#34^(Tj*Fn~s z_U0jR9swzRCdzv_z+8;07!pJEGGNQn+21Qy*TN$QiP9?9KxhlQ5Ku=O=XdDNefL3V zh>7q!{vs?1zR@t@5o)JFgmkttTkrgsR1I`8wI^R;3vXXx7wtJ_S0bPT+nVF^!_IDk z$(pwVj3R&|aTIO<#F+}MPlS%g{dLQfiU;b7%2bCCyeH^N@vNTQs@x_8r z=>W%bWSs2DK8V=bu^)YqvtA-%*;-0g!jCs17FaX43O#{^oYA&^;~xrosw~ion}^3sLt^cox&omwV&1 zo^yDJ1}WyNnHgN%I;g3Vbf&~G2*ap-4>uxE;!d%gb`nyoKIh1_Pm6+m+$dag3!g==>ik`F; z!F|Ph9fD_OKCqSMfHl%dJC!6*vs7U`iTP5W@K02px9AUC1ml6~;wiNhNa|XBNy!Rz zhM@CKi;bL>)@pdzV2_qsNs~-T6AagKf@r$SWPb7sWjOXy^#TVYTIk$$waVeJYC5Ld zqIr!8nUDU3vfB?|DO+!lJIH-7KUsK3~8G-knQEw;`nd7lL)qzNMLCxeT z(8Ez?sh{jL3kjMg9kfy*bZGxRL2M+l}uJ(W< zGjZENK8DYSPb^2}{Dm(!iWW_s4@yD{;#?uR0Xl3+MyzbQ2L zv}y28zEvO{o>FJ-I>RP!9arX_Ip%2J+eLEJhmLvk&b4Z4a+L|-ZFjWrx`Tj%v{#c) zT1|t-D{i|5^F%r2jV#4Og1V5I8Q?i{JdV&zrL8eQjo<~$M+GuoH=NRlNPRRY6Cgd4YFU?TmU$`593@=JFyJx@ zWU@+BsW>b%%||+TWtXuhRFOU28Bim(7CZ^(hl5>Xd1aRtB zo{7S1w2s^NH>=31S3-D=C$lwc#43+PFPVKjO|zP>1_6{}EsPgWN?zKXjXX1K!OmW_hR4e*O+P1`0a4I&d=@9hV)6>EUffQ*MAZF_7uvS_g>C>XXE?w2N`2+$MspX5E|GT5^1MEyW+; z**gI@;SI}}5bf}WIXGC646`ysG~G5OL%hsDI+9zbXgtnRsWJYsy+`m_(r*o|6sXEC zT(EsM!bAnfg#AvS(9|3n@yRa1u!H~}a@mTc*T%J&*tpCAuv!@6a`eMHV#o{7#NMTuz6-&eJjSYpL-bfnwt0qbJU4> z3|NVOB(^?7Z!Nha9T|&_xY^b-*-BfpT&!w%5U8W2vl6)xIjh3s5`iR$0=fPkl67^m zLm6H9rJY&Wy{n6)Os=a)=G!MKPz`0&(xO>?UX7(x^n0!%@Tith+$$T=; zp*N5_nJ8Md%}l3N7Whip!O8+$JtA*@l>N)VYJDM%?AkqqZoNyrYU&6ZOY+Mkqa_mE zcOl&_nI?HrzMRWE!Zx-wgU^n3i3On~&OAx+#TsHOY$dK&`mncf$*#IT>riUgz+bh# z+pN1gLVPSme^Y>r4N5FBlmt^-MpF&xxw8)Hv*wOo$oGMNE#YSUh$o;g=8 zsyG)liMguAhwIYHrjBc=m0Rg@<#Osq>SP`DGjxabfi`M~6-*H>5ngIx(1LeW0Cz3Y8dj1<`prGuz` zWtXIa$xNRJ-;h1f;4Am@_To~$1^(S6o_w$ zK$!QPQV$~~zU&+Y%6YNG{X}_K$@)A;tNHrXJ1?^B4>IPMQ8zuZPe)jB-4OV~PHUn3 zhac7iI1a)ljkV}B^k6$!)Q%%Skq_0Ps+A{SNs!f_(U}mzC=-dTKjrMjF=&k~ijUg@Z()CBP~d}vgMv?mzz;{Xc2%d3STLk)hAz%!_=Sm#NhS{tMfp_BHlMZ zu-Sc@x4bI)U8e(ik6V?VW7j5;FaO9@KAj{eTY-4ah=?(vuk02V>ruiNQJ3f0=Wd^~t*71XW34f5V{BqSVd9dHWdepmWhl1;dot2X=oF{)ez2B{QkdoSjaj3&$BVU2N zn!-ZA9{OYr-~1~v=YKy`e0+o)Sdk-HjnlClCJ{P+zed$nvmk+O(%Kj4g_*E@lUfZ6 zWlPWG9hh4!xa7S4dzg1E^79ObNh$eC)Ilw{;{vM&xk;_4`#ILol1#X6|Amp}RBfz5 z9}LsS9IeOM1u|^7?TaAOr|<-g@r!Mp5iw=*1qEr0IUV z9O2M~;s`g!r|{zW$BLXx*YK7W4miwMe%t3#`1N)Z z-tdunh0bh$wS&Rrb9lD8`C@4R4!Zh5_3Sq-u(D%_z)q2%EfrgB;oS{2w-{-Zg+vqz zSI??qW%wiMLg{;nmGvNmKH(IFj_}Ksb#PNhONl-2`NM)0_miK-Wq*rwN;l$Bon{a4 zQHWhN?{j9Teicx5;S}3gqSA4`GEPCa9*unLTurQ6Rc3L8UiBvT2i_CB^#B(vM%yz- zXA7S3Ci(|qImg`OZ4M69G5NzqUd89A`Hb)vE|KbWu})I zyu#_3**~CF7jqMNg2$LdMp0I7JKzv6L-fl%6K$>e!@a@@qc0%}jVR#U*<^*}scUt> z-p`9a!ylB`{~}GWGW;*n1QRpU{|}Ei6?fbPyK_eU1zajY@(cvl`Y&`genZp?-E>}; zH%sR3sQ&()kffSsyP@W)>S`7g9cb7t4Igz#2yZ!aw`Bk}^EWfW;3_f}(A4K#6Eut^lhq7(y8wT_avQkKPXCJh@uD`8C2l(z^utxDID>KN#npOC(y2kGDdf`; z9U-h8kUkObyVU?q??OZC+j8-A_}8Ir>t6Ih?$?X2u=kawgSNIT2$GS|{)DxfNza6; ztq}tcVDKO{lO4ysuJ`Y6%K`2Ho~VW}c-?9uSGc7Z;+grdM7;*PSMCX4Kq8`TY_>7( zpK_O;%CIRGsrrE%wqgs2>9sLNVu6vT@D)oGOD`#dp9c6ddT38gXH?F@b{X-I<%ERH zb{}^~Nn@(TCY@^YqM;B4dxe0}pcvJ;RYcStFT644QHHw|1ZN9`D-anl)C#fSu`lm@d z8j~w-PR-#R{KcAScNVYiN^~f<;yb&yPN64uUv}5&YH$REOD+P*h-JoMW|n<(U~+?H zE-%#_gTN9pTc55ToZ^#SuROYT|9;SO41^#6dSrJxMzgiy?<@ok`_j-^nicZfJmjHzM+Mrcfr)TSKSe{Rw z*>$X5O}9N@#f@y^r3%UR7*Dn=W%d#~p3(OqhQ1yg>q>oZCU<7OfCsjKDE1Sotw}K_ z%g>Wfp0H>{`Z%%wX+d6qUS>C_udDCWs)W|uGy%qRjO(*CO2rKU-+=?DSDq^= z1@SHwy=Ke;)VogE&KxgT%~L0WE4fUlam_r1pv!YbA~uJ|YfiID zAYF>4CW`l)kJ9*5~GU(g90X5z#3~TB#i_J>piV`f;BJ`d7 zmr1J=-t4Ng;<*xp)GcHewBEjC_T z?Te-}=6V4{ZFo6?GDOvkZdUS-l0UBxWU$lfD_JP2b`?M}v+wbaLnI5UCnoqIi92<^ zb_xp$2fwt`YHI%r$w0Ekc^=7fa!p3hH1$Q^mL3YgnEs|ji`QAV)s2NCkfQ(ZVHt{> z){Zuv1{sY)bCdaux2-(T`iOXL+pl?Yz{R4dq>h6(MkQy^QIih>wD5{GO$ z6;c%XsvRy@wv(vn=>RL3*|*zFZJlxiHQkrw4dfN^h{Q5c>$dB4rD&>H`_e(d6H4B2 zgH7sKMg(zI40JfySY}Xs;nY4yNd2|!sYc+0{Z_kTNa2(cTX{F2^!}~h29Ts5uq0WA z)-Y>QOt@z-TM`R1zB75!BFKu$e2dw=HQ#dLj|k;q5+k zPD2*;%FIE7sOuy8H|dJ(wRfdmL=qfd#JSfCRINgXq)V^S-#r1B!C|-}@A?{To^*sw z9`;*d_&MFY4vi7YF>4mwnxz@r#EQxFbKlADs6WRf&9eDG)kD!#34}&{18_|ATbw!z zRKCm%HXbzO)qL12&|KiNnH)u0zXWBEnn+EZ%8b4Nw_DY@wNhE@M>qs|J(Kcvm%3gq zH7Z@Ct_JKDGr%-9DBZfSs>6u^hNp$%tge5eHYOHr^^}tBJuCIQeXu4%_pkvqK^H;jew)lVJW)o+B=(7HH*v*?jLw))STD{#}Pw~t;jKE z7_s=><|)7qRXY57a;fHnfEjzOU7Jxzg6XGe<3#nS?45O6zgCR2kK`-0b4OY%1heoa z%ZHvDG{rngSE_XqaXkz8;%TMElGqF@zl3fYr5c(%`cy_IvlT;nOQLp?n-=6)Mwmbw zFBnjyW13~8U|?NoM2WaRWA`*1dGbsGf$kr)tJr8iM;qbCyJII8Dg&{I+4ejxOOW3@*NS#Q%8ydQ^KZb;93>8pC$l`HB_Q<`9ijhykMNZp z8~DwKr~Z>s*w1R)P7kvJqsMkWQ5jS9W9rE~974OnTI}N2jLb&uAc?2=Gw`v&ZH6nf zTFGUJix|nmgTCQJAnT^#L2I___s+I0;-IBoV!amSa|Js-c1hj~yN!i@{=)VGpS;nZ zdxg1P)j`YQFE5Jd5L9BbPB{H83;OY0*0wO(j)_;-P5zP z*vvj{Vc1zO1O*-D8X0GoVji6Qt|PE{7x8Z3qQPJ8Fnf*;$QxJOZnjbl<4<$D*L?j} znF-HI-%2p1st8gq3$BYh`4bnOFr{VBx%;lw!vWjjL6Iy&AND+Xghq;Xs&%ygd_9E! z0!@*mjsKV7itT?&Yca90aQ+`NqRvFzaR*}WC-oC>(F8=DKrtMc4R9aqHv6CO$r?I+ zo^a0hS6rQ-5)!J?>8i_0OBS$5N<|$b&&C9!r>CtFGRfb{iNRwV1U{KH{mO&er_Z_5 zU;lTm?{|AcrT?V0o}N>+S_Q7l>*;?#h)Ug*h$JlkEY-voqJ0YSN654Fm6I3e4J_=z zb-?R5LHC_5+;5ESw#_2F(as$o_At%PRFABFrI<5z)j>I)Y??ExU;0k8R9W93j$y3C z3#V(>_wQ z^~_SdM~l0m4CF7?N$BjNXZlu zb46hA( zJuOjjFV9TW7{=n`K%q)(9W*JUnMNMAcZCU3(l3q)EfM2*Sib59yre8gc81)Ws~j_mDWw>@`)L^Y1ELE$h|;8`-l9R-2|Jdn1Nx24K8 zKm2|#8kmTGtQ&OY)S+cdC%oWRpg#=hn*Azw9xi{^qw>lNe^nFAtvZrlVCK|%UikGO_?b#PvG;Y9;U z2q7?eSg3uBhox-L5Rsz?2$jW~t?KviksgfMeV$>Ml7AJ-*L=VvG+* zhHdVM^7)&4mGup>Rc^GbruWyaRh5w(K20YRp4&u$ZNla;xkIZaHm%SfmJi+b@S}a0 zG+HT0)FmFRjX(G^MRo+INjL2#{3YW0op7#(zEE6jxv=>QqI-{kx_|wCU%14Gp+VIC zJ|No?`I|eVpob)0iqGF_?!?XF0At=)dYkTKz6Mj}PLWwVXfaaTiVC#%OsU*Tm1dhT z?SNr((c{t!)z%g7^xuloQzLy{9FHpsXxu{ipW{y5&jL=kVjYcfhj(rnKtPstyJXY> z^u^gd--Awikkb8Zg0B0hGV14T?S4^!GA;O@OI(Uo>UGfQ#|ItsqSw#LPm@lgU6l^@fkGj?XvFmAL<* z>U^$k&b!<}MwoRFk`uOozpX6{zHJkA7o)hHyRz%4Er$(ijK4hW7Nv71a$4A|$I0-^ z1_660|IKDO0S(i+tf9PcUXg`N~UA!=SFP}$cwSWX7-qsA{#39PV&3}aFcI&SBvAeg8{)7pK1+*aQ-k?K~Zt}@n5ei8o3%%j z18U|eBPbL;LsLC9=y6q*QYAXNkYg6el?(gz!sG6nWGBcn>jQ6$Zm$qW$Ia`{r z+BS^wcgh1RGIvg^m2L#-Pvl3F;Jid~ubo4qzr#QY%Gu!+h#6kt zF2VdmA4DEDGbCc6vjQ2^Le@8>Z4K6+=bV{~dz@*(UHz3zYl#Tj7$UsH5j@z%$2{tI zDhNt>P+OW-i|MI8SxU<-X6rcuDXTVV_26uyQ66OB;&5a-0Znf-4O&VI=IhSvFSld6 zEEw=`ROTxKz_L?Cw|}L)?id^i+gjF73Tfm$E-xh64aM0GkY(2FiDPxDdurEJKT=n1 zT(RZ{9qFIBvEHE{-yLJyaXvm+-Knb2+XK6KlmkShX$j53+~z(OmR#856?TeDpr}TJ zS~QsFj#7$4Iv;7NIU28R7FW|qKaZWN^X_X>>%GQ{d~Qr16f~oN+49l zK`Gxza~Bncv@(Cr?B~VdtXVzn2WJqeO<%PTR&zq*?La5*Mb+V#e-#AZ zF^MI6uvJ}Ba&E_=8<_SrwBdjSu5IsVV!TM*b)D#-*RBZjHn**g7XNEq>UiRkkmKgP zK5>wof)#!DhHGwtI<3{~%W}PM$lwv@Y1^(}F{Sc)vRKbjy3tg(MD2YNbG0LQ)s_HR zY5b+?t#WywY1dK1O*R9?O9t|`I%}EN#Zu1}$m*@t@$!P*a_GlMHC?be$Q(=6t$*RQ z{>_mb;RPOh4s%-TxZ0?%8`+Qs-QVajQsC{|Ch|_TQ{CMq0yhM-!dI^SobD$OB*X*Z zU|ZJ!i!!ti(*Jq#kE^fr{x9<>`~M{VF*C6LA79dmHfKC>H{$F!HOgk-+xQ_Y1oHYF z^ZxXJNf_|+^mroh@9*#kQM5R_wv}b?3jlm{V2K^xNW821^~D~!Ytoy1E>BKRG|}+V zSpVIi{@rbUcfP+5|Mx>Re;~?iAaC#9-NlC2fe}xy|Ias3DV)7IGO-`?<#o;7lBf^V z8)c~q{(Jl2p4!3L*_I}EeDQKnKTw>`gT=hPmR^@;f>@XIk13zyaO_zYb$#02Q0(aM z(RY10e}8<-SaK54WChZ-mN$HTRWZ$y-_#Qs)Pu6dF2Qy7ZpnAeh5SS@ zPl_VT+`krfC9ZNv*H-L&rubJ^eC|@x`t*c?R=#&jJ<+A+o}}m=W*S(+EWr1T4>~B( zk879%CA8SonvWWrA(Jd8(I#4nbQCCuo*-kV4{956&tVE!uh=|r5Y_}4Bj@w^>JQoj#|t!$5;yYzHha4o<~Oq1@w;quGH1Y0HH zbn?euOf?);Tnpa>{D*New9o<}oMgj4Du{2%OhVY;qLGwmA*yv&jVy@2cQ9&Xyd|nj z@-4DHLe9L)B9Q^-A`N*99jt`4H5hH?r{tUHIzm6fkd#W@T{5|Kl;4x#8H8D@Qp4t8 zhvf>6+e!5~C}dePgo~&;w=$1X7@e755~w~*wXc};`Dqwj%AEVE4AU^LQ}qO&JH!zI zY%&jZQ`xEMWNeoDdW6nIH-_JM)awqG-0W%u!2(xBRO2c!2omH28B!x~?NtqjXaKY+ zYcikegXIXG>Xdz|3W>inbtdbTCM=Z=bqEZ2vZQN3 zxsl)=Fe<@A*)d+QQbjpWnI_!RKVfDwGAc;j==30~)%_Q(FAQ1C+@8{^_+ zlK*LSr2Cnvg4XBrAA2s&Vg}GO4?(|f(z|#+GZiUz3Rs7= zV@6mkZx#A!l*GuKhxZS7?g6M@V~)Jd22#!yH{R+z@$qvC~KF+c9DCu*-AziSG4l&0u+Wk$e7n&Mbrh*3L_q$lW@!8t66DXY(l zo&AyOCnMp>E(-NcT(1f|iS}C#Xle=sb%=$xJZ0(ruGoiIz+)Js>ri2c?e>o2jB2LX z&ZdW(J6cml7I*a5WfTInfL|B)1erCA00E0B?{OrLEvphC-aTgOjtB0eiD z3+3sXvs8@uHR>-p7MSfeg_e9nJSGKr^SV#6P077;V|)iZ4wFG2 z`X~1&QKs56kvY4Wre;It&$ySV5a5R%9t>Xt6<$;6&iHIvnK7Do*P@G`_);h)D;p6W zo~aTCipQpi|FkJ=BJ=4o?6zu-V%#G04ki%TvE%l;nL8cE{D3zq+K5 zmkCUvz1~!kzGgiA$}L=8Ic3BqU0y!scfBaS{**ypU?UV9DaL}{I!N~pyJRj0Yf@HR zl|Qv#S!8%y9lb7s@gNs^)j)>5A&1!JVQ7N4z^lb-=PD4}cj5d=blZ*EH%6%e5Ui?Tx!o{A*(u zTuZBLg7(Ifv_$-6j0xOHTE{zg@4V6|G!BH5M~pODltt}YUPNEcu_t7G*#MV{MwEjs za%f2fI+J8i(3jToy0!A6S^G8TR*a=?$0CgKK84IFYg}Rg_wp&PG7whHFaLx;+0xGn z!4`~8+oB$z?tHPtJ)7g5cUS3A*EnMaS<{nx4G2sXP`XmTjEinHxuBl9wk~x`D~pN* z@M{&=IbWFd9O;m~latOQwaW)Df-0+#JDi%*9M93yVzmgzVv?@ln@GZ6=?ra3!h2Jt z{~CC$Lzj+m%&I1Uu}#Z&Df!eEt+4BOgqQj+k-;*k3v6v;3 z+GD4Yn58uv(TIM26JsQv3Xg^I6oH52y^bT-Vxz7&J*>p9yhExz{Q6DQwuNhig?^%Yf`uCU9%bM(%cSJ!jJ$`XroctEpvEY zl^|Lg(ak|;A-Tq@mE(Un(9#Etmn#*zQmEQwq0C%Ks`3lqq?ou~cV$MktV&?4dOQQW zEIpO1%BF1P3{r69XmoozsPj*G(oc?saTp-ARh5p#{A~L}gW!no)vlO4K-K3SR zk3ud^(iT_Q!2mDWmmArUsr6DQ-ULTSU3-<+biU?}GcC`Y4(75m?{fithi8d>zT_!T zR42nGUN3{SC`?6sjmR_QjGh*Zo_zGoXXJdnoa)+2U-Q;W&0vHG!QlZg=X(`}T`Q-GxpeChuXmTBm&_#tYA%xZZ2m3YKZ`1u4{3vedzRgO0HzR!^XO6B8Y;%r+SG)I2Q(dC{Vm*A1Jn z*1^KWaD*PTZuDv;`l8QHqljFGiX?`4soHokZ6Mn_&?w&mQUxW-ewskLjB&0&ET?e# zI?Zhw=<9pfzx$KrqtcK6L?9sk3c1>Jm$*no;RtZuQ@_1qLN*#Z@w?;N*>ef!pnhv} z+3$)xr0?vQPTtaz61Ruzfw)Y{l1ahv5BBqrpB{Z~ETxoxX|!d|yY_XdGnGQ#ndjGN z=3X1L4Y}#LBk&vllV9bZ8PITVXup=%sULK&{yxFI^d&)no@EARnQuE^efbvvzJ+Jj zos5r~{ef9s`8B^4xAt7>Z+{Tfes%K6yeffftS{?cyjkj!n^L`a!^_vp!w<u`<@joT*nK+pKugLumTT9&e z|B2iagqSdN0R_Q;@ql|UPcwIgDpc>s!N0$U|A{t?$e2o&V!n3FBUCYqf(1ABXh`7x zI4gil{w@z*1UC!5Ie7fC_r6j4{TqDnMQry4xFg>|(G z0VnOVV15g=}W{rgN!TG&`SYpK-h<= z9`f`W4+g-AU&PGbPOqGPvp^j=Ry2{s4t8wR+^6Aa2Hw|^qL(LiKOggnd8Y6uFCvmx8cP- z+p1i2n)c;RxiKFyKvwu^x8x76RuV#|vFP4a-Dz-esGFM8r$W!5p*v^>i>V{e8DlFMWtwOfFD85TEb0!a>S46xE2XF-VJ>Q#9Lgn3`eA#*RSwU^<8n@*@=jiP;; zs7*1L0nG47wyW4{o~n926NMAq@I}y=R>rj#pqrb-yR>+^(im(BY?!|MJ2x?svfC$`--gwy@Xra*^2yP9EjEnXDdDb+Skx~OxRzWvV9F27emGsaQS!eE-TMwh(9;b-uWTcz=(h(;7!2Jee)1$I=cnQ*$%8?txiQ+u+?XO*2ZK58T=%%4T zH<)&8GV4}kI9H#i@MRW@L^f-|EGjQ$b=}%6IBZne>IA<7tA+)a+GnMri*oGV6EH1Q z4X=c&0r9qcJHHLZum0Q)$=@lBEIv;!OEO`}h8n?SKQm!(TZEtk%e_MLX(vg9t_Lcpoao(7e+qgC?915N%~+gPUoI1VfF z0_(=I7I9()#@C0K5gS)JxrvjVIWgjwd!}N()`w-0q3gWk6s(S9mj24*MKP?Q)#aXxoo0Int!N(Yb6)MfA zj3C0I&ey^atFkNjvfKwc%7Z#C^qyq%s&c#;A2S&y*qznOCht5Vnv?4_TZ&o?LeHfm z4EowrF>f`qJkbc*LILC<2oT0!aD*!UBiAjS3HCe2Ljo}xf*zj9-1NMAioBH=?c)iI zUq2gCLcxlgjGvz!aH>f{V-Gma-3jR}*8nOPDU!19v6ms0lCD|a4?lc(3cj^I8uP7v zlb{_-Cb_ z*N%F4{azWGVlB%?*nYb%HBZ^GEWTv(I~l%IlnAi*{C3zyD+ooOmG$;!R#dn^yEWL} zV~UDxc#7$2x~k$l&{pvmh7L0Q3xla3QU_uN+;vwm+?gmva#h;66Q%cNa}UdSc{OY1;~Ga7>4*kx3v@3NY@hKr>C<4FXl1gE#fJ zfezQI#Vi&~DqdWCRVOGWZJmR>kqc$0O8?GZ`4|5NX@6u>^FarlozYms(96qtt3) z3XSNZ%zv>g>MWxmGIbjX@h4oetgbRyoy85u_wsK}{1YkHU6nN`-9{_qJWO7mwaG|Z z0mi}?b;>GSL0$QDhbF@;AW?8lS>%Z(&>`5e#jsn%eLrM-Ak1#%{=Ue$StUr3vbdFl z0WL~TM}fHm9xP#d6Tz8_09ESFYeLM{qwH-UImmr4BNaK(xOo?+`kB~l)-o2q zkvsi|u+EPLMeDbAB)T)i-zb}(yzX*hJsUeZ)TcT~(M__M{B&x^p0w4YGu!cWG<2l< zII4a0q-h7()E@F>FSCT(eyc)VZM0N)i8?_Cd`F1kVbPP;wWPEc0r+=+K84Cn_J>~P zKB1};`^la7`u2WruSA%~alh)tzEKj5fuHu^^>nqq+Sg2e zSD(#hC0Z074v>MshXJ*y2^})RZuh`*>cgChAsizqM0s&+O3c^!YxwKdz`oCi?wFZ_xDvlJYVK?I|&F z-$QgG9zsKvkURfshtfOMj{Z!3RGmZpeQ@(9G+|SI(+g>!qwmWwa4SQm9)ugs6{h-4Y02jSZOJ=7qJ{(Fp0r4R4PUhpFgvgRT)Ao^;d%oE(LlC=H&D}c z=SF1CORDJKzp|9?l;TpyB+kwYdN47PIGIV~!gxteukzrzY5eCnZnIz~!tP(%c3)I$ z`YXTuy>9$JNL=$&=KwobmB30O^NmC=J6B`)^ji2k2XkwCUHSTtV*~a1!sYXdFFBx{ zK|1(H{+$pf{dvc^^7ge(Y0QisJWtak`RlPjLxto~?nxFoeVuQzW87Da7mzq*;l<;` ziN_~cw@Z}Ta2YbVgVfRM&-wyspgkzz^#7NktU(jxvCs+-oHYk zo+ax-YxKZJr(uDdVl`?+3h}`)m0QV}BKCI0{0m)dfAYM*7~9fdlX*y&;E8pZrVU7Z z_zjkeF{EU$TqTMufr~MHzkCGP`B(=CS}zro_}6a`qFq zY3N>K_s(elZX#Hd8r|$D+@K+V92K6Td-j;rhT8_3nfBzenSoDpzwa~e@Yw z1@4oMv_Zq2rNmW?pJY9(dObO+=!hi@TwM`3xf_U6jJ(T7S*SM{r@WH=nGMRAbULxT zx)?oyVo+9jEa_?HUinancP(fczAv}<&VE|Ieqw#(7Cjx+6uYw5QEC7Hdkq6M15NVa z;h`~cst*UPhG9K)mkBtYtt<({3$Y*s14?>YmI)ad3+(qjyp8NWQ9iWGx*cAoC39yf z_x8YYy-VEbo&JDB)sicb-=rz&pS&>PZrF*3*g5(vcu)L;;%{r&SO1NNU&mD;t#(U_hdb#&FS)%Oi}3m zJXdVDytSu?9ciLTSI0y+X*rQNEmz%nBgEc#-G9%)kml5r=IQ7+5}U|*8q^=7!^tF^ zdbTI;#m{^fxq=Z@oOZwiX53y-SFuCg?doT*_wmZ(Oag5LQX{ldej$K7-QE;j5#5|T zor{~+?Me~5Qrqa1QjUYZaCxPIqG`d%d`stcsP?aW^sCf^%nLH^Gz)izcU5q0qrOdk zpi@zW*!C8-24psSvt&pVsSHgX4x5|D_}22nU&$5A_^PQ z3Yn(H5jNk-Zu%0^IHu;6Jh0zW#V;lrZpXi$L!BN~^n0A33)1XKO4<33Z2l7(O$ce+ z#js%QGKGd09r|!cjh5JNKNR;kPQ44S)`~rct)O?(a!Bj5>*2;`7tGWnTm&>~O-U7& zJpAaHYewp=t{@AkQVilLvf>cU+HjN7x-bYRW6RSJ-zU8(CnXYW_l&KWhiNb};i`|E z${2CPO2|YiamYc3%lS!39&~_bbwZ7$=qpM<6qE@=X(9iQv3Keg1&We$w{6?D&9iOW zwr$%!+qP}nwr$%vojjzI^u43s)<0NtRMl6-n)zWp*?0eCk;YzU*n?e%9<4DAMN$%$ zdFTX*9mvSy(jX{7kuhd!p(jgh1#UnRp;eX>Y{SOrf~sD)=4L6DNwoMk8R3Gb=@rKc zhBEJ=v0?50;WWA4f~MeL4bGIP_?46@Y;ZeAYTPM*-NnGkl^_o&X4R|qSSfIlUv0&vXyIEMfGggB$b+RBfcTl?)u!P8$$*@V!o!By@x9J++um! zBp#f6ob8$hEt)I@kgrg4OvI0ED$2e=akJCx80#s;!CK3{Yl8J`JiEe9p_Z3JzF$ww zs2cldpcS9(z1+UCiK}V}bmhv}oY=>>l#Wz(LdtBdxpZ~uO* zS6uC1nOn#jYChn{)_a$xW06MfA7#uE$p&@Yf4k5|IYujqjKec*%6^Q3Fy#q?1)&*s zTaLlz$*gW&b&brP2Hu$rU!w(TsZMETs}q1*e#!@y3W9q9Psz-^w6fjCe=I5=;`1lX zjC+vwXcm5{6K`AAH)?gR%OC|AL*5oZSY5W#0$y3SoE!y{B)3k2^jB0l6Xnffg1zCG z`*8w&Gp`xc6fwq(Ze+h4seRwOsI93z$;T_OBVXrBE)RV4 zwA?wS%DW&*M4IXy2L;-4g2Nxwh)YR~T|gB0hxAinwJ86^)TrX>?HnCsrf&Japr<$w zJpW%|i;?+%|G~;0_9palhL%dsHuSOtObiV4q85%$&IF7cEbRZD*3Kr5^rF@V&L+Yp zMs~&~^wK7_X3pjWEF4Vi|HlWdtz(BXn&LBCdnU&1Z&_jM10H~=5sL%pYW;V{5U?Mf zxIsjQC9A|NBjLHB*Jrl;{fsQEiKHS!8qKQjz=)|DY5T?MZvw= zE(Y}*BoSO1m;9Z39dJK_%^_2n>8g7bnGxg;OMwJ<6Ku~DnpDKwd0mw?)-Cou7{3s) zAkfO9_>ho~C5eH8df-0@@nYm6D^tJDeGXj0>VC_AnuCW$9~&=f2+4XbKjMvVV@>#q zX+MsUg{^c;zjMYP5AS^FfV?$agv@$;|0K8?gjOH01q_YUo+v;TYE83Gjz;1z4pWQi zjn}9=kRJBteg=YXk6xDo_=|FHUev4sbJad~-M_F6PWTO0)z%$W9X0qM@F@_u5EcZT zhXR`s1wMzSjl;q>$jWh#y(fZeKOhhn>I?&dLz6Gv%c)!(I`b5`diVymw_gVm9Sefb zRD3|-NdlQ2g|C+_-YGFWL=bJb?drepa`;I@wM=(Pp&B`z-0Nh(# z25oFwz<%AJn+!ocSfNe^&R7aUMpm29b}U^Eu1zpWDpYDNFjI!a&W5N0w_W>3k_{ZY zMSL~k^&tZ5(o&iTy?JE$C}$r@nriD*X$)J*HFeBY?nWVAoq&Je4;ec09mN_W_bqv< z^rQgxi(LulkIQ5L5|Sm(54u>)cmxxXPJ=+378T-9h?fZV#H6_;L~wpTZoYeUy#TKO z%(?=7n zl0e&11gtqT94tZAMW7{wL&oG%DT2B}G!q(+-G&lMj-!R)@5L8^lJ6-&gJRnXoSVY% zP`EN$1Qi7_a}&eo0ts~u%%AiVB4~-o5j|4Nh^YXGzGSuk^u4h!Zh$|KB5RG`AtPo` zI^E#G=d%+jmX!{$4&Xf^D}ZHg%~=Cz?X@fmW4>Cs2%`LibnGdWFfR^;g+ATE^UW)w zIBV4mqT#Ghm7-V!PKLz73QXtz@_2n56nXIK*>0?_?#}+~RMVeKt~Zv(q<`NX-hATw ze&O}z@YsAjt8jC_`}TN5L91O~oxY}BU)A6Bg~2y__2fBS(ZAYmWaTz~ zj;}`Ta%O#P{VvVu=>$I3Uq)9q@#%frjbL-#UVXurPOj0H5`Oj8_HTf~N-I@X@$;Ux z4WC_KTw3|8R_Q5?zbCKk8qpig=%-)OO53iDUu<5T*gsFA7TF&sdvvHDNmss+?eCB> zK&eYut_vrrOhrjVLkLnNCRh_^C}#Usq5?ySU*zlbQz&c&jOVM9qg&Dw16>3JQc-BA zr@|Y;!S{TVeu;yV7s!Pf1scS z*}2o1NY&9(X(?sb@e|=xPy9i*Q_&aCrMTG8Z!u!S)TC`(-0y+ce)C@dcmXCp_&S=~n|$e##wG3xIC zL6W9-)r^W)EY{8(y-{zYvmBPE<49p$T+TyaQ7!c%(GugHdXwiyMX>0gpvutBzDuyj zg>f*B1cn0#8J;mSF*I5Kuxel}sta-Wvv*AMM6rBQ-z(CxQK`i@YA0aK#@zC z+kiM%Ot{6%_E1)@itDsiuAr1<2^KXT*Jf#Y3o2Kd^ z0LfA4Zlc@_ zI?n5loD@L5{W<`<=t#ag_lmy*UPASCt`!B)E^7Ak*}3$g)zCJS$p7jo6kh{YfYAd9 z*iSo>PfyJrfejqh8i9antWhWYL~9-XwG`q!@|`Q8H&dJNs-*9Fm4f zLLC6l|J7zb!OV?B#)KdzO)&9Ur9Hk5rV<`1egW5EhR$!)KLE2+F|HJUU8=0oZ>aRD zXTzVZKs0E`3uF8x9^|ikZ-jUU#NvrF28RhD+^9($($JvP15{vNCpa?rT0tO8uCF$GX-%m0(ID_ax zg%+Mr*?5F`W($|Fo{iK~tMtC*lhs^{UOBAL-!BloA(0di`jO?@m1zxU8)Uhcx;LYGvN%Gz8$)ujE^AEsVt*dcj zgly^raPmI^4bhj0MJVH{2&=VL!Y3|nv_W-s0$-KJ6=zLc$$C*e3glaNxNFzo%hC6~ z!iO6}B2#iDbWT#k_{4drPI-l3MWTf6{Pv_0ZGITfrQc`mT5y8 z(}EMki84k!Odxriz{kyO&sBfB!Z|mt#Vg2H*sE)*I}Xp|MvMs<-G9i`7)V{@rPwy- z-_myaunrC4$PdD=FATe=>$lK~zC9xRbQ(N&ztssLmuUnGd}_#_Ayx>I>db%LEpvS{ z2Yita42o4?Tl|q9YiHAxlMOTjMzJ0Yp48Q*@Zm>tbF=WAKkyVIhwtH~ySWre;2?i( zN=bumalqD1;Sm+ODpgs@B<96Pc>T?`a*QGBHWVxqS;RYrWYwm7L}ntBlvNSL+Q-%@L4ND`j>$_Odw6eGq7shjavw7Baod_k`6Erakail+Q`mrJ9MFGGB9F(UCgM`-PxlnOvjd)pC z9Tn0pZyGjfT)%7c3&;U|6PRTfDP^HGq1zwb-Vo9(MI`*Zwq1B{Y)3&OlQpI(zY!;+ zf%=@*cn(sn@xmYR6aXe$7&vTKEA|00L;$jFzNaTCj9-hFi~~N^OF$8lP2CAIQ`}ys zb*6J3_rSblb^Zlw@KXBJ3aK&M~3K`>(j-g0o`mS zJwn(+F1na@RvDN54axOO-NeUlWnNQDx1Ohib@%#++CXyUFg!$CaX1&DY$~>&Rhu%s zy2(F>4vS%jbiU>v0`1d2nvVF=-O{CY_t^Zg))^paon<5ChbjJy;qZwzKT3P#!8l|9o?@sY%$6)vkF_n)|UEP z%rV+0>Mgt+7|rfSqN^&@da}YJBFR01ZFGfA=ffqr)TH;Tqm|reJ9rHd;0qfj_idvk0gpmMVR&c}vr#XGvRG$J=$GbmSRM^gKZ5Pt>fT|{Jljh(+U{nZ?MCVM@bz+N2 zVvXvs2S2o^&SRxP2-uE`aeN<#NuiA-@UQ^EhuSO%lpS4ip4X5=Y?I z66>1H)l=6%P3pO%h{Q&a&2ZtEJK`uC=C~Hpz+14-fn;37Ty59S>KwYuJsx6>Cb8O) z8(IfrLip}kJD=xJ&XC))A(b5F_?s-x%1R|q=bt?UQ21n?MYx1mK+YoIg%i<263R&@ zmu$mb!O}fcjW!7w4zHvob#fP=F-GOi^s9Hvymg7xog1cq9?q45`zO65y(oI07hUs~ zqs!_STNqDZaHZ~hm5H;M>_vwnY{ja4pE-Pvkj~KJZLn9(M5J0M3^6|GgEi_CsBg*(ehl%ky}*!*lKn$G|Q!r45dA!p{ROiE{F@DiAEgb~Q6RuNPTZ zKwTnP2q>h(SavEA!=zlt`%qnQe1BGzSi8Y1$Np*& zFFur?2D?}})c*P0U{}kIThS4R7$w=$zVDM_#Gh|}OEh{5d*e1q{++47tH1&Sk-4Wx zb^3e_Fq}5tl_(E;S8W9GHV8Aor{tLP_e8&Mr1+ZI{uy39M zMBXMSHF}9DYa+v>VJC4@;=oCl_H|04a#%9dD;0<;R!my@))0x&d|-vihrNVPymEx1 zx7<*wAq}=zNg3fev`>Pieic(FykMVIR1y(gn21)m%XBpe>|JP)TVe1<+xaA~#txP5 zElH&|eOk~9Ntn|ZGsxD>Tww`-Itqv)7eEAL8e!HXlhfI}+yV)`Mw|Bd?3L4n+rJvR z0Cl2~GsHewr);jonQPIU-j+Dh80bpDP+yp`FciWPmB$Z<3VE3Dc6dNf-lR-|UAk+eCl zE35Z&@qHNwJ-1u;%XOVr_1hd~ImNfMD10p92d-Q^wwMtktFkR{+oM$F8k zH1zbZ;(d2w{EQm5ANKW6Q|Fr8z;xPS2m!nT=QZ5?gFQ8QU@Nj{&&&I<)+}$}XO#;R zr+&-yYxK}HqO^KvuBU4=b%cYeEdy^Ybq=z#;Cc`n1Sok2e_PFY8AuUb;guI<)_=Or1$MZU6 z>j)6|7RC+_NX6i28MzY&-U5cn%-$muSdc@{c-&H%MrQCW(5f3-hGUcuz0L~xo zS+(y0Xb`+K;*Eg)s>?si{tp2S#&8^x z%le)?a$}TMA6j_7cgHanqZUG{OL8a|Qx-0q12QZUn`l10iN~uOu2D z2vw4lnJWM>@W4%b!U2fjuuGViS9pUj?GI3Qk7mMG;1JBfte%0((+(-(@WVUxsb^r~ z-_{L%=c{L8aY{-)6Cb#gl%U+vEVh$5f}T7wQfh0}yoFe*HFsnqGULhM{%Vlz0ZgQ} zv;iP~LYnVh(|hPrWhAUhW;uIeBunferXxDEEod(XZFSonNXCh4;T285Baq(_$fpvr zF*Vuc%Ez~pB7d<<{Jt0-zu)~0!xeSdt4^Qe?-)zc+k^?C-{gObJgP%_WY~nWzUm|d zfN45Z4F9EPq1saUf7LT)rvDaO!o%5k!;^hXoaWA2y0fMZZf&PyZ8ruI*ju z(>s5xjmq`&%=mdrW1yrAgt7GGlG}j1*8c-|R$AKX$0HsQ$!Di{(U_dK80NQX7x(M^ zfsH6%Qlekn2e2rCy}?6*CAw}>gN#P=piDfs4k=t`u`$WbB9W7fN=Ptoyb(hG{Nuhb z<5GSq@_7`YU{|`xbdRYQ-n7yL*~OPbW4C_}%o52$v5OZ`9A%&%%CdB6@khx%QK*4u z04(VxxY1(rM!;OoDFwMfTGyB!MiSG~_6_^pGaHg+0E>SJ1S*a}1-aOJX2?o|_S@9- zdnk!9u9P6j7K;X8{KUTD$&c4rba_gLbkXuMpLloUtQZmQOHv@o^yi(DGveVH=uQ>G z@XI*sjt;xMsdii;K6?le(h)~$qc4rcbdb1ChO?8X+YmG%7V{~zq26XQPbWBP1aXMR zqaL;);;r3qsK#c<(}@4M;}n{D7sKF^ArM`%diJ2176mX~2Y)z+kQyb`-Z=P8L8yla zlLD~`&yg5y+C`*u?mo19IOQNXRV-;*ob^KX1bN%SC{5EVVB{)5)sCFL51)4iXd1S# zwQ(T7lReM=ER=opwzZFn`XO+A|6sM0%Y`X2$~|{}{Gs)AoSqv5_*j0|8ZOu!xxy(Use7%edwwkh zT5lz9`L<0m2G33raO)h#uXDCd>9;4k?t#;()%2thcB{grFjCCj8>%tei-bX&ss`%; z4Q6d2H{FFzvI+?MA)PLK;?yw1WUt;h5W08iA_4UD(n}>Z#s(;|FZ+bmjKV z&3l1_EMf|kX7HZB9;Ag_%fS{8!0-*n{<5WA-ns+}qrxSc$`OF9O;v|^Zr0Xm5or-t zAFiALs=d5SBvX>4NFT(CWh1+1(%p<5%G2p;R31!Ay%6Z5OA$IH0t{x11&fB_R%^_; z0&6q4v52tH6})yQI~O~w9>2X2slILtBT2)SXNM@Fq;`oT|8qnFb!(qrU&Cfox&f0M z>=P91HqOjHZJn|@Fx*vU*GjBb+AskO z2#zX5kiCC>7}>s#E&xgSy}uoYGo3@7yL=Ze_)Be1{E6 zQf?qA{dm;2qt<^QgBd{g4XU;(O?O@+2;Nt`9#Lk~`--l1uyboNl>E zWDtub-L~xO1H_hvxDdUm{VaC*-LWZJ?Kit&YW;3&A4q~*HdVM#Y8>_WZuuWe&0-01 ztvsrH3|34F3kp~1ur)qf=xt2|z6m6s<+|e5n7(t?VsI-rjBDMaO0ZTW*Afkp;E>zJ zPl{K>NMgs~0!x8=r7j9Yo&)iTmUb`r5WQe(zu5X4V#Jmg~72Ib@yjdvJr zYGj+c8i}**@G}w#9P`?qpCDh}8J4rbn0A^Twb-os`wzirO=PCpXHtvuPNJK+2YF$I z(^pzk=y;krrsF8enxKYo6-ogJr@oPVm>*zveTNI+W=RaI?+t-0uX2IRXv@1fIGJD^4ekzZhKTwht|YAB3I z84`6sg=uPV4}>Xx?m}Evb8pFvyu|Dnh6vHHIoKpFQHhr4vYZpWDFZv{lOmNkiS9X5 zrqyHwifj|18)U=TUvI{n>K&jk>zlwcUUGrTbLZ|dZL)Bx=T=k3!KHoScd1XV?i}7A z)YP7wUdX7Pw{Aa?~=A9)&z6Gc6O`Gw&TLA8(dUVBYBj$esEZ!IWSaEEP!s zj!SvP8{cw7@6Vrkd~?_GWT`h$K#8c7tm-q8M)&bJWJ#KLbg_4CLpg%ZPDB-v$ze{$ z^h1QiGveF&1I}Pu^R-Zg8*C0CrYjz@rpaaBEru>sF;qqeP;MDgsVdfZk!CzxiYBzE z5ICnS<3`7m;cFO%qX~UpcT+huqi{j^e%xS=XtcbsewlefAG7iVh~=&!7pP-m{MW;l ze-eGncq!(t-uDB5h12{>OCHQxO3p??TkW33OrWOPK%W^R>a@LTd*e}D@d=y0F|Awt zedmeC*H_SPa9%<}PQ8$gV4!)9<$v zLD^*JdrJL*KRnN9l8G3_0y9r+FOB~T{oQ?j;=j5c|C9Op|Lw0bu`~Z40jOmy?zn$Y z!T%zY%^M=+^cezRH~kxf$eD4(3o*%i_K1Fc)b8hLTGpypu5R|DLl|fyjnV%hNf*Sg zPm|+WEZ@wf0Hu3Lk>^i8%&cEAe7`-PpQWvf_`eylqLoESoZUW(l`7_k=hrW@=+!oJ zSb|o$y0d4v&2QK~{=FU_raR?wM`+dA7Cw6uyJu-y@52k=e3#N4G0zd2j+YAqjccpS zLum`?^G4(C?w&2qt-bH;%lA8^QMw#=S)+;5rY+qmSMS$m{n$e9IA ztS>p6e2NFRIEly^8+f3xp>@fsfljxEtjuj%By!BhP*) zg&Jck+eHT?_89}|b9^jjgQp(5PEr9Op=Kbj?MpA5gs{O>>Ll{8APhzSgGl;E2Qt+3 z#yWNFp#K`x-Nm2=5eBN6;Z43d0XAo6kWT`ufl)bV)@B{@VIU;7Y*%a?mKKRRV%ej zg%?t!>g=#BB)ZdANJ*#pS>`(JWb8}I)tH7krH$ihqJj1j!`tIxR0e7D;H;*%#lwv_ zH@V!Rq$^!3|BU6bMbt(ID7>1M3tB*&k~D(PriE|o3#g=($ADhU2Mqo?=Z)n?A8t#o-G(q%VS9$Yze>n-)wa{?ae^^_LOf~hY*3Ca%K%RG@u z4*VPRbu76?E`6rMehTCUg>#exy*TE}}6@?U;nh zfW3fnF#m4@>Y){|dh#ZUJ=y#_t+oD$AQQ_Ht^s{wg0gxdwrk4ju?eS$XmfVyXJx{$Bb;uDi1neYH zaE0X9T*j5N&Lr*dw@RDe3WB(SN%ELK+N5pt9Dx&9`-v~n4Gw6DJI3JC7`PBAae9nd z;UOU30SI(DW?owz0VSL1Ldi&AQ3$Bu_S2Bumfc98{Ei6w zN*d#%U7F#VAiKWCpsGWQhJVY8`Pt+oKTe+0Eij-bULM5kIxpx+AP68eU9C+~n16$~ z!^oIM|TJCF#lXL(K4zwh$*8@GU!9RS?`<~VhVFyTf#->KfWxXls zI@NUZ7v`==VK{g_)T1=Y2)*c>HV_@ceN{oFjnY|_eE`d7^SG=1Q!KroaQxY0hdieo zaLy$sIFE(pZg80KcuKdAMM08rMW)s8ew>ujO+vrLNExYuJu>@qmBLZK8Z7tquzlzJ zrG8nynlX?)UwHj@2&ER31r|;a-K5E_G(wh(+XxqXP1qz_8DQh4r6p#U-3`!}NAe7f z4#QKX!X5Tzz!JAwl5nmm2v;_6?q2x|q4cC`>DFNVpHZ(f2;RwCpVcwQ#A`w#ueTL>uL0qZgx>%FOLS znrJyX=B=WR*j9-E@)hYk{5Hmp1B`oI&BStq)({7EG3^P78DOOFmi+Ri(hj&pN`}-x zjzL{_P=wYF=uDal$x!1#@r(P}pD>NQ*xu6lM!f=;)JEwdCAyG<%|mH^G~n z(v5u3vJO+)JN@+U{IAn6-K_QS6ydY7){Q?Nk~>FBP3r57UsBPcHl}PJXjonJ0j@_9 zJ7}eI!eR5uAAI7cs6x_G-$$GQPAY@r@92=C_jBw?F7Se%m#oW_&v-_JG*fT$I1~Qi z1!2f)Yh3prVwB6f#meGVk0`XI~9!UC2mBAXgo z^t2xFd(F8n#=k>C{Sax~1m|P82*Gw7SZn<|VK{1A5JB;?FS*1*nFq`j!|xUOKQegY(B*1INs+iQQDm7u+S7IJ(T%|c?OgpXsKj4#f0yrEP#5{2RhC8H&4Z%B?K zJ#q;uUX#f-wQhkKgHEu0j@TH#0<^M_TYiB7MdXC^2Fy=3dg8iJX*9leIL*+VMQy8e z=hC^-RccNf$w9=F1#1t@<4~wKY@dIXKDGlUz)O6=EeKY7&sBwDr~~QNOJvF(3Vcdz zARwTC*rLbtzl^Lha(!R<1(C&d|BIuS`M)QbGO;lKXUX(hd(!r?199h-@(IXrJe@EM z1c)BaUNf%~XdP9D#9=`N-RD=vjAFb)y@4*l`|1}Y08!+`geB{fUGlzn09DmjyI~)_kX3rsvoqEFxXf)urZeAhuh2vkd|948&n2=7b^mBN48l>Q`bx+Q z%W3E19F}x>`e`3;)h{Vl$qqfL;2ILXcv6fX*ajiWSVPfp}618`N7mb=O zc-L}kF!pl_9m}6~Cw-2lqEC0K^?E)Fl!e}8Z_<#b*lN6y-pS|o11bLxH%rlrpKXPk z!Vgt36Wg53=lDzR`VV(EpzZX>4lc=DfVv*+3~rBFJQHu*I9S8qwTGjO-{Pq8x-qHq zF2b^04e$Xqk!IO&dfMS>yDE!6!JZyR^Tf~N@ukrG$7M%{IK9n<>mV@6?Q)?u6p{>t z@0MV`!SgO6y1?k!0n771Wn04U;X}r{M~$nSc2B;T1c52m&&Lp$B*ww&Aiz5+QN4bK z+;f-6AyuqopeQHl811PVP)3HRGReh~3iR8ANtKQQX2(xwj{(dCR2|uNdOz)NBZZ+u z2*rH6Lw}=r)z0Ii$qgFp=~xSQab_OqGK#!tlH1*RZc`iRU_@;5JT&}0yOa*k|NKoW zHSRhUODtXH!E6;>eRw)4V+%QO2?{r&gr~=An^$xpn`$P>=W3_~pOik^T1yda4->>Qh;^bD%&{XnN*Gfgpb$brOoc&OI#9NUS?qUcwB2n)#EvKcoBVLd zUuBp?co5JZjb0?V?5>}R+QLZ}Uo!i~>P5sGPqU5NHO)Q`KXZfV#E9A)B|61gr(J;H zMccYo&lw`R*Yxv!RHvK48v=|E!uRo{@ab^vPl`?$?G9VGt4&a%mCvZcP69+8b6z>J z)Yi-Jmv}mn_etlWHXB;EMTYRWiIt}j#~{R#dcu$#pG{}r`-23#i98}fu5<~7mFX_4 zMwS=_3bZCe;s=WMrAt5p^uj)RGc-5&r+~b0d0s5PLYsi zu+v$Prf!5oSy)7ss_Qt=LR$4NsY&0zyl1fB6;xmHXj6-i@gy zoiIX3PML^iKIu->s~Bhe?fnlz1=?lN8Z8SQWoe?|rhX_bmu6<_V@zU3TxenF<$zP# z0+if=rW})|ij$^6^k9lzUlJTlMD0zVwcVJ~j!qGM{jce{Hx&AlmP0>hpoN@(tYa?3 zH$qHj{Oju6Rm+Knj16!)^)M_zO`iK1#y!{*-}0CXFw-vBe5aMYIcx`(8)%~)#>;|6 zg!x;0{-7A#ke@=1GHO!RqKnPDj5P#ou{*imMQM8w8Rt%FiL?SX#OKzzypos0oiV^4 zd_$dbvnOzJH*W--@9YN>T3WdUr-EpW`LSWv$dj1iIz{6%aS!r)%z}J=Hi)OAldt2@Sps7xGmyNU@=7_G0S{>ANnKuJY=BE^N z(HFU`J|_b42jKUZ);pN*JD~Q2WF{f3xV@-Bp>fz<%KfczTVFZb(BS(AA}XdM5q1=X zPbJ1IMR$u%zx_%Jl7!nGF>K=MfF=4Yq${2C+GkM;FiCGL*)PQ4r|?~CyzcN-;=Y2myCBEn9k zs)v!0W)s&H55gy=Wva<3Kf&Xrj_K7T52NT2k)^&B_dc;l^>z*hxfrvc`%%B2^=~sV zk4>Np6dedoWht_aCM925Ns^5sIE_G+H`&sufcqb)6v?Pf4SXhct*vt}`GJr4>)A@A z6>iHVnU1xh6?WEdI~wcw`F14colD)iZKrFh#2AlBC z`FA!FdZ$A(2&72jn?+sdA*SJeT}AMJ8N*8~+{KD*y~X6p$x$^IT*5{(x9lPX)oH+< z!Xg0ekb~+JU{0pgiNTPs9}~OA@C8^w){>LTD6xE83a?;5SMFb3`pZ5i4hhaJ{6EUf z<$guRu;4rNgAd2>66>Ae^RDXHe_TU}P7}HT`v=J&bHcZ9@**^Qu1*A{bTyv%Ip>mu zt>sn#zwZz?mEll~Ge%4@fag{8Rq@xRD@uB*hvJ@~o@Kk*MKNkOeMWfdnMvB$DwHxP zsgno1k^-P?f`iM!b_M$efPZ2gr!)81*~e=w-GH8B&vP7^keL*i;1*jVCpX40U(Rj&qHZd0o`AlYu@Yq!YvAEl7_ zdfkeCNes0DgGXklI)@NPOy(_;PnTK`1zQAti+&~Rd&piFE1%80Ee`PRx23PY^WJV& z-)@06)&hg1kMjWRLXjZv{%m9CA>!TO?hk+CEKfk(s!Oc14;?;IO@pnT632oVh->H20 zs4)1Y^YL3;TvZG3!Fkz`cDr0FFup&Y`?*CU^j};8`u&>x1(b9~5B#q#q5l^D$i&X@ zf31>8{geOxna65NjGW0t2}{uCZ*_u51g#<`Xh(CdZnvafYl}bM^0kS|s_VyiUL9@> z<`^xLp7KZJ55&bezL`rT?{YF|WL91FzFglE@IT|VdNVtIA57oR_`ZsY?&r%-$1%By z0*;GmX}>%Y7Fo$}BlH|odl9+j2c?O-sQeCJ0B>fG1Gi$nuleaSa*##JkwA)H>Yf3Xp}Vu?j$*lumzb z;Skg{f8Oo;XQP z0z)YbNX#h>f*VqoD4Uxf5ayLXgP&Dn1{mYgX%TwDUX1@hTVEm57%o(pfsnGKTd0oR z{!As()CVG#1@&2EEM*a3KapZ4?!MCdOeWWpF5#)7#gj0LHB%uk zXAF^j0;jSBV5_{_@PEwG+Hl6I%VJM#iJ=6{FMm|xSoX&d< zkGRs8n`!?t`q(w8adz!s8Yq*pGR4or$+~ z2#s0FPOJjZGFhSHBuwl(5dy15$FlCvoZfge%5>6lUOr+wt7LA6D-pTtzSnm6`!JLX zpxBvEMIrvFx|U7>uuu^cbQQ5^N|D3O+y5-8=Z~AGtuC-zb3bkdoua!$fmFwfu)>Ui zrhsk7f)%gBS0?IY%0n=_8PoQ5A9nMLwDiDEp`8C=$pNdzN_`FD!9A@X>_|O(`gQPr zHStJ_z$3N;ioq@zyvP)R3I;pulNX}QU?A^`^ZORroNd}=PXUW{0tPrU(7q*~gni2o z=76BVAnHZMh>heR_c#2}I&3xYp`i{#q~Xq9!=04p@O^$D7Zjs`yE$rzL+ur9E(=n9 zVEZaX;I?pcUs%8BfWRiPt*pZVd*Ys&16xw{(jNtTEfm95s##UtbVk%)mA%#l2iRq6 ziTRXFG_4s;XvqX6=*VPmm3HuqV&^l}fL&TtT5H3E=0tG=+Ma6tGO<0mLC8S?iV3l9 z#EfUpqDlr%c|=BL5c>+R2t%Q!{;-{g;if6raGiD$o-Jg!lXzksR@laZ3&hOkUs%(0 z4qe7h{sEJg9q1|$2RSjOE9^^&2#1upk)HBpfzj!`kM%VH0YMoW&g8+NRMnB}1odL0z;Ym|s3+1j_6> zoCn?YcC}nPvxKc&rxx5Oz1L?2#6}99z!upnn!Nc%% z9SS%9#(|xpUNkIOR$zODn2m}%Uqaq-Qf^Na-*qaSmU+>TpV(@joYez)j$6MHconJ} z1{1dt^26nFjpAUO)MP}jygK+?B(SEZ4Cf3&f;10d%aKVJOIg^oU#aI9 zdS>{1M~7PAmZ2y=BSpYR1RQbM9+Aa#Ox#8+qpZ|1WWFsmD~;Nn{sS!;R+RK?VRXqU zI%|sq*E3-RoI*84se19*>x=%Az5hElPBW+qB}6*Sziu#_W91)%c~?Q5F$JEuYebXE zkuWCs)l($=ZBdT6u@VkiDsP{*DhCuu(EP#Mf^iG#*wVZvdIgz0S-MxaGH-^fJGlS4 z)g+Crxxum@zT$`PGPix>Z9!PwbR%H|5q=&0#moA0L3%t$IxM@{!X^ZS> zL*uJNbUB>GS)j>^AscgLk1@@CA}T2Q>~v_=BJ3EqV3U(YK|c5X6Yo2I7N(L?wqNPu z-zHiDd)-b-&cK&LP~~{Pk7+;bf4-0_wfd(B86+MKmSl$(Z{YKg@Ra8hh-gba84q0e z-%iIJD&Rb&Y^N>F;wHCOh81JG2r7>bD0iyso_aEN+eM;%7bn+N`gA zTz%^r{0%!>X2>JytNlxo&mz{$szL@21Od7Hgf*_FPF`kA1s%qQ_bUs!0QA$vewdw$ zhY@5LL)+m8bO<-O&k)9+BKwTJ;PP^u(-{IIx-D0o>LoFJ_QKP)@c;wnrQE~(M^bK| zh1Xb-6X2rz!TPrI)SH-5`;V#0(yQJr?)%5(dr&)K=k{@Sn2JO>ttiQu)%~c-!w+@s= z3YENkRPOC9dnq#~R{fR9l@yzNIXcG!yk4cA^yeJr&c2N9F3M~)eikS&!&d^WHzoC` zDROFyPal>W6&bS94jHcOI#oR^-It|)i-&%Aj=|ec-^Y=Uor>r;qQJy5igys1E8x7z-*^|bZu*0vK4ED*P}(7 zeMi}skhyi?n6dUQrnUHxU0N5A?NyW^pdaFQKCjk`f0~Zy(11HNqIZKub+<#f59qXQ zz0&6K0BYnMZUXRyZI?&0ytLoYf%bTo`aivY3JztiH1hjyNARA5_;&+&2kW7qS3IWS zuTZaeo4$B~cFFGigCaJcd#O>eD+gqqoJ>D&U=xf9)9p2aKW0gg265rnuue|-zws># zQl$Tj!>39?rc?=7Jp`TI&7^4E5W4zg_;# z&FSp@;dS{Bk?%4`4!4}}SQbX=Do5}4dsy?;u)0fAszPEbQPZwU#3s~C!uQ7{s+k{e?EO|#TRs&f>Rbb3t3hhDDf#HRt z8BFXIBPKfihO7(UzQX6eLzBJt&b~v~zD0AMVw=9j<-VlmzDX2YV0^7YkgqmUe$vWYG08~9kSIzN~~FAC%ca-W0;Z#7dpxZW!hbt3K!1G zqFfPwS4KA{&=T0mzM-6F!9Ka zKfT;m^qGy4;q6y66Ag&|2V>_DB}lY2>n_{2ZQJUyZQHi(>auOywr$%sU;S_Na0hpq zlgvS$wc_j@@ddDp@OtjIXr){%9Ei**`@Z3z=-;%mg_24s*`i-+7|Pb_Zw9&m+a6ob zVQr`(@#^rxYqgER0JC(DX9lL;T0d|uZIIpVHpOSuw2$k8c8;x1JV0K$qn=_zA-(S- zL8t2izqzol?@9cc8g4sQM|7ZL7o1PLVIpjowY+nx3;iT}&L4h_f0MT487fy_1~igJ zM24-G(R8CDIBq3(f-aY;TiTtpH`oP+ow3~w)ozo2u1JbyZv^Ugz`rjm>Tc$r=jK=z zTM<>jaPv>tf}boo8Blu9%RC>V=Mn#i{pN0d zTcs4{wVEbLn;$yV9K`cKU8g_^2UjIT{S)!|rN!nKC{f*dDbtzm!vwgvT&@EWKGW>x zAj}5KCJ&^U972qty4?;`@JI9<@223v0h{6PfR1fiAoWbBNo7wS-d*MrjOQ;?aS!TTPJ&Is~3zILY634Kqk>oUZOLFbQ zkRa8gkiju-He{zsXESU^9Q*OUN9(IiIavJpcI>D_sqiG@8Z7!la>IrK)PG2UqN#j6ym+t8S#ntRm(G3Lf} z_%Ub3j#m0RSG((WEn2Dailk;9sRgpWFnO`7Ek^hrpaqAY;tZ6WCcBuneayZzIl@Z2 z;h`+ou-gZ^Cj8J^tuA*SCyEI$?O@({8}eVSRL+|(WBjXOsI>Ll6*dg|o1w{^tRRDJ zYaF=+bLdplsuQlb;+v!>kiogNu%)ekbDH}Fe167-T2_UhU23A+W*7_A$q09#7%5x> zP$WOAT0e#W!#B0%-!urfguR_i6v47JUKaSZkgo2U3C8j6F+J49st^QFfI;2>SZhJ2 zp1l$tKn6c@OLD2}Ved(Lg-h$S*3}{Jw7ujTy``FsCyeNPq|B?z;T(7pB!`AIQh4d# zT>v3o*6A+Ig}^cLi8~yq&!GWYWMwKBBHBliSK)x#O*NV3xfk@Nd8c*pg;6$!0Q|LX zdADJJes7DCAb$+T;-p>6Rd=wr&wci;#M=LD>?d)}H6!sSJ$|YGv%VktSYp@RPI0rW zyyq;1(kpG#V}d8rNq$l#cHQO4xaRH57|WQEKff9Kf)En>dgUmT1@@ z@#D^DrgS4f`Vyk-JXVB5w2O;+)QaSj{6`VZLacmVfh;joE-8p9!7<{L-uX;XTUQPY zoLpL-2m)rkR4L^cWIn7}gnN`+E$3h|%4{R5iG6b&Vu8k2^gaBYac(dk*5S-h#810( z3+fzFwNXbaO3e-G%kspoy~cl8Lvdgiq;D`NVsqb{zNPkuS2rmpqWV^A+N+gzsd%Gk zo%ctk=KV|nRnBHDbYiD5*Vg&y4aJkQqO6UkPPAaMnkO{h`Sx;U+AgB|115K*TOyzR z7&HGmrCekQ9J}+!`RClH8$CbohnK&R0oWzdda02eI1>0W7nhM)8)hu!czGpAnue+W z`iFVGAHcXAaSwVlg+kSDoEHA3$ zjX?HqxOjBAbN(W*(mfM{bs zy9Rd#(P-1U+rG#CJ$ENN9Xr0?4sUy6o&bmu&^p~-w`Q*!+TEK!Z-hk-3Krj~8yCuw zV?-goWpLlS7s?nDM8KbI4`6R)vOBlaJJpl3os0Y)7Q{c(REyC+tj@_2vM4nrw>Tzk z+*H-oWZg|X{o=28?=^J3J)ch#VJSU+$T}W>-L&Vx!TAVHAkJ5)JiZd}q0~gM>7&x= zBOow4StcKAr}wEq!;qWfnd$g($!A?6R(F6JxhE#cDm*B+SXYy@?>Ff&OXFR_dW`&e z1UBvDnhV~lV(zget)(|H7SaGVLS)rStkhFp*9}#kRaa{??rb&%wivCMR)|pjyMNE+ zueDt@G`!irW0GG^@ZSt{CPY;jrTR0}#? zdQSN{E)Hkr#ERKz!adV!wOl;nC&>usVQ3H_Ot2PyzN#b(m|A6q?&W7el%in)fBPn) z1dI+M%!eS6)3)M-+aP^jk5s883c%XaT+W;uqNE6sTp>;2_VcX-PF4P@ouJ~3-R@SM zX{O6Rl4P;h7GKLXR*ipwe%JpaUB-H;&%$lPpJ2F>>nZR$8>_otdTPGzIo$L6H{Kbh znUTHE{s;BMIG$1vu}692pYX*X#KU=ix=dW>tXbq+a~f&4jSn4rknVFfh*c(0#_VG; zHQyG#3VHnTlL2ESjf#LqonqCcYycCK`N1DnkTBWwDS`$dn=b}H<}lk#srYg5EY3LCsKCm zWR**uzM?`mWz4jOdFYBo)?$8Dhu+#7D?Bmj{9FY7CQ^GU>_|AwM%}i5lsvy_>>E7| z?4U){NllUN(UnLN1N17KfH?%-e=C7B{8gr?ejCWGF>Iy}NvIl&By8Bk1Ww{Uqm^o9E+ZSE9sDoFsP%CS z&Hq4VOL%-gu>`pZ7!Yeh3r|)!VS8xCPf_VBk!Zq8wz#L^J|pk|(x9GNAj^D^O0XLk*K;%#y9!au+>lKs8?Z@O zQTAB?uns`knUsZ4%Y7-7F(MP>fZs)w-|5xw+_l_MagWuG^DBnF;OukqUNRI|86jsL zDW!qyGF22B*fZ1pX>MKbHi9H{x3XjGc#Ae8up` zOO|-p{`^2+T7+jMsWk}>h!1G=)HqhJvNNimQknwnETUuo2KI@=FoSkU=}a%^7u_!H zZApY(7G^c(;u0jd%b+ONmouA9!+n!uNhn|0rf;4nH$qX*VY2|EKUW_xW z77IpgUks-EyYK%=QpI4y*7K0RU`T}>t+o+Z<5#o06)z$&kTm5hYWz|VznKb6_l!ht z?|k4lZ$jZO!A`RF(j6xXovU2cF0`}S{fINL+zHKED{mjk1J=GE|; z%$;b;VW&SmH@+DXm8si!7SQ-4${=1dd`PDXz<>Y3DyrRF>ympl6amt61{KR`#HB6l z{8n5p(51YiLDSkRLiqt)TC!Gr(|+>`5U7QN zs#Dz7qCm(q2~*`4o?+_cF-vmrSvJiuJJg@+XVRnMDenRnybNqG|ar-K7_2H|t%(@Jb$ z?GHvQ*(Q4((p?}P9OHlup(P8#w1zf|I?=t@U9Ytgr}8a$Lpq_&LwJxF@`Q}ID-Ujk zwqG)fGTsL_9eVw#YKnlH!4CvY7vclgBUFgh3zunmv#aJ>KeP0Oq+-Dbq%p|D-x4|U z2Kh3TaNDXh;~cstw(QDH)(k+2x)w;Ed8l3kFQEyQBT#sP$E6=l%lBYNJCAls%M!AR z2I;LPC&~5A?gR0b<*P}#!@(xrGY_h=Xf%`YaGj#D`4Z@&wUoUZ5~e;zXB!Fm`kT^e z=@}P?pre9|j*$BGjpn&E6$94zA_2^@Hk;HFP?d74v&lDbG?TYS9_u71xuqCo9D$`K zVrBEWL9yUI%9asJE;8OC{cCxy-{Z!F4rziKwBXG*GTX;k#nGAPu5Nb9{0KW^Y)>DANsJ;Zq<%EkBM2twuO1--C9ysW_kn=U2L>5ukF;rc6D$Na@*>$wYR}E;D)!c z?Z~BpQlO(@AymV=MSW_k{8()F``KwK!L&y%!rgU_lSosFbiqu|ZO3ItQLrY1hPn({KJ7K7ncmnidSE&*VEY0G&Y>|icV}f2 zylT}bBH_^&*=AUPoc>k7t7Kmn2?Qsfvku=5n%1pF&vS;U)q{z;YeQlextZZzjb&$b z{c{@wRE)-=i^*mLOxOMi6Cdv8-*HABAH+vd$C)y4YozMqcNGqtV)=zmF}e?{fv^P- zQ|B_J9vdk7#9Ky1t6@r1RZPz{%~kaJynbHIopq{SjudG*nAMbS>+-Fs^u>rF)9|8D zWuGeXh~p<3Q`{Lq5KJ9~1fYX4PYzZG*V^us-+-5s40f`_m&BbuR?@w;4^K`GPXc&U z6+9a0b~7vjEg4~pJQqy_tDBiXA7hz(Nedz%<|91(J;dTE&*y(8}XhG=t=S8<5Eogday>Uc&|0tTtsGAWby zW{q3RkIfyzBaW?#aEa<}NN!iK^Kg9m*jgwQ1l}DP^^g?LA4T|@%4*3}h?(zj#<+#l zeZHR)IVvCYZ5`UnOJR0BJ<}8rh6sYeJo!ni!iL9dqgqH^&2l$mv%DD%Rf*V_p_*>7 zIE`G$e_9xb2R;*mUj%F+^(WQ|jLTo-?wsRAv$~0K*nFTJNK63Vx>qWwEg{pO+D+_H z^qo1p#SjO+#3{6!{v9_zLgL$%Mx}$=Q<=~xay3I@Cqd~_-I(_KN-RGo_y44R^<3fU zvw)qN@Rqmh$^%1kE0^eZXsB5Q#O%2AOpFF3c-nJ_8b&7VSAD{ z)yJ4_DGKg}&mLMFKmySS(FT{ilS&ZEczF^Tl@}gyh)7*Q4!O0h;b*GKuvdEapCy7l z#-9UDm1i8|mC??&sA@lE;##;BwkyC>C$b4X{&nX7g*RfUKt=cgm@&GAIFbp5gW^vZ zVA=NNG%Fg2PR@cYagbXxdL%nxM&@9@-XGGf$h};P(xohAEYSt6yB7ypN*`V+d1Zd7 zce^0C-h3f~M$Mtc8x+l`&{I?ziH)gc*>2(Kfnb3L zUH|IZT77npvaUUO)!rAF2DIw5z-%f6H>J}X$Pn|s$)nRk7OK&iP62p}TiwOpIS98o zOcr|D!wJ`8zWnCGAaY~}=QlnU@^PGJ1H1x`(+%HIHh-}eq24TTz3#|kVV#fm`sGxZ z={rTW+SatQ#^fiBF(oG-7eWJLK)Eh3!(7Ueng1obb+z8jB0r);-2LpdkM>{JY>bFT)*z5!Suo}yCjO^_6W%bgQL^Lky~+Cf$;t7ow~-ewzg z=2&Wz+2q}?KJuLxm~#DP0+m&}vGHirFw{MvaAKp=)KYsMxcU~MzFyP)$L(T2nmx`^ zXcXFTD1(l1)3SNRV>R_gr>VI-C1Y6B-0)z;CG`Hj&T}lOhxvm%r-F<-XC`S$2=r{v zN@n+niNzSsQHx==xT#_pdBb#pM_Q8ZYkB{5?q^w!3A!rAg|+pc?C@f7y;=#e9W|&h z#L~G{dX4!F$>}u)R+M>+*HSL(&z8#ow#dl9+>UPIWmuMShU1Bp( zrxQt%hoj!&%NxyP0bu}0o)AnQJE9Dp$j@2U;(f^DoHNe!a(FR~CiBaL2>HyxPZzwW zsCDl2XB$?XN?b$AkJh*So4JO8w1-V5gybqt$VP*+nJWaI0W-AZ{j3Ru?5x6z-%>n4 z?a|K$)3Qw14CAvyQ>I7D#q9Wt@`8It&i5_fT2FD?f4D%h{#Vf|CPw!EE0}+!B^is= zhVbjHcx2!RBZ#!sqYnih1N3BCZW+R*HaGFt!_kv{`zRw+_i9{Ku%z~M0T@__8$52< zeu{s*|HwxT|5@DEzoU(SPgyXfeg(+UrQ`j%vw!>OImj;zV=O;9pi0KflUC!+_Vr0n zz$tQ)%Wg;n_5F=B-*)iw;zcbgT?p?$`z+{4RMb`%wrfd{tUu79-K|jZ_L7_v7qPXO zmUk>6#uT}xkG)}dokgz)4%hc~ohxyzqIp*CQtgOFKfQprS_?=syFK#%#J4xa>(Q4$-7Zyznrc{d-< z&Wvy~l!Yn?ynxA>HC|At+uH-`O}LI>w)LhUqcyHQ*JyV;G3V{y17)(jH;m%60`U9QoGevvXN`Cac$wXrfGU0NXxpF4Vf ztiUL%7m{EqaT%|^Nqol3D(-8Q0UT@50d(IV>0!S%~B{sk|$E}eQ2U) z!bx_izxu751UwTkf%o6is)F?pAOilfL`Q1~;z0pDCoJMW(-4XH(#V_$oVU)IIWUYo z`a$#$XZ>RCgPLN>UY1A!;vy?lV9xf2@l``smv*KdY3E2i>vm}r=y^67^SMUTS~A6} zv0rh%E|hcK%0tc$pS$QWE3vnOmSqbG(J^C7PR$bB<;z2`8A%RO(z;tQJYnSMdC73_QveNO9PloSq7!^&uz*$M?@+Ds9@Eg z4B5;yGMNE3R~M)4f>9jx3a2nWU1X;xCQuCKLh({U3a)4HivFWxLsFYabEsidY}Lg1 z7XHxd)}is&Q;u&24K|46aCGnsE_ZM;DD`-r`VjeT*`zotTK~lq!9nu}ZN=6ZZ&G-_ z`^-UiqTZnwhC{uVKO9wxdZLd==$}^lt;&X>lGL`t1Rc$L!MO&-2VqdD`XO2>m`I@) z6Vwk(^6-r!AnLiujL7C_z`!p}T4QF*zXCS{>50RRRs%$9^5Jn?F<^r0+<2KKbaYG_ z0f@WnjUnu{)X#%E4xM&jX)>Bd`bXsX%mQOs?%BSkWo<@D60^Xa8P$`RP9w>ltTl;d@|WV38*1swQ?=R> zi=_^*#RZr|US{!GQHp!?;ocp_Lit^ZW*Lc&gP8R(@Gszb&4Aj|hQahC0S-x9GajIH ziIrEC^{X*ay<`OwjSC7&%t|4W@`W)XBemIVa_0ySq!0JxUp|k0?@ePO3qUgCAB{z~ zH@O99nElL=A!MTY5wX34x;*wq8bHDvOdp2L+{IxJ{EjdfN^i+PkMvE7(=P^Mjnzw? zc9=Z$%MPt_v71q}s$AKVoop1uMLty~`e}63Kr_@peo0H{ZYM47q5s00@2Y{=1VPz2 z!*VCOEa<23$@PNvnD626!DEXrA2D`FLzB7J2{}fK48FMzkB^90-sG}&pQdYAlO|#( zW_or3(%siDIw~(^BQzD2tYyMt=#SPI|cifue7S zwg3a84XLrYg|(Pjt_@s|7LTu-akf|)F97UO-o>jZ!T2L`!P^9sDaEhS<)w=Rm`o~Ask&`3exqno1`MTu^ByT5 zcH6Mnw^O@0IZ9CqUcDva{powlRgQv0g_p@wBod9#i*8zsz1vL&Lew$b6&uF+Dy{;` zTCV`=si=Z$;)t~)7s^Cz@2l|fh08-GO+lzar6rg&u4#LUq%fL;I;TBrCxA}5&t>Sl z11-`O0azwmETt0J662+UkR}Wh7!0JuG_=Mkh}bFGk6`IH8Y2p~^HDf!i3k?h8aSl{ z*{74px?Dj)YRv8P$mgzK&BH5mAwo>|tC{09Se_Rbr%$dY(r=27U{CJ3g<>T32L@2b z$cNeyIgTKh>vwy^5KxP1?ir0M97hFGm0D4R#ESb9x8FyQ;g(6fx8tkoV-3kK^d~QR z|1+@#DdsFyU}NRVZy2z!usJoN!vi(n1SgKEtI^fTXt2>Jrap@qo$a&JtNFQ1KLaNl zLVpzUVtKU|W$nt&sSW?c*NZlP!`izm+H~5*1e+Q0tXleO%fiKz5yG7djoXFnyWAOG zU;yXUvUtX?$0vQi20bpFezzt{yf}QjU;82Z1KJfvA4*QjdON7YVsA35mZ}^KRGbQO zJ3zZ2?iw<+MO3@%1*_Cj=e!KjBD(!}-kMNbNV}jjxE-^;*cW#Zo&?F~+`5}@gu)ph{Z2%LN@yOl%6@T@P=^m8H zi16P_TsOS)xraMiYSM@=`{X*!C2XoQ@i|TEQ=}UG#SxF*vOkb*u=-7bi=l$uDbSTn zrt{)%i^Qj)@{>k_VIveL_Ohb1@q#M>WXT&y^{j&Ah`|ktS-CNeo zCbY<)3S28jAr!~2a)WyuQ*TwFd(up2i@!Dpm3w^&jcBGUIuHYG<2>va(y6n9VE}O& z{#wwT$CLEcdIC7E+2JpusfRP60yc*6Ec!ZFc+HhFP>$4NHMcdV{Mf zOSK+V?ert{V}03aqe$moHo#A=r98>>y&6ileF?Vcs|(&h8;ITy>G8`OklrA1PC;XK zRfugt2b)HDcF}ABy$4ZPR<1 zol&GVcx^EchqC`*7(~{wfoMC)c{P*$*}^%#79B;N7>=vRQui5Tm`3RgYjC3o%S)_- z7cX*p8wCdF4YfK`?4~T5^`Ok4zdLhs3Xrfl$RYq)p>S*2$@5k2P_(-A?Beo&XfrQn zFbh`z&U+)kB;5%Py_(`1WKSf*r#7HBgu<%??G9gOWU8#67$5F$ET6ywFp>V76F)E| zK0F~PEaXxotx~=!CJDX1Z}e>XWSoIhw2>ojXjYkLd+NT7l}X7fEE<4y3TM3DS66ie zlchI6g&_VbW$$ZLe93_1iBV!2r8ok0y-m-mic!*4yFAUo1}dmR4oTCVKEF<|qowTz zXBIR%!d{OS;z}e-^Mw1Ondafl=B|CyY^#mM?08D4%CqqX01^ep00(}Yd~5Zp$R8RZ z1XHiq9UM^o_E`j3zTit;D!P-Eq5}p7qoWTy3`l?yI4EJ_x$-! z_ae6c%9_K>!uWqK)~+<9ZJB;O=P#^o+}=frMqDheUWjys3f3e2(CD;Jjt2us3}2122znD?>j$ow(nh zEl%_rBw3StPf}GXdC{RO3w+s4!?{gN8lGSGL1Bvq+fB_SXyA|7pA&q#zPT7tmLUfui&a7*Dt^GI5n0R}L-Khbk3wO>)_%Y;?uNn~x9Qvv*hBwc~S_?Cw9{GO= z7F&1|_NN~K=U-pE-Ypnh9v0;9zRcD$fvbA>9%jX$Yy=WeSzO4>M(hnt0G z#|=w;MuRM!Z$4Cd2-Kqi?;(0vpwfLuYVC^p`g-!}(yEnGFLj+K#znSdmEhC%GP|&htG2Apykmn< zz`PpBp89(5y2Q1+u6Ntv{ajGI;Z`UJe+e^bHm*U`m;u7?{ps__5qlyum#Mz}wNOI{ zHcs>5O?olEDbpg(R&K^aAo)HkZ}Gjkr|OjOZ=kcaK!`K%HcJQtCU6z~AV}YfJ^tjb z-)~KU;0e8YjoM;cE1lQB4@?k*lTEg__>cG68&oXA0(pWoR%~wfjA(RJB3L4#v!ylV z8Y|9iMOZa;oR|TObaK-XU0~`Ig=mx1$%bZAz65#<$iEdqy=1XnAZQY6_BLk$Ud` z#xwHE_m%;VxOdyL@?C<5le( zmYLZE)5N+IcTvZ6!{`I}UH>ku3Y0>SAPb5?j*irR7tqA8X_3W%%5_SdTLPmYb0cj^ zBVuvm-Nt&@EmS{bmIPP+ZmT&hO0YG!`{6bi_JQgCzUyP~mH5m=JYds8y) zPGw*J-9hM+4v*Uat2vwH6sTaGD~K!e4CSL{i85v^2IFYg)IWxEK2guE5GZ_a-gP_Z zDL-bX5)pInAVFqw+2N8Y7bTzpA6{W9-zjX< zUx!Du$S?tIw`xgt7Xr5mj*4q{GyVFBR5i6qvIlBde2&Y=3FsAdlVY7Vk$b)CzJl9U zLfvY7M_V15Q&P0&dX4E$=QPVSpk(_cj1={MQAl6|=YGgG$?oITLK#;l4BecRu}9wt zU$SMIj>i0ZTpE2TCL)~V>JIO=huG0%SHIjjDXEQcI*f8yUyNaTn_D((iE};sNowW4 zsdphD2%fT~I=?{V=Aym7q2bK=`S9JtSs=%u@fdOduRdgX8{*ARfI5Ko7aw_GRrR`V za$JURF}TZ`SzTP1rb`-ZrrB{QdJ_j=pFYVbx`fteNE}luqU~Z?xr(qY2)J&;p zX()JTYi`@xes2EqVX)`hsWPx0@t3*h%a66fgmU~~g*E~1ov0XfMa=yq3N-J%7oIZ; zEBqDfFrEj-agK~h>71bERIu^I!Vwx3cwy!ANNP@@!D~pIziq~OQENX;S~AZm!UBz_ zQ&Bv`Lkb#Mbh`ARb2xYb%_;N$aM4XWtVq!QTI-85J&r{0-0AoX|b?VB2C$E1?ky>niF9;n}}#U>E@8ygVo2i`sH&b%gFsFi5$U%#`Zmjamx`1 zxxFLWvxY37L}`Q1gR5@baVuk1&3N}2Wwlz-dm(Fe`TF&fg_RBY(7=oMu61U&YyJ+_ zP^eoVo1S&2sLYJr%3W~jv11IEe(e!XIfF~o?KDPSaY@+TdAydF!U*$wh5mA76`H(M z^oPWGR&_ANmZJ{T|9qd_9^eNekv*3au!+$GCt8UTJ2-Gxh5O-LgqgR$U{P z?gigxvKS(<^hW|?1ar{3O<(O?T*#G01QZfS*`4=0DHk;ZT z(&fjfPlkkCdZN~=h9P&j^Wxd5K6PGwmKKZyp01+W;MVzZcyA~lS?FtFU(1da1UIqZ ziuoGM+oSFEb7lW_!8ed!2+mk~beAM5Z}vEG@R0H^@w8A$RzV|IHg`uy!W55tmdnjY ztx4F!;r35VHw$+q{3}Gxo9cTnRqVUsdSB^1)U^AOWwuz4JGS-O5N}CV+;+O-`xMi} zH3B912Zl(&_1?t+S-*H1F2xZ9#SM5{Sh9Svv}3_AUQxg!mikEr*-vDd@ZI>h>K!B|uKDuG{5S{{ z*BaqI=7PA2%G|5{%fG+>1DntYlN(6`=z|2etawNHZV(Y*wFFdP-Y-A1v@i3JZIPNZ zVVHQ&l!vbqzD@34(gTn*GoD&nG^M0By- zv#e103&!#XFVv%67oapZY>m(>BDl~JsS5tGC*5wx5~@^%FLTzIGUUdCha3LQm#_gg zvcQW%n~qlqBse(n@JP3OB)(49b`;#4V-@zSXCcEv5fnRB=hTLT9(t_5^>ZBA4GU2O zO`lMN?vgJl9TTm)4WKoEjw3A|6N7Jr=wlfr-awK<0l02Fm-`ZJwkkIyH2d4kBpW3G zj6_l%S_OGZUUAk3SwMICkXMRskiGy$ul_LUN>2l1v>;5OYx>?snE+eQR$wJjl71ld zoE4ml_QKlFTgY+8S@S>uda=2$(3O3y?4=3|JYIfs9W8ZHNnK3fEoQji@-euub}drG zWA@VPH{0I+Z~&-h1NA5Wc31{P4+$7uWsS9l2nQK08=NQF05o97;V9f_M9Wa&0~{%~bLO=gtZ<_;;4Z zf`olK$L@&$LTr|>Ps)y|1a`JzhEO5q)vH z8H;L`-!phA1@%{WMc8@V!wGU8oo>v(hF&g77X|%ekSt;#ie?*1>171V%5Cn2cZ;0O z*;Im@*&F&k|KxfS@J-FFg-enWZ_g2hS9`dGJ^`?d2pElV`CB(lVdAd zs9YQ55Os{2L_%DL&E!#2ckekr-zjUy0^~~(A;?Y+S4!%hn4GUaeC}OT;0D z6e_Vc4mx4EaZ7O?kM1(EG3eQ{|D5TJpsDEuwYe{`-sRXx?J1Px0}736s2`i_*Nla? zBD&CFAxgdAh&T2ZWoSm%)C#g!0%|SuPgnZ0*X`L)1S@6RVmX~5Hj^^TjK$J)%4QUp z@_e~z`B3wKhK_&K;VC8zjR!Juyl+DJ$q}!1Qgl;hGFTG5hF{W&gOkz4&lg~>=pgD$ znW)8u&?LzrON7&qR;Cs}w*v`>@?6%oW93a^*sYpz$J0ytK6751G~;hw*85aeXADWCv!r?EAY z(z4i-8c34DjQB`X6EzCe8Q(>7doSmN=ULk5lqFZdbEj!(RF&9?&jqV_dtxFz2shE+ zmLn6?L%H(%_ZB;`5^3v;Qn?#RGujL!GBaAsqqk^|-U)?+lIMa?T^}@}i_mjb(QR-H zKV4xfLSh$TyQ_DaKdm!!K`PKFS(h^x-{2%S)oB=hHv1TQS(7OLb@<1@lGw~F{`lYx z1c?bvlqiBN!D1RzTf><*$s1IKWYwOcP(dwGq=zZto1e2{ z`SGTgdI#w=#rVd-Jk}XMG9R05Iy0_X1*L&8W!Z3WBUze7Xhz|)zK5Y+Tgbc4{>f>e zD_mY+OdQ>Trf(H%H!hBzo!8$`4f#0OSkhmSiW-ZtLDbev%{y!ov>v#Kd0#gAiFy&=ooXIjs6dXC{o<18@vYK~Iw6tI9b((%j%7&K`V8%LIVV zw)%z11?x+qo^GUW0WYu(U91CJtblq2EzY*B5DSuM!!#aUK-d-F=mwZx{nL|=pKHUtMOsA zGYJ8AOC3%#0pv;E1&wrk|F4J9&Z5`uk8Sn|4)3W4;hBTzBA#ww&-HbGu%Vc1rO*L1 zN45Ye%c_UF5&2bYyHW6s7Ej^_(^eN`i*HSSAl=@c>mB>LIbl*W<>o0f2tbx}M-nGx zg4=?N6IU12TB7@DoiTO^D}9@9;Syxa_0L~f7pa(Q8>8R}Rv!;X4D=Us%#WW(r;#L@ z*+h}&mk{!c#pP&`z!R%|hy4o4s@@jCfSo3L;)QCsw>-D^gek4I45WuKhj0Y)xu!(< znxJeuqnGUNg^g4F{77}9u^YG6&nk2G?+8g=)fy-7hYHD~d-J#Zr0#6w2my z(pftojrdB#^#a^67!DDD5P|z^Czt+{DnD75w?DmasIrTNUi!@P?7^HFA7~j58Eogq zpscWrjxGL8a1+o2GjG3JBQ4Qq#$p>H=ND2-F$Ih5vB))Ayk00|MpDlfHG6w6BN6$D zz{Tu6JHOw(QLwt|X>7Sy&8ctYG$o@N>^9;1(I-{DZ_c1=*wy{+YzWeC#oepn zk1wO%xBUN~;_MCztPQnu$V$-nlTKf3dfE z_b|p}yzJu}S{g26l0Y9IvfytcZMB43ATWz{Anav5B3$F4pOl${Q*rjgqE6M3wszO@ z(NPc!-W{@~H^{HCV?&M{ItZPzAU#rl<#RP4u5flBgZMhcZLnul+l}FD$bTQ)Hd9hst|HS#1V4b}Myh5^seIaM){8l_38El= z1M4WSQxD>9(se%*ZuuuMjtVg!;;T_wP;8kk!!oM>NL`I*ufX9&+IQ!QjH6#WSk6tX~RN2;$EkjPFOmU_k3xP!$i27jnil$69p*fd>W$R zBba-$Zko&#wI_w)x{nl1@Jm_(-_I9agL&W|vwQC|(*2{kTN7S{aUbL&wSVLEkc^m- zuju|K%gscrRlyI@=orVAh^0?=Bx7_qa|P27#HlW`yciSf7GM8HpoNZJQ>G9LlK~eU zND8UsPX?Tn3)jJckdsKv#L2mhsbxlm$TF?T1&56asV->ca~Z9Z2am&Q+@{F~JXjK) zOIxae;DZ?RbjO0u`Bzzz%y4Cp>|Z%?5=0wCTM)LivdlEFLnbv6&GD{uu=fl7oo3VI z(-=?ENsE_?U4|(#h>KDct*qv$(=6X$$r@n1^@&rqw-_BI_e@J3-XL4pwWLl_O6#yWyl&3ZhKm?5abxlm5aBjSXpU4%84S4m%+W`gGOldLq_!qO z)9jwxp6_3^U@)Y!MrEw|&lGFb*Cn4N-&@;-#E5T1sxR%7^~pwV+l2mC=x}jc0*d}QbCMS7up<*)9AKC?^nZr2#dgF1tecg06cws%gj+CX zjGx7TKCg*Zd9+SU?wuFs8wUvqHO>3C>Q(!VgZptSC&;zU8x;SN4*yzwD~G)@2O#R! zXp(CUC{T`zHztu8v3AM{Mxe~^B{tYCYdBis-+L%7_redjn-=3o>cIjGM-%PoO)Y$S z&Ct~sPQ;VkrnkJ*AK;(qOaz9b+m-u=)P9q zQs|w$O?Rpd;!*%^n|weX2z#8;#irswoFwrE!CMC6`isCAW08B(OL?po>Nz$Mu6kL! zi}*an&>Oc8Ql=V(bP4QOgc>75$|$sMA2*x?t`Vj3_Z%{2Kx^JAA7@trA8mHUEcBuP z=c!N<=xQg3@z5>*bDrE96MP&hmkAuN5a0g%v(j~$xbQ?z@FKm;CD?*a4DejtOQbs^ zp{Kip$QRSFUH|G zTRr4a?s#@^;A(@&mWG0z5zgw$A9#SRq)z>Or%|l*uR8fThM3NarQJ-%S@{d12*=b- zCEVphe)8myYEpe$cB%l+jbV8u%i%$JEK`x6y zDeZSZjEyx^QS=gau&u>=kFYF{KASi$t17*-or=E}9QlOtgpfLZ;OmV4I{oCXE+%Oi#`alJ zPKH+;77s1UWJ+H#l3}yLq8VrmL$hKqZH|^wD718nZdy*fqQs=M*^df{fK#O!l+qI@ zq+i+AJx$LPcGHPvnfgiRC7OQ_0VH)*I$k#U~r5-EWdFE%)mPDqQs2OmQx=-bLyL>gw>Nqw^96@gRYaEN*QhBnoC2g}QYy#yeksA+Jm-? z6;>t&r=^Wzu)Jt)^bV~p8kA};iUxSV?{_qg-L6QL?&^Mhzmh97soRmOJ*hi_chnzF z#o4KlZp%8X`2sef%8OdE4OLB&=X>YY?cir2u8?i8biR_>+exP12Djim6^J-5Vx^>X zM2g9;i8XBHGHJA8<#I(ahvgMI3}Qx3=tFR_W8sU&_(x|qgRl=W4uC~f*!{K+cAQ>% zyL7!-6I6t!s}9z3#+CdMtv#+vg`r4lm}}FV^pc4$@ZT1g?1+zQ1vWiqELK-Y#-5;8 zOUSFtM}876&%qENpS4hN4eK@FaDuI%>Cf^54*f@c-T~IHbksAv-cm*<;3Oh87}?Tw za7QN0Zb%!4&XBb3=S4UE6v2c5pDdLFS7V+eKQRP>Pb$rRa z2tX$d(MRdM zedTMlF8-8mAs0Tj_+7HCwB7LRMsa2KVB_88G-{^TT3mh-XW^(^;BCmTTKFvJ>iFlN zt(QEuq+=${arO_f%Zxu}_gc7|z>J?(SdNg6JW!xD-wuR#`X?OWqDDhGc)vS>jUv%v z-qEpYY{Df_IV@QTKnBVXs=uFT_19T-0+BY)l=#0SoTzL88BCl#EZA{t=a$H;#?{g- z>FAo-$rrR5c634!Jr>qD%z|lM+C30IIo!s2K-tTol7N8^ZFoKn+OovY z8T|xIm~E~!oRIbQD0<@_oyn*V?n3W%02bwTR#o6azmG~epG-h;J1s;L+0U#1Rh%`% z*3hd@L|i6ow0(^PWb$H$TopWF^UJ+3fjy!ds!Hr#f@p!tRUw~8g(?{;Q6@~4AfF|# zt-A6T`PK08%%NX7PI{x~Az)O|6@fc44eJ4{_2`ZWQB|?L_G8Pw%OYCwPL?ulUP|)n zSl!?RZCI;SqiwPjFO$Qlk%H*K+6PJ03eGLCYz%C+Thanw__NNSN=jmBJ?WTAfHQbJ z5)MiAWa0{ssFhq{{8_zfjB@PptU24uk}rsFnEb=Gce#QG=fkgCt0yC1bh54-ECU!ywt z+o&%=bY%2ZUnznGjoMk}`IdTtC}DOSeY}dRyk^n`uTpvuC~N~{erz^ zx>JZkEL~?gk_EzmeFBICAq2Qxh(-;$Z60YB<)N)RZZg!NfL=(_k-tjtbw25iZhZM& z$TV@H+2Y6!FRpumBA{n<^En0)m>u7Vg`uzPpq_XFg~8^|@GZpY8zd^j zloS(Z`MrqY=5T?kGu{cC1AOYT$W3$##FV)l_m{)z>^4Y5b_|He&-M&Z7~IHK*&sn@ zI6d`&4_sow`)?@)mnF#t23HYrTc(9da?y}Emv5p9js|}>_z1Cji?SQJv7qLM9QwH# z3svuL^mWM+)}G>@iLCj-#gClpm^X*Al8mAWi1e z(9h6EIubqH_kV1qM;zOc|Bx1N{8wxxW;SN_|5f195sag$`2W)amMBJy_}tTYimt`o z+()}A-s$J*Y7|rA8%jTZHWU;U<((B?Ui+lBqBkjJ*#N*V;OLkP-zV0w!Y)GXU4USKbuKH=x10R0ls!N<8eXTi1u1y7}?4drQN5qA7|T&7cP4rgG3)8 zzC~X&!{?i~@LJa@5G_4)I;qxTqk!2!_-pI#-B8%Ph*0o^ZWZ+b?OpGijWxazA5jLO zhxK0~kz@Tcjc?dS_W7r%gc~HTD!T*0R7l6WJe_NfRmpABJ#6Nd^Qpo86!_>e8B|_o z;zrPFtq`>!#F+M|#BA_PhSdqT=^i>K56X=>g9=cPoXOvHGZ@R7Y>&BOv}`M-&tWR^ z!WW!r5*@kBqRun|nr5^?2?>T}!UUowCbyrqQUX#EnazV3+s}EDiBrGAbiBWkqI~N2 zIVC==#ks!OzMmPtJkAII^Q8oy0m!KKHDCAJZ8_T7)g)5`287(~ZYR$y*V$b1``_8l zQhKzN+lAMnm3Nitdcp}}PVts?cOXmT`2X4W%>Locd^r@(_4J@XQd@1=Ep|rcp87t2 zo5N2AiX6iLXgp96cM1GiL%bjangFih0A2pvA@-|!>%ZB6@0su8_fzBE^IS>mVXGLl z-(ZpZoMMMb2_M4^3e~U-Q;SJg_@=JWWHnRiBHK@De2}{jA zr^w<~^q!FC$JCcn0Aa=yNsumSQXbgEBhO5D1uF}F%4wxJirPqaZY4W*vQ*$*RRZ7Q zUU9&n?szQb9CxPod;5v5Rieo$R>w2Sc!|d9vlAHIY0&ai4H_2A?SHhSD!?5VjqEU7 zPIE_VF_=$rUwW`cCQH2=rl6Bg7>J~)63wF70y*m~V64oPux0LOgc@wq4vGaZcb}_( za08Lxv0-E=*$orQb_b3{XS?h!Nbrdt3fwjg`Y$#Lrvk8^p^-kEA?3KS-aIWF;Pk+@ z*O~bM44Gjirb6Ofr*^Ox7Mi?D{*#(`TOJOHr4~@%2Gp|#GFTPxubeu!g-J3#JZ7~T zpur>oLm>_WcPNIn3ses^mBTLRanw$c*8HzxR58mOu%e`vnlfavNkM-SgyPCpXBewN z`~$G{+KsHibY41+)0Gx@xQnX7cOOd6U{!6idjvzZyZfj%&xk7x6<;BjJxmc_LoZ*W zNOQAGfgL0x)c-doR!c!N>vgOe+uCllpgS2}XVrQ*ehTY7ePGsqvdSR%q1Xk_r|;Kj z^!K-CQ&ZQK=)UsAUFf0*0;BGk$VEkjSI#crkQs6UAx8&#!`03V+1-&Cb;#wRGoFs@ z;m~Xx&9!@fK{I-*27hd}mX^^YN|3jsCwKLElM5g2-ct820@lyLHe&b zOwqR);;kVK?#pLp!8=)MT)Fp5$9?h7RO>mXi_`O7J_1W~o zBv^ad9hL=Yy)$5HE!I15j@A?+X3pC%H}+W+_RY4}p#T&Ggsrc`TEP)(tBImRPLd_t+-+(w?J6|;4XZwJ$ zuQ}Alc@H%xo4fKOQh(-vlT~h17l?15Obti#1Z$XNHGMb^ua$J$9+;Q1aM>m`ZZj3Wh@gu_~{^f5Q9;?fmSFB`Qh_=2NOHV8(F_NYp zjLZ1QE1E8jT^bm-RC&7mij1jnlnN&oxX(KQ;PzV=p<==Od2zD0^wqab$L(06ec@vo zVRRJW^D~SL6A3G$#~l3F=S2k-%gZeno{mPP_79`bl#Uk22KQW1uLIGnmVK+w;i3Yp^AD7kEP3Lc4WvH zTBjGtJ<0c^>OraH$R(<=f09)m=ls5=!aH&JwF-yWfW|SJSmo^;p{TJIjCJ8s-I>Al zGSi2nosG}n7{+^8S!*_1GGYdxz+y2OMvj|fhn^-6h`u%wI_zMT?=R+iDV`YnYZ{Dj znUY8wAukKdtjM?WPr0$N-W7v2p-!EbL(_SC_TA$fQs=|cQJpF1QHujyZ3E^Q@n6kNBu!k`NXT>4QhGaQ@IJ1*P zZP$50c2g=|tK^rTXef7^ymb=UU-x*VrWn(}Y9yhjbN4_ijA>TlW-)x-ks+yju9;3l z9CS-oby?&j3BX9v*G4L0jvZWQI;4e=t`PU*Dziw&vCUCBtr7g>3aNQIBFUe?cn(mZ zmNj`is>TQLcxI9;lbq-GJH`3@;h~y0_7Cr-Q`{>4rZW18ODj)Mi_;YF71uJiZY>`tF+e4%x5 z0j}~jqHPkCxja#U!A<*eN3)jgEw|v~$+~ySz6<-rjESUM?sCLp zUhy{Z;hff+bw(FfVdOeFx;m-~?7VfdhixBGISqZAH!)l5ikW=jF69i)ohwc2GR?G( zOg*~VNH4*+lC!*VdYHFY=H$1dr4qkbW?Q=+HtQy_RN@M+)3xdL!DK|9azpM$N$}Ei zNov*%wq}IuB641oL?m~WS!<~#`$Nl(+ILDrV+8N&Ly4BXeF1C>BiLDPKHG$$jT~h- zeW)q|e9z@W~lo|2&F zH*-#>8@~swJWhih|!`{j8{yb+nNF zwGca++!*Y}i{qVSm)$oJr(kI; zSC-q`Rm}(1wuJ~x2_UR5LM(Qf`pqO@(wlkUM|72Mvndm)e3B?X0?R5;<~{8?IJI_R z%B{3ehpw9&`bDLLwB?!6sM<}{Qq26g*bTnYw3j|8)S<^{}l8xk%Fn^jzuJ{!DM3u!Y1Ad@hmm z#|FF*JoJ}#*8YY$OvYJmA_a?`**4hfCdFF!P?$tV|b?V|fnc|Xv|aSZSOVfN(wuhd@xbz*v_bK<`-c%u|n4gsc zBO7)w?BF{C%(vvMuIiVc7oPtI35--UUJ!Q9o~07hil0aS$31b8f^q@(*ZU{tlu}t< zg@6SkbB;O1$tv?CShUI`5mBxKP_&-v#+~bn$KJIPc@ZYeDwpNQeIDx~i45ymRLY%L z%Rlc(khkQ{!E&iI1>hzW*uQ=h6=`k^*y4*s|2cvWaGtE$U$X3>|ESJmn?fG`kwe}y zq6{Y)={fL6+pu1s*geL%S#0uX!1EJ8AdVOBo)XAn8CzCRA6F(!@0|CJ53$L3#};G? zo;YQ^JkAA`GJ_{=Tw-bM?p;EO++^3wXm@xVx7x7{=U5Az)#V^R8Vzt+#?x}6qZ}~D zzZ&B_F;GiWY%$vyWN)L?3WFY|y}Gq|+caCB#d(o&K2hF)*AZ*9VGz{gfRIlncWT76 zv;5B>cAxac;Q*``pjv*21w&(x`^YP6@Y{w_afEhfl_H0AZ_DlLZA~&7+&wW}tpF7D z-!=x&oh>Qa@#wpDS}0k(g3cRSwv+r~WG(_9h~e+9TD-c9X#0SCC4bU;mS|?EsVNtv z#r}&+ENp?tQDXHpe=a2G&U{pZWx9_Fvs=JL>H`_{@o3r3ftkl*l4b9|xdtyN(3r@E zJ7OzjDsMqpB%qX5z{^I0J7`Sxu`u<@L#4QMQC_aa(C}7<61;5(6IML3$s49LI(dNv z&1xgulE#PCd3nnDQVr@o734vu&;3HAG!-6N#!Y$43SJVQzEZ|)IEZAw8n3wv1uaov zRt+r;8)?yX7qpk(YF#LKi+~%r+C)P_AEP3eDLKwKrcBXt$C#&aXZ5ctgWH>H+!V`8 zS&l3|(u9s!8LdZi9#ax2GE0AUJqxW#N5Lgi)0n~;$NQSw(I}`!6UR@?L3+EJt8?qhZ`qTaon}&Z`J@GH&(^+1e%DBrm=4g|wikYqld6 zqpqRuFLVq77f)y*Mt91mCl@e0d;wkh;_r1|HMRjBOAC*uBppiD#EHgeRQ+>{t#3@B zBGr~T^wp`KkBi3Yj8gO@w5dd-PvZEivIgV(VCv^AK5De?GbPBoB*zl}=0zgtgUz~6 z-_P~)4F zlVR9Zs3pe;Gf!&a?gu?^7|X(XS5z=ce9Ms5sOT6WJgB6rM;bMJx*Fw1pVVt2R;u(! zy+ul^PVfFZIY|^Gq4w&1nL>=eY)-t1sc}8UwngX1R+wi79S#_8F0bbe`l*@dl#nvi z!p#^@R0lBe?f6XTG#)IMLT-NXO-!kX{;nPny)wn-Dp{tQq}{B_^zphey3atyorqjL z0!;W=E8XZ4&@woOi+p!z$coA9=Zu-By`M9)UVt1g7-?_n+b$s7t5Dqh5CqOrjvQ-W zEG0j_E!$%)-`rQ2H~r?7=V@S1vZy|Xa`Ey#^Lt*4KHFP>jZtv(SE^}MEQ@c6;Zc#o zK_X@2|HvdHYJY)L$L199c;d;w^&*;vL`|t zTw@=^;S`O>o5i1mepMgDygq@8fB0zFcda(+u>oY_W?GxugAR$t|M}`5La${p2p(B- zPwDF@zl$IwoSTe1S($s1g7?U+WA3M<5BF~6Vvxn+Qd26(?^rUO-3e-1H-I05_SvH@8lg;D3RT++QF6(`EZ# zA#jsB6e&f{PDO52?qNZN&L zQ+?tX7QP)LWKk{NFOECk_C;)ozslIq*#D!3YWkam|DDC}hx7dv*EX~Fd%`XSMc=d8 z?enO-@AiFa`#l$x4ED|}1&Lp0@L~V$jf+6|eK@4ARB8ME^SRfy*G^V)RoRR<3Akqd z@!P=1erq%_03~0KS((?o=uE1H!Gdzh05o8y;9jKE5r^A~jXaw%qmbfV7PkfnpqJcu zSJR0K6~ZQA*e!Rrzsh3WHmJF&0$Q@^c*1sRf~^mTptZHKTbcEyra!N}wxW#`>#(5B z*$X$BuF&x>@sWo;vO}Zh{7O zpSmAaBctsn8L6)wOT8b!FFe<^s(@0{Yl01BZ7D65iGY%He{PeK*~!%vITmn2k_(GF zWJ9ykuqM`UC;+2O0*8+c8U~+F3vAwsI%YkgZcTD)IdeJJ|AS>PnRdSZaT8|%4nL8$ z96|4(*}ILJ^rxujF;HVdzPS(UMlzoXx)~lY=ehx=6!jXMHhLuuX<{d0_%L`y*R|F` z@&*tYgA!(+IG&Q?mV^rt!r>Bn;R1?HzUN$oJu<8bdwA!#C&`&|EU%xAqI2XJ>q}6W zr@F9;-z*BlWndKdDrV?~C7&sUsB&bv2ihjGk`YWC8QlO^`XfB|*7bmw@meBcoi>Zit9= zv8P)%_k7{zu76I{4>`khm`epAg&o3js!W$ipspSgxYe7&ry#2+pPPBigQzhHPfW3O z)_BLE>Q8;~mQxT=l+BN35W%V5yDueB7FT>)_h-HG@iP#xdY^mm%S!d)fn^SJP@4Q7 z&WG0-^N$a`Cg}bwzQSN_iBwF3M4Z&kSQ|Ynm#& zIjC_4pswsu;H^>?AKKM4Qoba{S_id1;?-;h-a9~jFO~jkv3^w)qvT`ugoo9RrXuTX zwYnv$uMsJ`2x=A3yPI4AZ(}v$I|Wk+k4w z4`;p8hd9r=%7AZZWfu-E0yF$frm5;EPAbYGbSmR!7tR+Splek3E1#NNyI`?X=vV4# zSYZs{^*yC+@1P6$=RT=yl^7Q+_mQN3(3U`GK{QfgVrmk=v{>~mr}1twZgh5Jn897VfLNeo z)5>;i)Uy3YQQ@(&eU?Vj=$Y0HORp?KHEqOCF}>xIVl)fol3G9$rYl@BeWz%bD{F$z*oUpvQ{fr4E}dG9Sro-aV3ep!6oAp4-e(1$?c-F%zb#;@nC=1NgG*20XeFaE;s$hsC*06%B!8X={ub*h{#XKzrb#m zpE2U}czbRQT!q{%)PRRIlRK-nP%qfgq>TqZw!Eg)#>HT+{#G75%0||jdg8fZD{mSA#YE(T z!zk1;Aut4|DE^*tH6Sw?29$( z_fOj|Fb3#^#sB+2V_{(Wul8*jSpK)ZQ+FcvUmDVLM*R$2Tdy$!Yw=9@Pjb`--~;V+ zK9Zvh_wg$osby0^E46H-dCLfvd9f;_H1cL;tf>60ZcuOxk0ysc3wB@N{;MwcO*h7m z{`>Q&^!=?(p&+OL7?mc^IVEr%l@`~Rn{1SPBux3Y0_EZ|oc}8BtWW>vA1t65f0Tef z^H2Z^L3jtOC+&?W@K7k|sk3vRKlUUfD5$@aqnQqqoO<)rhWWeap-d2L= zm|?#c^$^G2$E5unc+CrPq1TNyHe|dGP6%wNXXvi2{S{1Zg~d+!^4Jq#O-xLY%h16x zAu0DVnnG9x?qWloB#@|zyT`|8$&9(Z7aESSqs7j;ggB(j30Oo4oz}TkLGGGi-slPqt z{$5Ws_*DCPs{NAQe?_V{ZXWg1olvHQ;d!3>m3RdZ)iKQ?I|*_NxVr7T8>=bZ;O_|M zyvB*#F3!7T#P^5|R33{5z`cN7)3Q?$p$F6^$;`-++omy1mBqmsUU#E!ljm*jrWuONR{ltLjgsNmKAz|jA?DZnl>}Or1Zq>H7#7_Ofby@O>(>Gl@b`)}}!ii(`-Jk3(4 zzilM;MS6&PVoi#vYDtYqfT~9u(TnZ5n2HcuwOMs%lSV$6ti#x8D;y#myZ_ytq<<#v z_^Yk>1^&9Nyo@K#-@=1p8?eK48|NG%v47=MUYG-Fy+bUNdpNyX6;uc5=>GV$-G?la zB;#VlaflylzbOq5YUjQF?o`bMJ~Sc%Jj<8j6TY;4zY=weWAt@93E{ zXu;LmQk7-zpt{_e7l9typ-jPz=aGdXq3j>5d}(_L+>71(jsc1mcrzn}JSTy~YOjXb zdF>24f*kA3;33MJe+Csi*P^>Ev76sc?y`#zHPU{nDX1K=dQqE$PqTqHO&gs-+#{A! z5m@esHie?L!yxwrpoGC1(4*tdH$*7wLL`?jqzDtz19l2_yg?VDz(W63pCcgEz2VP4}wTX4@O8&z70NbUg7OwtavN6N`-9_jm=8V z?J}0!J*19K~F)CF@ zCDF>{{d*0U`H-__#ifmysa4yBiD{+4(Adp>=A>qB1^pWJ%X#uw_VilzM^izv%qVECB^aKSnQBgsxmubsVaKRLi|u8cW{F z5Q701ZOoCWA}Mp770?aa#bS+cTLWpjr2z|+0#1XXbWsK=Qo4e%pOTrF3QL~Lc;#gE z)-zqdM^&?H7mZ3((v`VL=haQu#wO@(jkauW77=#P2}fo!uwL;ZIxYnmX@zu zt)qO*7)Aq4J6k|mIl`+!Ol}p_TaA#}sn41cVZ*EQimf`alnIO5FcB(pl!Y%3trPW| zAuerVi=s?=5?1{ag2M+;6t7Q%>Gf2?snWl?@_nd}wJolm)!-imgK=-*M_7BVnVtFP zlJwr|39Jk@H|N1ew%{3bG+cB#%uIl4*V9ESAmnqy=-wbkEx@~Ya_YxA0>}z$b{QF(L$~}sFm(yFFps#WC`HfHNqs+1)Ug1=pVs@ zlfxu+W6)!%jvQBo8Lw*sM6Y3K)alABPt?Y-SJ{g7p_To_s+z5(767U6-r=taEWe2o z2O=Hsq$EsH!s+H2Tshc?X7~>hGEpL$KOG8g1~4aQqF8VuG*zE?Ln{NllZlsYm)_mn zKYFImS>%WI$C=+3@4uM+4?#PQEB%ly&z7h$#mq&@Gv6OezYN4BME~g#!S>%gBA6K& z{;!m0CKj6$uJ=xP8Crun;S)5FkEWhmz;5850zBTX3|vD7ZQN4dk6)^?QKgnDZRhsc zU|s^dRdpHvBLPK}YiMo&2J3ek!Qy{_Y@ucN7Vofidvm+L4<7GdeKI)FYLev4-o9c@ zsy0XWAMYnYt3Q&~Uc*t%r~kNY7EA9x8k^pp2Ed*B_`SYA9N$mQm`p9io>j-n+%~sT z@Ze^N_Go*ti$uVwWq^B_chAvliWDEh1@UE#B%aBBFe(-yK$Heyx(o zc_7{{K zVC2TI*#XGvWg0P`UY0hi?r!>O&)MNm^=80KD$X!Y_3%_Tr8jWceA}9tl)HFd!E>p&$B3%fBpG9HW>b(U9mIBVQReao;^g6IGC}0K>Oxh?2HU|3v@!wt!Z2U2d zXdLMyl_C7DF=RRk$6>6}Ao*;Kaa0qjk#pd{djU+ca0f@I4L|q@W#@rkP)l_-yGD+i zls5mjMJ5gg(CJ^sZ?AWjD`anve`y4r9QCT~k`+4rHI#1JrpqcQ$UnKQsj_lgFjq;(}+AU4-aQ{=!rIdPMxA z&?9+phn#vt%+&ON6H+Ca!K&(|98HBS0t&mo~cAp|3hn55zR_QMBGqf^V%96!8 zEnCXj{OeI-E4P8GL5g>a&8>$cLmfenurRqA2%g+1>V;*dj2(@w^cu7p;J_Cdvvt$N zi^THcs43e`vzSC8KhDU@yOp}^^Nujf1_T?J^a{8<{FA8Y1@7l=BWaEtnFpEeF!4RF zBM=*cQ#}rrZIFwYB_8$pQya4~Y3nTx!m#SIFH%n}yNb}SPOcinI4bfXeLno>saO`z zE{o~PzGoRq8Fh{0yA9;z4f4$Ny*n~%hCz>A;8;`>kFZUHSLe*(m}RQfkEv}V;YPOi zEY;5X^+Tb2^Q1J)IM={U{Px>loJKA)ADm|k;S!H;?&RASS~t#&*_#3OuFHd?`xENj z*z>>GdVTcKP@3!B)NT&NEM-jNEM-CB)8I^u2?MLJK3Hh#<2cDF1)i7GZyhX?xUZ16 zpd4Jhy8~zeD02%JZyVny;fqy{`?v1Pm5!n#mOfWeTAP<;pZ1^H=b^-;+?Bbj)8iKfJMLRDMm(L#nU0SPlm=i*OWS_@*1q@yzhgV^$!ztJHNp zvJg0=#1W_i1~M^zFyXi*Ws2#=y~oTF87GlGL?bo?-%Q>!EJPu3?tjJYz{kl&o*{l< z3l$TJB4-chBLZv)2w=R;X~BU&y4;y&o?Sd$F!E%3;FaGTLxpn=DZ#ssO80(r$ji8n zz_T82=82v&rBgnTq-0!K)B~=7&}R1mAcXUGhZ?Ey9S_lXWMT|jUN%|X5iY_3$PAjB z`G)uR02@rh5~VPv32tM5)I`qJMMb2ffRqUat5Ae`2e?>o1w^F3V#A@s89GJ0M~#@D znM6#C%Bq`sx3??|qW9n1`(!+5k1>?!8gVY86=SohXGsSjxGIR#wbpv118EJNU~jlx zS9hcpLLXl$58s7;nTBFjcSrOia)OdgG2RjL$0lK6H?AX$6fBk{na~1|cX?^zjU}Q9 zC}uTr&2Th8uN{ogXzMx1uTVCMveah5Y#tbVG4LhKi-<)pu6f9P!?r_#rK61lar2kh z4`jP6TA=6P!<-_lrjxvMbwt7JTg1_^RfipE%yb$|vTVe(6%Z3B=J5jR&t+ySI4Asw ze~{6j%Z@y0}j&)KNob)>pH ze2|&RFOt%b=vozOGy)~2?^4}VGdkCjBxZ|YK!XWgFFiy}MJrf)UNDh5mhL>-_y}e8 z48VT4Sk?pLd|E%W#72IYJv0F>U9@Jy`8z}Brqb?v}MrWGxLd7O& zSSxARSOGMD)heoFp>wrBnxdgK#=>|a^P-f=k)}VhG~B}OsEn&9kvbEd-HwyPG)~XN z5FYS2q5)52uI)bSR3-IYxm%W<{P)PGaYtKPx0##)vihs!)ksHjQ;kv6Dm&m-8dnO= z6~}xU3%$+p6450~x5mSQc}kdm5`*0Cu_)U4#Yb^~t&eWQLa{ZIGtQh7Xs+dPxk-p4m%x}`sZx4L8-7|Gl zb-Q4y=Yg(Wz4-+xI|mnLD8iHdgcknODykgzimZQ&(ArvsofTN0_@AU$O@26~{pW3P6votIB_n1%yAW*iI;4)YLe{KK z`HI;|f1g{RgZeUnzmb#DdWT~bkmLs#j;reuL+r)7+zwZDDL(DgvxRD4Wj=$Pd>uO* zVQ4m^IQG&eHNw`Z<4%H%L}Xae|JuT692)S{wzTNs?jq-~cuEcvhdDCwp1%)6?*hK+ z69GBTupNPCxCB`t+)6K@Z4ROba`v&G%jCUJN|!ss-bDl*ZkI(jYhh^BkpY?$^H7mM zn9MCTXto*^$D%y!NWDWAxMHhRl#T+$mUh4kF1UYOoWz#{q;4I0H^v@y;W8BkUZd5= zZ$1o|7RMli&)oRQ8CJ13^dUzjsI-WGg+-3u@NET`l-%InsXH!Xxe{ z4XnY@&?kk^eu*1AG9(Nj+-b_E`pRG9p7f#R7l!wK;2G~Y(Er1j!T4Wgm5l5h|9i~% zXJo%(L)dxymsJ{_ji4jAE9TSA>jqp$(j~r^R?&U_X2FR{rJ_uf+MJAbKmZZ5$v!ah zFrQ6J*!@`71O6QvRX);XA!MWfwHmtn{5+fa)yK=q^NWHFj6i7c@Lo}4q$%*=`FR1@ zhxFG66!~3x3iuZO^tQ;jAZ!89ShmkwqV~Ir{fyj{u5-AkG~VO(kvbY@)Sqy9|9XJW z!M||_gjkSRLc$7Irv+x*FCa|?cVD#BDrCVC$>BbaY7y1>yw(1gE#!y2i7_U(G=T=& zV7Dn8>h3$U?`{WUE7aXol=m-VdN+X#=cAQ9boq3!cqq`<>gAAK;<852T`FWw^};sp zoc%J)YITaecuyL6P<<7I2(@EWXcHGSXs3!9^fwYvuaZH67`$HO z)5z9+7iyX1zJ8t4B7M22NGR|c6u8-EFEtx5y6OwZ`@Z(I;;ihee7%g7(83?{WgAcW zd8KPN7)zlVFz=lddv3FKtu8J@j6ntg9pz&}8PSDty=b<_1V}=ppKmEFNQf|k>9Bwp z`i{(4ewFYrrg6;MB8%QKtPV3;c#jzqPY6pxvkW!V<(1y!a=Y*Wi^ODC3VJCdd3D$f zZK*7G1c}&6dd$riqt3Wzjp^2bm9#4~tZ}J!is?r4)*XE`89ht^Z4gED=ft5btDnQ1VJ zBM^_OqX$_j16%vmg5iU)QArWMy85{Z1tV2)vDedZL^84B8$r?)Mc;E|Wa(j+0shBk zfwDTk$&)EhU1Oq(`mS5S!yFK<=4uy5898o_QMcZNnIXUfU{C@Dt;`V1^%pF|!o^Z~ zY+W2WR2O$BYk#MHq;!)z8jXk%8wE8C^CCn z{O?iYH@@XcTH~3P?*XZA!He@stgqDqJCs$3NueM$H$+EGErr4HY7^;vb|{@0)EC9M zjgQ;HXY;@(4OP)im{#BByK^5DR&aPH1MIb0G(We0*6Q`2!Tma&=kxeGI8Y1LP>Cc9 zdbJyyWoJ@mrBDHDb}})Nf#3nNE;6yDf;|$k-aM{a5t2Wy%g43!#cwvW z^hH7-F*&X}9pg2_BbGZE7O7O5nfa|UMh4O}L(mO0lB9_r{lcvrA_ejMB?nGUCAJQm zauu@EiA0{b_WUK{9d{O29Tv=uiW9xw6WyQNHFJA%=w}9<*|wI)DN4cF;4Qq9#IH~v zost5SsXAy1st;$&54l8Plk5ExYXqxY*x6^lsUw&PoGpvWd1G@0X$&kXfU(AbI#jXQ z#FC7$^}r~w9T&d-o@2@e=hfPneK+Lcd#dS53b21X>nggaLRsvxa&wB1$Q z+Pm(p_~3<*p{Y`m%<0t_F>M1TX-Y~8r4^kol7P{FaM?NG^f5NjiJKCSl+qg<7!ho$ zQoP$dO%;R{Ri&yDMM)9H(WhTSHn5skg;j8qIcmfj0aGwJ4?L$q70Q&{+2uG1%6AG1Hhx0vc@f&Z90)M=@(lU1riYoQ z&YAA8kB0ww4rE<@Y_Z|bx-bSnXXQHbif7TB;7|TE>~HlH*yFb%n_P!>yOS^C!+5>b zRl-cTEz83+b!48b^`qzjGG~YVv0Rz;3fN6r7=A%3ak$2p>ijmgL}a)|QP2IOHD`(e z2XJd?o6hg|i68HsSM(pQPp1D4t;@v0`hOOmPqe!1XgUyQ{-WY;3NBSs@c|kF(O-kI zX=`L02o!ZV9m29b-r1w#?;OK)tz<5&V6g>{Mz4FLM3u?$axB#$%Vhoo5N$2j2Eb-_08Ey2p4hFQ8%IDClX4_=e}PL|JoBK%r&3JTLy( z8oxFV67{LaW=kF-Qw-_n2tjMUKe1!oE>|LKv#|5xZ^C4M$*Hh6O&@>4e(d;IC;=V~ zpD#N4;WKNg(47)DdAoqBHzvNxU(}0HgPh!mP<8U`kMzQpxlLlHpOzY{0{Q#l<^>!g z!q0je;zap+SYjeTNi3Wn?yd@YjJ5}!Qc@o-#dZVi}|N9HG z#6v(=zZx5Eahn@W<5!T+!!5`F_<)b;Jvl*U62Uhh52W}*q#OzecS(Cti8>%?S9;$| zJ@7LYSASqjVuD}AIBhZd{$Aa>KYmf+)C|j zEuxr~-v2+w&LK*WXv?B$+s;bcwr$(CZQHh8Y1_7K+g4Z4y4U)HKZ$7!;tlSLv+voM zI8rs31mcl*nba-mJ3r`*-2$kfxkF~QLGyZc9fJ~Vt$uoVS zB{D43YJ_kR=woJ1GWUZVtq#WV((M>lIh{$v7`1CXwPh_vpScwDg0Ojj!pAyq;Zd9y z5#7`j%squ zxI-Lm6Cd5HWhK?;)J{s907Gy5XU{u}87@D2x?VrVdp#CRl4;6~0Ni?+1hVk&JZME> zoTBpdnJ2PMNT{khWXuhgjqVCc)xzXQYJUE`wp?LP1)4~SdQ`Fkb-%c76;gClLvd7e z&7HLdz8AD3=xc>@SKY0S>(L|-7V_re4nPHV4(kTV#Gai8OvymvAAbx$lUx9q z-oeK>L;gCbbpke3`pu?73Q5z~MwPCIf^r$nuXaTvA8f74JBKLBF99VWQ{(8;GAJvp z5J(jm)(8c_gND(0fzL_t2dFuf50Dn8&CI?ZS06chp`H>qH>djOQxzvX^blHW_##H7 z1i3hG+n5f}t>t=RoixN{Ok)T-?J}hS^Ltjb3S_(;ZA#yz0ddFof>(X3=0?wMW1n=d z$e8`hw>1vGQ*m8x$4VWRuw7K7$h@<_J!91N;L-aGX&_mR4w?8z=NBGH7da~>7V_@| z3Acw(*ZR$_J0j8^qIrhd{m@(^Z8-1>q1R!1$^y~SEzhe^KmfToqIcso`D0V!RF(0# z0%2W|F2i^&gcyuq@XX~Fkkzm9vk*q&84`~#yjG3xr4nZ@x>^#(ItQY- zoAw@%-z>g!3uqCJQEj66o>N@}|MIC!*rUagotlv}k~PN>=*t-0?Kl5qz} zotwBg_`){~)p}(rbaio>MCao!aRi^(zZrYzGj4|)9pU5=4=L14YR-cXt7Qz@Hfbqpu|&q81I&r zizabu4hGXoGBi@msB?)6@P5SXv1BPphQ4Ks*m0gqw1JR$muI1>4#!JVowC94d= zI`olRnVp8G9IFt%j|XZyT(Sn4QM(&W9Kq-gI3dkKl8Yxg_mpc33y`iyX}681O)x&+ zI_+EFN?kqUfAjc$_t{3YEc*Y`%=BOJ>r5XbN9Ug9bD6jGe%;+-P$FOWEyHO*_M~Z-kYfPIlo5bL zRWLjsB6Ha+MFWv?{b$Dua@1XsVijo*$!DHHr4A>lrN^*mV)~U_C#i>IV~Q6wT9D#i z%;F2tEm}!ox@b3HtwEGb76Ul=AePMsu~e2RyfNw`-7wwDo_<=wbO6tisfl&k7g7g_ z{dJto1GO4y*DOxdKT#Cp?wby9#0dl$(rqK}_Oj{8O#>9$OCEBma|5cUVM@*+kMgI7 z(MmYd|8TH-kpPqlOizdb|LM8&GUvji2)uikRF)W(6;6%i6J~DL8bGBEODSzT(}fRA zoo@TR3!JtUA#XYeR|F6($n1D?%Ln&>LN{*QTxdD#{!MhJq*N3fs5q=)D4huy@0qF# z-}xtzUnK#YqrMxBsJBotSfsw6f`G*!#nfhC58+OVdO9ct_u53x4536Sgbme1w^Xwh z268}V$23QJu&JnG9Ah^B0<(pWgSGtlKr?EiemW$V@>n`9uWDOT1*q%Im}6Wwb`BMP~k)VbfN_>$eta4fZCny+jippRx^5Pi*-^Bzm6m?jM$tl5F7}*M9(D;D`;BV4zySgX zpwJ?)MrFVh^Nl1MmeDUCnyMTB77WMbSUdcFHuX%izzdX3RJTq0CLu|(3gfwKMCbd7 z>k8PEn7jV4?Op{^_fZTDLnIWEsf)&m_V+cCExiYea)-h2ZG_3LA8umIsvcwd z)2pg8K^!9+FrZ7?o1%yQ1!)b)pdSqEqva)7^f->V z3p%6}%L{iiS}M#TpkT48+V+w=ZkVL|Oh0|PeQG&U>89J|oMmi`voZXu-Xzx|PBXGn zIh$!H9so%?MP(FQL24n18G;CxRgpjxhRM`NIGkrYhlGkUIm^V?Uo%YX73*(CT`H;T zU1vEgjeiA)b^3vBt1g|Yuq2JJu{kI-yCjac&cq1TRH>P0s~Zg_NM@QcX4J-4#}I)L zP&>XpEpo-rHWshdRe)uT@;BoM=))kI{JL4fH0mo%o9>t{#~QA3I6+~n+?G#*rIf(b zGwJZq3fjBKQU8PO1ld%F#`XsvE)lX)QHOx1QP{3C(v@d73bOo z>&j=RqITw!t&p@$LG{mSaK5@o#`kX_YWWw^Q>IEAffaq$>u6nwKR=(tkWMkBHz#22 zuk&n1A$&!AkkrqJT~MUqZu?t85ST_h8_Y48GQ%(-;v_ z#F#MP+f*xwG4XWjA#7;6{b3fN<}-9CoG{LSA%^S@1|S3q>u9uPK2=Jh~ay^?8R zA?dA9?J{Lir$r=)aC3l`S$aNU71@=2gtvQBwG<45v{xg11(zOQJjO64GJF8dsBj7S z!77=;6(swYYKE)~Mvg~4+6lWf%*el=FOW}`IgJj=kC7_>%A z_|q>j(#REx+fuAiIz=HKx+B zxK`Y_J*IY;apx6*uuB2Gr7FG}8U&xZ26{xkdK|#KP>V&FsqOOEev#^W=@i85NNOcP zmIHm7)Gs{8l`)AG=W`}&MvK`MAb%U9YMiSrmcpi#s>l(u$}ATaTS%w$*`->YvmMZ> z5?a{EP_)CD)b0WgHY@7qX}RO3f^jyVz1}&=WSVd#9q`VpnMVUKls^|k>lR0NB%$-B z@5UB;{@u3-as8Cx+{aM;Ez5bAQ1eay*bc5j<}6<(UlQK8#s^l}DUlMfjlWy0s`5ma z%8m2ta6_VkA9C+8?2FByG$J05vMoeA8u~~~*)nPG;woOKSmx;HQ&It0v*?RWBe6Pt z%}d48?iQ>{x#zci#TUHz9p-SF^CRR)O8KmLY{i~i`_jR%Z_Gv-57^?f+fPeCkE2lN zrcFlCu<3y9)-6+;T_8Z?BiIQzq^d;(zNb~S6H|4bz)Ebiv1?vV90Fmw(7L~k7`fvH z=~|&xI`12EQ&<&L*r7FXGRA_vHqnQy>ZB8uS`(+_zeVUxR3nz_9PiFucHjlXSfct0}6# z!g;%-ow{om;7IRLfCMh$SxZdgs^qqUrG1e|kZFh?9vOn=sCvHxo-aA>Gp-)s+!SkW zaElis@lR0=^(U>oy)KV|iz2`ypBY;qA_H@M8(}7)`?K$I-&`7Ke$nW%jKC7wUu+GA zougj#flSzLfrwR$OxWp1HI0&c_DACzlsU!|XsgK779WV40@n;u8&~`lkuYY>7U|!n zHkO@TVaxj9CN~SE-ai4X&9N73l}bYQv@V>3F@$)#15wv_w*|5&$&!9yoH5?yG=TV} za&GseUpwr(r3)6!_x}_X>|qhV5xl>| z1t)hp{XhebAmdlaJAX>3nh-hbCPT)mDU`Jg%a}4f7o@ygC~hwf%4hf}8fFSTjiF>P*<2L9<+5V7q* zAUlt#PWEt)`Sdn17(l9-bC&4gGh|e}J1SN@%zCA!dF{H8X#wN^@{RKB7Q3VNEn9M1vfl^WFNNc4}ahda}24+83|x14wRb(Xw`4n%f?91 zAJv`Oip4Da3fo}#_`FqtV*8eBQT^3`cZfm)L6QrW%_@MH6^O;v77V=*N>=QfDGA~aPa*0h<_mC zZ4uoBBAc6KlW1BdZp}i&Xgo?{0z>%2vp+qPr=kE4j{uS9hvID}PQIvvYa4vKJ^eT{ z*vq&R2sqff`l*1 zux#-6qfc80BoSl*E1STby5N&%G-8?-!sQZIgIMCKR+C8)a<}4nYmAXDLi^@oGr^8skQw4Xzule|UB z#TgA3lKK>p8$#oiMe+^jPQCkHnV9*^NSzs694BvMA4*|Ljo&1+mIM1o11?9p7-ws# zr!B`LP#Z*d8gF8@&|QtZlguVNm6rflxyUjElOh+?rjpbEKM`~pk;#P0!pD_Ix17J-d^0?{E2JZ&NfWlgq4|PS|j%^|(fI~m1 zU7(;#0g;D0D|itsBJTBr94cdtO{qBR3fP^0P8WQ0Fzd%e$?ovvh-97O9TAPKj+7b7sIOlcfJb^9S)LnmEFBqi z@MxQ_H|w^qS3_FPZ!=mv+8q(pgX2@bg+9H-UcbDb-&wu1UEf#qxe1QCwAx$d4})$; z2Hl>U-!{wZt5fjd^dH97S$JoHZ&1F4+PrgY^O$%spInQD-t?dC#b~?gZYw?O4?#B$ z_<++?y1qwT@1Ms@yR=^K>8;_YdCCiON;gsLI)GPz!qR5PMNXEG83BSo^Qd_x(eY8t1ZBBp5KrKe$!kipcl-JMkxjgLO+qK6AH(3 z!!F4cM~H7HDJVm_HP-^IrQW5?XJ#dxvLt@3qBqHAX+%`L4{$9H<2VeU5?O*}Xm3;> z3{0~FT6qq8RNqvcCO?3De3cCgaa!9CJJ&S$Q(}A|$}6l!0BC@M<(2iK@e>b%;Za@O z3vJ_FX5Y&mYyyVm9dv~b(K7O?BBv#|;^bi|!og>e;VOkQeS18*;Hcm+0o+i6Ht$l8 zIIKDp`gtBzV7_K>abc@X%kUQ?CoF9T96_TNd6eKP$kfVD20H(2BTh;@AC8rovq_qF z8rL_{^{lv%sGId28=9u`ocn3(T!PPVbuSx0@>y!$^;G)7bsx>1x{ug+Ies)xl^x?T zZS*fTx>HVB(TWmdl+;#H2FcAT8qjJ%3mV*e%bo6XO-tk~GEFS;T`SspEM<5jt3^-r zSKyB=0jhxR#qV=ASj*EPRox*cG{iy{d2~ER(tH-7H7OvzMZMT+M0Bp6Z;&DrL&Yf?Uh1F^I+oM_a zBpa4N^^I@$XD~aSlL50&Uu!o10kJEk{@dr( zJg>}`E&ZTDj0*A)v$$jaY8$jjDIM(DWZ5sxV)=a)Wwn(oPL1f+4_H*MvBlBY1@dAt zyXz=7My{2c3^L=U}$bZ9euc2i>(0pgG19P7;23#>dq)+T(`VwX1mU0aHLQSR| zcHvUD&jr!~Q~E0TB~~S(XwBef(Cbx5aIVFY035)`vy@27xZm`6Pm-MIohXlsAsfj2 zt>p6iEWa(P$#oD_;{h8cpgs+q`4fzw@GZ}AL$Kj5iN`^5vo$vK2>MkWz zc!7M*Ipw=K$}0I)lxYDoZri#J3sn_JT(a_`3cOVB<-@OC6xoXs`orY(ZIDP|vFy4^ z_HliRV@jNh%UvB7$xQOvdOteM&tmz~Bt4Q^WZ1Pv04{vl9j=wXjC<1NB)p-J%;sGD z9?WHxgU*n~2taDxc&rh^Y26sCK}81orB1;2fdnZ49%7GySR;%LZM$~4r!fpT=_i&8 zP~7>#3}wkVD^oouzuu96p!WBG>v1PbS|D-*r%y~=BU0I{EahDnK=XcLwA|p&9Wr{m zoq#p|TrqX!C-J!KyIClTz6PTzu-EP?GE*WVx$A>XqF4;O{t| zATKP;UnJ@n3vFh)zCQ#d&Pa%@fd3vteyphyVk_lfg$k=nHJXizlFUx!z{Zzs0OHk0 zI^vKquL5q08Z;|bhit6?{8f=19dT0~*Z~MUPbwX#-6N;FfyaW$7ZN;3cqPn3QMJ=D zl(+HMsfZERKiJlN(oez7UkaoH;448+^D{X(Q?ptVP$~=LU$i%L5^k67%dC;!b=Fca z2YtIF5#dFgWwd^ifx`;Ey?)SoZngu&tz@A#?yZ=AICrY5>nmN`o&;0B4}# zCNv4ow|;_FOznoJ>@R=jeOuk|KA0bMGssDNatWU`a?%1nbgkXT)%8oAmgKJcGjXt? zj0srx>Z@J0g1ut6di>y|P1z#SbWS=OQ#&FXHQdDCDqu$b&D`<&-kiweoF-@c>Z)^$ zPWx0T*9F7q{&8sJQ>!OJ;K9AYrcaQVT4%q>eXkpWiPnO2pTHs5)Ew58Nu)>IyZ*>X z+Uoc1RnBm-N^GzU{c|?nkO%n;ee*mdsmH$Yy05>%r0yLG7DM<5hXXUh6A(n9xK0sN zn%}%4Lw(U0u80cMN%VA@&?PEeOMP(QPy~@@luiA1m;_C)%at22B<99S$~%sNp(5PN zOxC)7Q1mo{xl|m-=EQZ$x}m)HHlJ^$U&+Y3`l_YQKN0YIxL%dblg@^f%d29FJ53BJ zC(RlOWr`!r{v`cYApsk9jdQ#R;LEz0^_v9Sh2kL7Cc7+As*a7haPvcca&|9Dhp@Mg zn-RNu4{B#b>N}~X<>~gTAS$;`tEU$zX>#KKqz%htR+6IB!`D4wXbVTz`LwZ0=^W=n z<70htg|%66B2|fN{xR;=S#fag zff}N)m)p}ylq^@-bVaq2R3M~RGzi_`GPLNPv4A}{oh;64xW|Hk$1N2tUsKEb_nGo| zxb(W~KFB0rU>M?(vD_cNV%rd^Yl|c?qN5F_x>iL!GH5@+J3xp&XvW}9=4Q~vNMqOG z&%DMAp;yjsF*g&FZ7*AnG#%h7v=zubzmzUvm#0q*oy)Mprz`S(*BIAJsMw*dsM@+5 z`{f>iyfxr_0(^lY+Sq(=mzm6E+4o83yN=lwNchHh#^$Vwbj?U%LF?zk_wo z&Qb`i*C}KXf|V(Phr^~p-6~;S7cUmiE)SuK-qRF&A_)z&$nN!UWI7LUBIjt5z^lwGMI+Jz+j5UPgwvVKgz51mDhpLs7ysmY<&v zv0r(l``+{EoIcUUV8u~s3<_}5!nIT`|Aks70 z`e-crX0%eSGt~jRAC85h9O~kXzsNbx`w3x&=8!ySa4g<{=|aC#yyay@Oe=gis0RPi ze&s{|qp}O76Ul&AK(AcQtObyh@cxB- zo!_qwwMcoC*@h>ol!VHnBFyQ=U|tMK>8vd!2TM@D)1qHJq37{yMTJp!Vfm`$2}`xA zkP5-js`hdyCHvyLU7N$l+h;a_E`tFTW ziZ;VFF3rq?+K59Vgdjr|FlvBa-fIIw?s8qSCqC`ppkII|!!Cypb}oY8Cwe=QYEAF% z6)RSlM)^!)!5?}sH}GqpL6a;-?*e5U{o zUD$4B9r;s(=JI6)y`_K`6YUM&@}xv26HN2#x~Zj=?Wk~F3q(rWjHHxxecpVQ zRgjW??(Bahv%o6+O8m*je%fvoi_HyObHFYs>(Qup=)0ZuuwXLUVWzfPxM3?es9=-_ zt=31XIxi;$w=Cq0XPx@gFY97)yuh8KWB!JsTwhE!z_v~&zd^8&_@;sjd}x*hq)8GoM>P{MJUHC$9}uIrY88=O}-P{iZ%f(-xjrpE87~S&bAlTOALQf&elIi z0zi>06MAL<_$daK!*W;P2ZEjkC~XNGkdFFIj{<=%N0&mfSVPQe0#a>XozUyBH1twd zv$`-i!lwtxiw$*^F|I`P$U!^AnsWm;-=M1n2Cyu{5HZHssb?~)VMO&s^P;$k30s6_ ztxj&7<;dWO%+Z=SP(2f|N!u<#x~I6PFP36Dc|lz};>!%>F4*Th!Cx4E`RmQR^yRSV z+k?5#y~I7A`tht$S=6Rgx1{yC`*$9CX1z+?cU~*-24hEbHJX`LnWA|XK3J5|vAmA@ zc}0OT17SO_10=+;&2?EJE#%xxJm!hH5$)c+Et&QjEZl((8YJAQkD^T(w*+i|X+dU3 zW`eaD#p15nnb~Lk!SH-?*ef2^S5G8TU}r>VUKa@IV3PD*=N5#_l{qtOV@jo1_41_C zz{No6;gBrszH=a&EoB)ed6I*?)v|iV$iRgIMR8-k$SJbf5^*@#DBs1h2Il(+L(sDg zk+D)xY-@Ou;XLo>TwS)!j}HleB3Ulku~ftKSvs$nF;c*n)(DgcwAjO@LaYa=U#3Ja z1;I&&ae;1@j&t({$Sn4%$DE(6z|GV zQ~=muZoA13KK4CN2Qn*U!>gl=xP6@Lr zX1NmDHXpXXxcpV$%eW@@cfRXxRNzhsR;7tcjN(gPRXcZqZ3- za?>uBT7aj~{42VD)zt4NG>~QeeV)6>1}{w@pl1iWg^7;j?7Gr-?X(VVwdA20G%@;e z>9}Q@R`SgAGPrDE#kNPO%v)B&1J95d=(al{gyr|tu?Xhyj!{5z)Y4H|OrItg{4&LA z+wcj@oQH?A(c{c5PdUe%YR}8GR>{~9CrLzn_}*_s%vTo-5Jt+SMMk$i`j=_dM#GHq z->5&9BSly7$pZJ({~&2eaaFypQ@w=ta&cVBs^cMQH~fZJG>y~E;s77latSiT~%T{ZRw-^jpRYX&mm+sOj-s3)8>)UwUE#?(aK9$OANC{9Q>8( zj(Sy5Z@1)4l}yJ$PN+n{tqjy!i>kXk&^t)p@j$@2fWx|1THLRS%r`#_s@W0tRuDH4 z*JMY5!Ax?3*_1)5PLJKBC2~uClM#4al@95Cj@exVLXJ+SSL$ZYu@M83>M%6g5L4q% zfwVeVIdV4rvrR>f^PW@r%6i9@@)V;A#a&k^xqB@Ww8BJF+n7bQF{>QzVx~Wi8P2;g zZbaY#IN!l_%QNR&CWzDW$baNzr$uxrpYEy`4G_d^(jdRd6X5eRN_VAa--Dq^L<>AIN73Ix^?1=-K(^ z03&M`YWD`@*gK~6|os)*hs1|$6W6` zM!9etv1w#Q34ANM*`$V>!xKmwgG&!VNjpBdlTfo|ZV9s1u8A&%V(B&e{HnqDz-jws~cyGc%35NG3{FZF{1u`wMW3`f2xXIc`KOWjVGpzNbk^-MC zK3jz^7s)$|mgA6;suJK{IyiwMm+|S(I zDDURvd63=L<+tIwtjk&D-I<2Xl#(S^!Vxp0r-m&WpPLZk@a2M0NT+#SIc33aww(X2 zGh^y3H)Y8gzpq6o`n0+fD)WAjmj@ZXTAWu0y;7}Xi`}Y~JkrK0n_JHNZW>xDRGdR< zCt>{29E48TT6Zptxwbwp?(?A(whG&c5acrMkO76Nlu=?-U-r0J$#maE8AF zx4_r*w7OOr-%64lbL}gwgm3Fm|2ms@t?vFEo6eUt&-nn|L;0ygg3nB`&bFv@0voN}Vw-6A^vd{Y%yhEJ3ll?3HO@J|GU+BTwGW6#{5a|}_)q=0mT$2X+B&I#eP_cw@tqz*R2%8YArn5z zOdu35EsLC((1$QW%Q1m*RD4ojwymTl}a>&-#f7r}-mN%9&JxghRBP#b$> zHSHmgecBx|7(9RoYlY#OTS4l4VG$n%21&Wy^P3D*f`bQ0Ogu*IcYSc751+9(r-jrX zXPRh3rt|R6yj*zdDqArdww!Qi&nVYesuCs~*WQfl>;XMqJRGr>0E!D;+bUL#L7Boa z@c!gZF!ok~^cNs;(D|QgPNG53l>KZRbm7pX2JJcDwfNIO-Z#(EC@7S&qmH#5%<|o{ zB%ene=Fo?pXmk~DoSer()Q<-VZLPQKDKCLwcG^dg61NU@k#`8&Pn=0wqiHanoS_`f z6L%!HyL2P@oxgz{Msfm(kq9R`1^A6+s?Yoiy4{C%$PZmO^A(LojDZ5@e~G;SA{={-yoeQ=Na*{D%m;5xz>yo3|xZYd)Rf#ZCIWf}w8>_&{u#ZB# zv}>Rylw>y?VP*E|NHL{h#;{|k!X8bL!Y~cUWAf3j1ly^+CAvXWMO_VDbiPaz8hR@4 zJuK_8F0y0{F9wF{?j1@b4HSFkTV~$4Qu4Gh8vTpX-(hb1>@j(w>t}8eKtSW!PznjV zq&0*|629$Zm0h)M?c_;AHIhJ=Pf^>9srj{IyD@u8A`u^%9NkkUnPSYTgAsM{A0&9? zk5kxK1v`KxccPMSO7{C5@j#*%QHK4I$-@BqKwevS2} zd6scL^e5P{Uqsq@|2mbNcuz=yis-9hrIxMM2+O4$4vW)FsZgU*My{4d7A5UW>lI}v zRn`vRaXDD7rBYoiZ^iN9i&zK%|mV6#NJk{OIW6i3gNWv|ZKP+-$@jT`OW@Z~5*`?JN=4oZb@~pr9zLuKE z>(n=SCMH7@U*KpWUxYh9SE+M0!Z<`0zK~&NJ6e2jZWGi>)b2_`O2N4|pz=d%pt`k{ zG9%wDASr#YsteWq1H~lT5S*0Hl{|x2)U2%yrMsZqigqT7Xn(A^(A|bxBZ;HJ^i;P| zdv_&}sWXq5T0}Z(lRZD7+S^203?qydRI~DgcB`5 zy;R+30ZQhhcdZgt5{yZOgO}bek;P4c(}B!@=RoT~o!J0F`?4ReQ}u@p;7tac0C*ex zWwx9)Ru>+wSb!%xxWZJ8nc|!LVuB1b#~8Vdj}B+^ z#=KaX?9N)nlqgDXQNOs$W#Y-QzO~I-NXzwGS5`n$ zejZ({0w+G#eG84~y22Ir=i84}0_a`Jx2OQcaTm_5XxkvFh{wdJKsm@NG zdjfCJWbil`Pjk5(zjnUGaG6}J4xwZYUfCK8;3_QQwJ-qpzKdT z2>>biun0I*S`eN$Tqtcormo-j;4grL*|On(_$R{r-yz-X?Ck$H)m+w*iX&?OU-#r2 zym~@8+uWIuzj448Ylc?5P^VY6)JdJ!_%8hOA1OtZcAZ>D7BpzNG!q{6C9%jt@$2)} zBu$!S_IvNT6LuZ@N!ap3hiR$+jdu*OTy=s)IeXJRok|5)d&0v zLyu4@H{g_Lsc-BF{)phGt9!s5z2EQa+p=C?u5VW)PB5G?1S^^ISK)oI1|f zoJ}82wFOAJ<+aW%&)pHhlH@xB;lv~{*&-m4LI(J$B1xJ)IGX)}h^AEmQxdOH?bKl`Nz$DyXA=2f`sYZE=yB%al7 z{40}G3WLOnE6%ukh7%iY<6xmQlu99)iKD!le4bz?*_^rw; z5J#ip*PjVqcqaV*(4CR}ro8G1U47L2zbn&t{{s8 zUsSR0eP$k#dk#63JJt3I4$xALnTGksa_Ym*U5R{^;! zxA0U<4M?80IGv1%H1qQSj%Fc}ti!TOjTwtgKX$2LFH77aIOZmPk?eO9J?Prw*N>3e zcH}DHgu;rWoIeIBmalkP$(F13b|o81&5erJoU@6aK6)h^jVGrmmj5CPg-TplIi*T2 zndw1Emqz9~MW0Ca`2T&>DQ-j86f5%uSh@9G5H93z0Iz5+;MBpLPM>0k)R_WBG*#xJ zmH``>WhEVYPhtN%gfmI+R~)OW@4r9ux<6$UuCA+=6( za5&U1r`!&7Pdg>PrR6wdWW>cvE;Q5=(m8!nIs8|BnG4+&$jQD^em3cOGuT1h>?m*{ z+n5!|p=}T>WV92g!aiBv;c>lXITnFAD4MJyRWkM{@ugOZQKm9=fhjFT(NUZep8GJs zGb#0L`Wi^mIv&MHdGYfUri4szsrEsrf^fd&Ds}`pmen<8CBo*>1ER%g9U#h)mFEj|u8@N7eL8UW4DrLM zC;|#{W3XQ$)ligD+v^xi(3b&nsHWH+NyePrCY8(bO*MZ^x%sOkKi3|fVes_G-mE;K zs-ow0`K@8>1$)itRWz7GkP=+W(xzm9S!7r;PDhr`il7HUs`e>!;i5RZ z(=si3VTzA*o815;)@Asi@&G6xqAuAE&x``)NM0Fbuxg7ENwND~ROymv7gjxR&{MYR zcW4<$jG>DW%u!vzA>^RJ_#iAw^ftok!XcSGVs?gF*kjVc8rFKfDLmD6Qbz!2k|U6b z)QT4M8S!l!ENv9%Y!-*??F=+|A}UHo9w;*nrx8*mM^?a!3TKP90ANooA~tYNR#@aj z#djb!KRBGrg8JzDW0-NV=S-2<2l)s45pB#XKv=T=Q4>IaMH>B99BboQ9l2n-H+{b0 zi2mSjLp!MJukP0O<2wISQ;>3a*I9YUOJj?n-%y2Z25yX9&LiJ9m9xekYN6(Ue`D%J z@bQxD!0|tL!2ocR*2M_H^dk8?uX!T?aHQL*bn?1CeWm~ecYXVs(;PA#00xW>wK^2< zqZ1-H_r+9lK?UF}wk`s}%pB!BmH~8`Y*}6j;bR?+faxciR5s!D~~NYxfMs@un1^AeueeOh$QljNi%K zP!NL6`wX=v!-M}G=k~t9=0tF4E)B16*&UXfpVfstw2$h$ zJdn+dOUtTx?UtppAUWsq;{(#p&R&b@eywLY#lNBFfcL`asK3=H_n7vWD1J0tTy)vy zdbLMYjw8i?d9sBB1&Xp9d@A5~lqcl0o&iV|6dh4kq^ZZDOBY)7?mxhrh<(DjL|ax> zKLy8vbB)5H^46{9NL;(mpQdR*6;YLUxU1U*8%>Hx~6E`B_`z1oo0S zyW>8r7%N|e_XaDLVG+SQ14_3pQV|~<&4A!P<$C#%*)ldh@9ij8y;-ZU=THxaA&TTV0=c%NiZlY&-ioI3i9euUD?63u}7R*Z>FUz_s=4l0h+k_Du>PUSN)DQ8%j;P zM6{PRHVTodf*n{BB?T!BaEUlA&;nT7WlGa*q_!xsZyoLNn+MO4(V?VPAnXYzdVVE# zu=kQTFTPO36QnoY&7;X%-DYnKqPOWykXW3*Ufb|C)#8xj)YDpWim4|XOd%6xcUD$T_KXu?VxN-{gGQkvjJp%w ziBJ}otmGDqOzO3I?y{!sG!@icQ>QcLjr4<~DXiZ^=B=^WAD)?c3nMImt;MQj4M@6>-z7S7J3Kh_SsZoghK(t>D0AH?Q#mB1 zy=sjk=!;S-QGDPd%EP(lQ3HXu53QvtL?Ss_CVHe6`(6T7TiEy%fnBuGU?gyUHmQ?c z595$oH7E8dn#s??7&MCWw1XDOB$!p#yP2+zkrB04Ssfj=O;%+dWWmRXQzoSz6}Yv* z(C-v&!_OA)Oq@_A93Jo+{3#)(oFuC;)qjwbBoxqr7NpZ2rVB6a%$5I5r^U|v-9B+v zX}qHmkU=iZ>E}Q>oLMl4ik(k*$ziF!wQK`3iU`!2@g79xA&w~_5T}_*52nng#mW2u z&PIRlNeA(`3Zw(!zr0675EL(y=M&X+KOuei7`~xw;sl4KlS#4wI|I+o39dflM}$Z6 zyHVv7&JgUnpR(0yj2|LiYW*lC5igb!l@pp2z9itxP4GPHUe$EPU)T@fw1=7)7G>2@ z*N-)>*8h4Or86y-@my5CI!~BpSo=500>1)&*@)1s=%s-GD5KU;m)jMw2vP}EW?Vn_ zuUs|gKazLN`V*$hOq^_pOwwPeLCJJ%FTfOAnb-J+x)KRcW`OIiDWez~h+3C1@z+wF zm838yU}&a{c(~5fWf*G&OOBfhm*{Pe0r_rY=wh)vGfd-E4RP;XKiAYNJNac>CU5R& z>H*{t?4lNS_YIfo=v~E_=0~1(*n!onH_Do!x>QuTH6A1`OPUv;3=yM>p3m1zM`vAw zL(M`g&&BbB`B}(q(X0q@h5Qd=|IjW-n03*j+qP}nwr$(Cjoh|vE4OXiwryJ{>)y`! z&Qp!*#Se&xH&(1U$B1B(Qa8aE2Gu6GB=p;dBeh1hdssXO#-{Du{wW-f!DZ3T-8flc zDRqc&ic@eB_4Gewq0(s}Xy5uUTbBzMgA5eu_mK6bEMfIgQZ&)n^;>j{o_YFXI4Q)d zyTUe_L}!qMdq5imW2Z^$%JER4&}swM&*WUGMOB4%-@I)`%Pqd)qsi-hHFcc}%G{tu zUjY73$5J&8YlE&V-7L`qIWA>CXGLn9DrK;5^m9M+1MW`Hyx!4MuQ*n0myHhqFu^5ArtL&)nunX^Tiw>5Ya}@j8oj#{!3GU9vs^te`pqi&STsCr!%1?r}^)a z%O-+MX3L`-2>Tz3v?E(BXKoOvl9FpuO;T8vciC=-4a^Dcc_=wqniSpfW8SFr+Z4;f znp9Ytqo}9?VPYZkc{Xw3zmlo)3eQd{yXOJ}vXD!XJDTpnCvHJ|nLLI)R>iXZe!-q= z6Ft#lIETHtFD|b*6lKAX%3AkL5d~Fn9-+)iu*CrYtakM`Ez4^VSZ`*mGyhIhC+Pq? zpKaybZogpqD<(JhpI_da4fGitn<$7#0v|581u+pPn^M|wq@{VGg%`czEX;+;m57F= zS;T8vU3W>tEd$*z@qY)uZ;Jen88?9_eBDdD7C344f+w^4tVTewH9La)C|b?AReQ^Y zo`fj7H=*Q_c}dIYU??1V9NDP0mJS2am5XGQwoa_@n4%($!%NFNdUanb4&>+5k@V_r zvGQk)D%;j}A?f~OVEUE%C}v}*HLX&Y2F^%)0^1u^l@*O(4~2Su`0fr`b3r|Ys+(VH z*m1~0=(D%jMeTNoREukBlGYKez;{Y6nRgYAS^T9Pmg{)0N;aUVuC<2I=7(bxqte+C z<0F@8lO-ID7*S8H>*HnK4?HEakLQ0GyIKDy?Itr5>;Iw83~Ni*Vt4+FBK&9UMy+7~ z|HIq1MH{I*!sDE8O5GjRUvJaA6bj8)UPw4C5kXqap9m=V_>_3kcIh4FpWx{L>HEo1 z7mu&mz3$vUelKqx>GSCQf3!OS{_&yPeEiDF)G)E>^YDK^idp^UHv(5)u6-FFv>|KXWbg`sAOc7n4S>p?3Ti zUInZ#=xtLX#IR95*3c=3<}?-|4H9jZxI84$dQKffc&294Bf2suZyzmo#j^UGA2}9J zVo@jQeVuC*6J95YjP6w;eX?!|ej^vHe0^=Gx5~;oZW4AsM&jhL8E+|gG?<|upukW$ z(t0V(m6Ht8Mh?N=PrpMmWLR3M)%ea8pmlg1SR8-wAG%uzJ;qGA{ zG`5*n(+!Hqo+CQdkEs?cPZ+W!@G6E2W~u9OHW%4CC!7@$G}*M+!DP#%l?H^SY*xv0 z%94J}OaI1B$ln*&tMPTx;Yiq6|GhpBtY6s$g5Qkjq#M%g3z1^!#YFDfeY0ZT=R118sw?Md zn%?ywvK>D@5Y!Une7yw+=ZpG5U?D2_ZWY~tcj*&m7!5mtZ9l0{J=Yecj^K-Z=GcCw zN}B0}O3dmrt;c;dY@G49I{WX=n!vKB^VjLKM(x+HVO$_OdDsMXRp6pu$o)Efn4P3Y z#k9fLtDvj^X+Z>o|B%-PI>GgQ$?sqiQ<-xF`&{W^i{CAqIogc^<79cVJV(w%*Kh(@m;L;U_2C;LQ{#*50@58&{VD5pdjhk) z@{3)TH6tyqkw<4cRBGRvP-4cVBnb{vjzi-qJpslXSkpz)L!Tz1pynQaqR^^XeoERb z?K_Tyad+ZHaR=0|8f?I^)r8@RU*EvBhPtnad<^W&hEj(j(qcn=?7%8dk^Leco5CW{|~IbhiEX)BD>DCQ zS&5m2O8sgB{nHMr@E^sYVz27att_W?lhb}IRw9V^K?HN&vbsu}^!Vw~nt~gvjKCg{ z(!S%lS+tsb)u-7L$b@Jd87@;M;ZXhu$^Qi{LpVQsZA2nWq+$&+aLzO69vded3VvmS?FtNKk(|+CHgq!ft|SK&X*q#bdx$nT~6rwqgTszgr`$&KYZnZmR=)# zL4Nuex;@)I7KB*36@eaV)B+308jkpl;sL@)}@%=LSqLM=m-$T8MA-7L))3l9>^j= z>Gc5L1dM^1avem4sdmZ8(qk1x9H5&ko9K@Z|g4>^3wT;a|XK&6PO+$>nq>0wK( zxtqmds$=}Tpu=RuYMW#~*F1NU(;V=GR1}3N?=95My?W=@!|7>Kl#Jq%N^Yjg zGlSwMsh#gg)DPveg1!-};F?z1F`f^Se_OYF8XdhA=n$M3w1)duYy*?Flq~(y=yq>v z$P~bkcb)VxK|_t}7T3)C(3_}1bR(c2z|8~caaHmy_-6;2nm;(Bc2j?{_yxqEg5>w% zhh$?BiABw3U1QBGe77NkRNL0A_KWx|kdEj4b^ewJ$V1XRK5lvl5s&@D+9J#-LrkQ- zN)QB=a>z;sd$_QW+W!GT9YXPI$`S&`S#KhU&YKFZt}&@yiC^gKs~_4Wf}7I5WL>MV z+FPs~ny=!MRP&OGxfqX#)sk5TAfK_n;#y|dOnQg2Zky5R7iP9NsNz&)*Gfem--vca zC(&6;X7O8|KBO>**pE3w>A`v`ZjM|XRCx%96yjz-P6>QVdZ@4NBbWYri~zn!*~ zF$Fc2JIUZv60>c=#wgdCSWW4t7yZXKq;T**(yVUqD~3%(ZI7Txy?o2EbTD;l^*$#`qyp0opb)_D1f5XAq-3 zwx_OF@l}63YZ8_=+)k?RDf#z&(3o_FZv-PtI>S(U;JW=r z&mn7NmAo8=w(C4R+x4^)R_v%2sJE!Z7l%Ce4dcD%XNm!0%l1$Z?6~+)E-IKn)dpK3 zs}u~dos+!NJ@^_!*^Isa+$cHDcuBq$jXlDW(k7_iPQt+*L>d-SJrV-scxn&gRS^v* zLcW(c8AQL=2o#WndK8ieuQEtuhRzUiG1+B>_^8r5)=!;bAC>D%gR2&9(O0gSQT2RA}Z0_V_^Btt%M44bO^ zsJSDktDPUKu2I6@=x)vq!^vX8?52V45QBvBg%2c4q+hu9#7q+}GL7y>>7+p`|3(K~ zO-3&ypeJDCyX0ZwmV$-G!(n0I6h!I*3zuLX3ND<&PCc92yXPnXtG7mu0K}+Q`Hs)l z?5T)Q6I_(z(cZtPoO={@9a*!sE&fYyDmVleqYE0kKo$?`#v@2Q?RHK-fMh=utyZxm zZ!G*k3?$!#F_5SiF6gmksns713VL=EQGKE)uBW|laD|a%QY{PhUZ(Q-KeUT8YqdH) z+^?yGD^Hao1>T4Gakt@6AY4#|MLO(jaXC7e1-oQ#YD`DXP_Ek!k7McIv|@n?I!l2j zX+IG;vm5pv?lTWHvK6O1|C5Z2wn?#V;AA4ma<{|gG8Txy!JBL_Y)m=0tB1M;-luId zP+T-jelk}5eJnGk;(@JfhxSahd<5-a{~M{+GcZ)668J*$*~xD&NbG&kPUZSfsVj)f znZcQPUConu$P$UvhecK^VADVVq(RgJm@_pln1G5B}3=VE=@M9x9zCkSM{wXU?v)?Bc;)!Ds&{CP6;4`LpI(o1;2SPn-Pg z99Ak!&vj#}D=#*6ZJW|{%tRZD2J5lF<}+dVL>KWBX5kzbN5RMc88l_hpwTA`+!2c= zB@X@dQ1%P7z*Qjd-=?4csSM1-!OrmiUOHZD|I_Ss{l|m+1!SZF%}(%d=}01A2l#<@ z#Bg)We;ohXTO3(TqEu?L-YxTEz+kbK*pBkggWNoI&QH#v`3_zdP_~y8asKpR?|IMu z{%QOAI6GU$|HGQomuZ5Wox3Y95DFn@6MlI9{+#FE@IuP-efj=xRmk(YNYL`gfB~~K zO>9qF)Erpt`o)4cCJlZ}+RJxro_8`#ZwYBaBod7sr*-Z@KIt z?Diw|0j%Tvp}4pAlpVt*#k3`MQGd^rP-^CkYbW4=6$+Y(5pIi%217pAHJLqlUxdt) z;&8^EMTZVU>W77u7#ECiR67H?$WM7dBKFF)mBRmtg>X{(^MfT2zEh-*9qtQ}YOHQF z7E0Q_L2yD^{>r9QdgrVBv6GvKg`lkNaY>1`w+D7lAh4Ej^v3(tdd~Y?3mYwjC-d`6brN#e~j)(Z^vKS*%Xp7vR;R zQ-2-`kl6;7*CO=_L&Q=$qaH$H+|MfwJ|EekUphPG>&P`>pJ@z;4&0?)ICp!66XjFo z>y7eXD)oi}0LXp9!XVZVn{s@|G9_;MWB8;q*9l5)=U2H+PTccrwZqwkLX!#!3hjL@BOjH;+X}%v`P4@Bln@rfCaU5ATx$pc#g8h_b6PZjqF8!U#E}G@Vk4Ys- z>-a#;sUEHkiC4drSig@Y{fb%PQXV|DP$&?KRbJA2PTn&UE-Qb*7Ec@005g(1G1Jjf zW~>;%z}tV|Q`ufVQME6+h;Tjg(TRDB+Tf2{4ZX8GcY7Fvf)iB9eX*Akj-%2G$wQhI~IC4*n5N zu7A+AoMItv7=@83>Y{oAY;%}9wF2x2&rR%eeTYYzZ=p(N%6@}*$QB7wdhJg5KV!ipkjMNMS2Dv#$&OwU!3pIz}!?Y`2_@jmB}< zwgZH2&jTH{^VF=c7HJzI$FXL#JV1kEd7{#>R7032%v_UU37xjpu5)7a<ikh0Uyv&K&k>Mn~poRIu87l{F+_ zidNnKf+OMlH@c|czK9M#Iq$A(CRa23HVT2x8Er9Lv}tM-nzX#f9A`%US>P94@Oy<6 z(rusn35M|IQj-wZynxGv1WoGvE}@(sDLR%VkbtR-5y~S7G3&E~j=^Kf*()LRY=q%J z`-!>$vL_JnlMFB$FswQcD>C50RgZRQtF}S3SxJ+G&-^U5`o3BgKkDzCmM}dZRYMo* zI$wGtkdS7dWbp7vcQh?g@?8n8))C{?0yT|thG+aLhYeU6y{YV{T{B&q##~be4 zyk#D4@XO%0;@m{$*GztpGuh7Qx}a*S-rw7+w_R=OE`mpCGVzES;GGP)z(Gy0HhR@^ znREuhU%POgZsz#`@C0+j(yDf5G%(6^Pk6s| z1HmTn!5I^vxBA{O>+;?J6fA$hadm!$-C6hUXY?rjapsq=5T6ojOI+$C16>r68WarrdbJ4x>RVN*_f>>&>@JO;!6J#OW zrc!T=W=Ro>8BH)Y87w>rqi1o!gkj1YOSwwgmAvayGwJ{C7iF z&tMY=5SmHEZETp8+IfQOWHC#t08F%eVPjrbwv zI_=6AT-nnA9+W+3J1#mImrU-TDGp{E3UXN60npdX${**=&5rKtmzSW4c?+O&V6g*A zsE>4KJ2SJ#0$%iSu4p2`JCX8lrN&x7`K5a$dhpcfKXjf8Z|CWFf+;c+)Vb)45~4?$ zmN`yAN0zY|3W>NcqQaKbY?30;Qon?toILC7XDGMH^u3u2y!LX2pN5DB&yzo zx@}<9Ff=HPrb~}!0*IJZE0)s8)@+agcT92q4=e(Zz0$ZjIAzXgRx^a76_YT;#S%_iR~=MVl(I}lsc^K+`^YzvP*$2l~e2x4~Ctn(owWHBnpK4 zvrG&|+MI5)kD~k8-vwR;_!I`^YisKC?QGdUILFlCDEkGnFfnvm4O&>I+kn+2H`|Rq zOxik3sO&lno-+gBBR|_*I4r9Ic2iCEy3U(A&nDhuy@}cBs^bb%NKTH$K%3gtn|v`2 zo_aZLYL zb61`8tM>6ewaXmmWe<8R*kg8EnMPWXM|wVQG4rzMYwRj8-$fDoH*64ln8u_-59rGs z$(P>ta^Pa(f&s-osrf8?>@f4!*i`s!0&G5(^hzL)0t47@%2-~KkF@$)E^hU`k%dov z9hxM)Z{2uyn*I_!%+*?+SW)1!X;dF3IkJ@a{AEf_I9IUxxcP3(olO5^g&;Hg{ zB52s?deHcp-*<^+odD?myd6@|H&J}%)tEr@y3kD z61O9Ee^NhyizFfT!%{360&E7@1HVq+6{uW14Ev@pe)SNyk&L4#Pbf{o8k@~gNK70d zVH-lL;6~5(6S)s3nR!{cvmySlf3f1Vu@s zPxtFHkG0dpcB{obhqeD44ER>TZEZVv+1vA_yHfX!g@OutguCDaop5R~>pZo(iu~3$ zE5p7>9TvNAQr;DK3^E~_WqufzbF;5{*W?0ByF_Zte}fXeKu1R&G@(R8lYp+44oL`$ z%#CiS;79n|Fx1Q9k44524m0EV=c`{F7wipcAkEzs^KEaKa8l}IjOZb2=J-*`1as4# zr*;#|lj(TXql(A65o*~3v1IpnGd^-=WnWe~AN)MMJf)RHKN(bCj5`T*;7c>9Z8k3m zRbzi^V=By4Y~NR^y>SABnLPV?0JjcWgl&RhW4Lp(85-wm;H*Ly;~M4C#u|g{Qsjx_ z0{i5H54~D2D~-h6j;qCW8h1L;5EbKuj)5=)4%ag?XZ(-3Rxg1yJ3O!d@Ogt;$X=>4 zcKI{6G$z4$fPc5Fe7<6E0=@>aeQjJM4)S))l!!bk1`71`y>rg2LBZS6pNGs=HaSfi zxeFX2R%&NCq}G5h$**zqH3PESP@Q#4!~CE>&FrAw(nx(h30sEBr7@Ig$5A9i6xc>w zU3`9W2xBars^(u|JTYHm)5*Z_R9YNEfE5D3;6k2yUokV6Y%k9!&0Sp#fit&Z;CuuK z@R^7lySH1nij#jiG8Ee`u?pVXjO`|#Jj;RC`^d)5aRnoMn;8OVtldZ*i+B5nBx*7YR zWJsVY=61nPRV^OG(r0iW{arNQnKi>TKsGt#4=1uzhKx`2a?u%%==D?e(Lxfc+V# zf={f71Dit5U0qCe(XPSSyejCGAR;hDk|~3LR<2DUz9m zYRQrC65j;RG@P(;Y{12gP;5`cB$tLImIfg|ufz=RS$V;qB2v*3doQ{!vs`g zd&>h%-tZ^^BQ<|J$6>r3#WP1G*A*DGTY367&?h{LVJe7bAO|j-O-D)Esb%3)_pb$Lb>6};2z#b6 zk{suOm$c8&cRA6+dQusxBzZDdzt zl$>8Sru6#k#c0(XWwF@^v3Q6z%a!$9RgM`_Yq?CFaG~lvD`c8v&?b_pR*hE;tB$=z zl2t6TwSO`22?sE{Z_$X*F#BvSCe)u~IHg=;0X^^?X0gTulC*qA)f8)hPZZKc7LCUO z`~HrQxX8GdIIfePhH@5 zpLvcGY8y$%PKMII=9b}EH&ep}X zdSb2H3$_7M7;d@7@UOWyI@KhuHNM>5o;vLp49)oBSK%v>l=!i0__2zbP+hnUfg@RO zlOxA+6@z?9%P=Kg83KA)|rTq*f^sF+zam5?Y|HK_V}4eXx&mZPE% zPw{C`w2!6rD3?-|KfzP#`tT|xt;{ojBAgsr{1!LbQ%>CP)|;xCS$ZFuv*Q@UmDS&E z7iT`v?Zc~e7Sq2h&V1iq4r0jteecbtNaRPnP>)we9qvy)Dpd>N?DU&A2y0BBz_C0w zM(P9IU!A6N!1R_PIbxa9ps1g!yFF#uM;%lxo{fqw)Z`&RN5=rjqa(NaiHXV?tgOj{ z9Ke|&+7bj&>MtIyJ=FTGqVSZ|0F(X_9sLEu%ePxy>oV~LkG|gN?m5NG;@zNafyclW zct(D!c)86+QCotSmX3O}V*z=EKxq3Q1admOP!@6EC5Y(f6?WGGor%rM;nPRKL6aW>rt#d8$fx@zs-m@$Eg)*@?C=|F9yK zWf#Za-Gz&O!%Q6BLXBo2`eFTA3a#9=_zahjIJ$kMK;Kn{^`L{TSi|f&^vw$E33?xS zwPiAZx>rpi7dhRb2^jj-u3K@tqXxlQV|s|@EMH!w%ty+*Qj?a&RB5(m-B$Jj)Ik?dLSWzK zO&h}jhLN~uK0S|(6Z2!~JnlSqli4O}tEz-8(>nH8X^8&awA;OlbBTg@qJNaP2H8I97;FR zCE4S}Q9<7@Xu@6FHC+_klE*JLQ?aMTpGlj=M}l6Kb_h0$w+(oO#gk+^P8#7nK!MnioD`_Ze9y1fAhv;C86X&A&~dE%7q6^SEjBa zOFy6qI($=1PraMHLz$KYe+H(+CQK|k>&!e=q}4p}$zhdJZk@Hl#_5`7!TDCJHL#IJ`=3tR)_7Jws+Iah&-h5G{ug;i-<|yfnut7XO!(*Ii zupEX=dGWG~(;^9LP8?uh+;ws7Jyff8RtvJ2CTtoxk8E+6WphIT1|BFdE*5QmJ?nIpVraplWC(|5;Mj-R(YXme0 zV`IjdidKuodHW@=IhaOUx0<$c%QK`2PUu+Yxp=#{@_nC;@=AD;@8r0(Dtk7~Q*+{B-Wf-+g51fLpdTDzYeqj`5*)XDv4M zK=~bh{aP(6nRK)9SiZq&-3!d?oP!~FEZxt%*^t)ExV_Vxh&1){oyJbfz#*Py;X>@9 zM6pyUGL+M(8!L(yFxL;TC|hWIy`3AG*9~HuL96gq8t_gd7h%_3U1Z0q2ysal>oLq! z!X#`iserj~8TFU<=I1o*dlY^~(*wrWdt^UJA!+e&pWeN@Fk><(&JR)}WcYbD!F^n; zP_HG{hZZHibvb!rrAOs7P?@!F8=;Ocem)!&7(XF^*1ojYFn1wL-B-IdXadr~s!=W_ z)JYxG&?VI=BBx&FBiF6(t^a9J56($Q-DU`TyAGOH-!vik)ZF2oe5zkHut& z4tq2Nk}G#6XJwf*Nj4PK%WV ztnNDFBKQYY6$lxHI;%htLEIPGdEze9+i}_jhCHGslyuy9%abH`8l#}IPosi-Lz>_q z0vw^3|7X$TN)mZ@Qx9H*FbHw%57uvdLfFjM;p;OJ6esx}n>7pu5^iXTU+uZ!Tu&FMU879Uo-5<%zYFvT|gWF)>$6{elBIMhFRh@Lb@jq(&zoC|KYr%Ic zS@9Z%fL^#AGY;ttVKNZwa87l>tTjgzzUcl`tL;g?9rQ#R-P%3|a0deK&VzSOt?U%@ z!ZYh~3N4M2pmo?k$8C%?BKubM@lX~?g4c?h2}>MxuF?11#jqki9 z3nZUbVf_>6PCX6+LgEh2tQ~|Q42@3YeOcb^#e2q)xZ0LTwE9YkQ$D*P zGMnB(Qv7XEGlgWzOUvhlDD@5a+=x~c)_?>Vc>#+|qOn9mME3iWeC|tGl%V#kIjq5w zWDlBGHenI`Vi`u5gkNKpLPk8`0{qG_lr#+a#t^zzK{zvnKNT(3TA!f&h;D((ig!Cm zCon|(G@7NYC6}8u@ ziSdL3p`IldDIBi_$FaD;3YYw0Ep6xW?E>D&B|8-A+8Ca5aV?qn7yiRI(ZFgaymSMX z0-%E&ttKd5YMOc#Ls^Ek2*F?Qr754pXn=ukHv$rrBISn3h~G1bh?M+Twlj;Hy%z4G zN9tBW#&B3SxB!q&RmlnRM5}?45)jS1*UYln@_ix*;DO)YPPjjqUMBP?V8k( zfo!Ob(_XcOfWu6wyAqeAni6iS--|n>4+sISYV#XH17Aec^l1os^vp{4Ot>W^i!T>4GX|#%;kPJDJ!JrW*7Z- zzW<*2yyx3N=C2Wqt+mm!gcQDn>iQ_)L$lDhtqR~luuCO(wzgeHK5XL96#zc~q6N2Y z+TQf>J&Tn@F#LMXnwC-n^UXqbZdQ{wPR6sv#x+HeKA}7JMAFrZCqvp@aopAzQw}hhcEIAN3n17~^QH?cHnG%;~gJUcpA(eib7HUX!^LGPyu;ODsptt+wqN*^YrzE$vc@kqo#RhkE|P z%j%3<&FjR4Uk)9JIEpg)=jBKUOWh7dsMuKlPKhjHMMHFSTei4LjjjyF-1;WrH-^Fh zb#5O~HnR^yNjeXjH$0HKiuDeV5(lA40dhMuuu;e%rz23lkCWJ@XL674Vn7{vrtFFA z2v|qTa!!OOB$y6v@~yfZg$y6liij!Ym#!}#nfW5)k&fKk*rns4e6nrh^PYK6U?2e0 z&ziHaw}Lh6d=c5Xz%P^evzxg8V4>yo-e0X-tL%JwwN@^iDvHHkY!Z?T8Ux6nFc??L^U}$ z%)>SC;8g;&21cPdUmHg~6_4^DUkM0vasV=2u_l{;N!#zzDbE~9Q2+~-~CmdfFt6aUE01T!WYKG}V2n;gn4uDrtySq{fgm)Cf zQ7?YGL7D1a-TTW##~i0A4^oVLn#S!X6g02_w5tzbHx~LAahpY7Kzcx|qICs`dlZml zWZ|0m^mO8i>KMJ!V!uE>M;d0Gpl>viT4BlGGo@B01};ngsby7fqIIXm6zie$^3OB8 zS!IF=`O$%4)A6 zw-z@HafB}{JnjLg#uFUgPtexhU9U`~2J5u|pLJK$Jo?aKx-m=<4Gk)h70peyyX|Gu zU{fXe2WGUFm1;GuSV$jM6oilk8W(#TP`I7p?OGdz-ZX{|O8zXAhYI0}zV1+StKCam zYjc?%#Q-^O|2D^KS)w~8n{>iF?wQ1Leu!AI(59=bmwTmpz4#psBn&D*S2ejoqcqR@ zHYahs#TT6^`%Rk{yCK~t?Y)HPaAg|Cn|$#nuqpcweiND*75?VG&6WRK>WhK>|KK-| zwI*Y)SP-@!QQreG)Z4!j#kvK6NZi8L3DFi8-Pij5p!UkYE5_!ybzq<9wFQVNlFO~v zxaT;Tz1s$gKH}5hq2CrlIeLDlfcG3uMF=BCm22G#|rDT-_4?s}vr7u50S`}r(j z={JR{SL0gQ-Zf^5+y53Uo>3+Rx{yJ>{PEg}I=6z|i^JBO4Go z@Zb<^4|fsdt4TmFQUwi!#`1)uBYDn1=UnE1nn7MGx9Vx((8gsBmHXKy2htD9Cx_}^ zB)Y13a+p}NYLRu@2zehz7m++dMVLW`nN{>n%%gV?i+ExS2q?b{i&1Lt>Ts50vHfEc*?laGIpUGSz<2OfiiqQ>HL~Y^|PV67K|3s`?X}wP^u6`yw6| zDk90Rxm&_|DYL%D(3%Tatt^6mI=hnf1jS`G&~L6Q+ZmaMmikUHr_DK!zxMpNUB?>G z?DKoWwTkuH>g=R_6jOrq%q?_+;tJ`d^Yc8-Pwh5>$T5eLpQfKi&+hbnO_zMau=3xT zlqOhQIYBsN(13%P9xoXs%kb{O6Y>rhymhh1 z=*l%4E#)Zz*X$g9wLv2$E@+Q%qZ4UOT^J!D%1?1!%EocmLx>QvVHtF}Z=s03Y}14* zQp>6lH6wAc#}O4wC?u^;*GLA|HyLC2*({HSPzqBNsTB$N5%&AK5Bm?=`BG=MW)jMz z8Cvko3eP&soYQf!r4`V6% zM~Y6`aED*Zp3*N3&g8zOuNu?IKJ-n^ha-+^K8(w$UfBDhB3K$x>&K>1lP9Fp&5wVI z*pD(;^H^>NZ0(+lv*mHY-NL!K-QRof)_F)z>v?+bH}1C{%wUr;$7_uF0~##V)hdN5 zw!2*?frx~p^VvLwIUnxtJv<3!#Aa?*YAalA?KuTCDH%4}DmA)~k!?`xLDgB2T?D+JUlOXnl*HXLMEtYF*V=uJJ&G`$1{Cki z861e;Vw$M}*}g5hPjX3v(SC9eE0IXy#Ci|&sY(pt*f6q0<*2_d+xS$gv^}I5Xx#0^ zGW!<@9&*Z7R|wSJ`c3HoS&03>5}=}S5QQbzr%xP_nAzSJ5^^=c#(1$J?FHU z^Fj!!^)^vx%naizAR0?)?J(9X{9Tdx!VcHc?TS*vlXo98~w7}WJ3$e z8y(#(glqq7eRj24o59T_7`d#TO04p=8V3W%x!XX>CfZdt{85q4%`20yQL`}L4E@~v zW4{S^=X$9@$KFV0Z|8EwW^UTpw5PM4niP4-+ePNiBXe`)1k6q5{+E>jlR$mt5pp|e zN$4t_{;cvA_=709iDES9&oGnQCOU*=U`b_>!9YFZC1PoQ@fFZXMRE4^Sx_K2srw{bshM#iklqN7 zVM&#JefRVA_3~DPzd+@J9dv59_S*%TsLgq4CjwH)g)AZW)~3pi)_9~NX<6bQ4Y>7c zoMxUKotQ94-C9PYj+$%y(+UjDE)UF?)(G52d()4h8zY}di=%#o!-GU#U}QFVNI&UC_IyUhP5@sP06$R_U-m(fzBHt+CybUjcdQD zg>jexoW($3ASyi*vRJR*n0?&`s*`t~m(Y5`(U4vbQ_Pzj0`FVQY`B|%o{a}`SRl19Q zK5E&%-=l^PzelVFD0gpPc;H44T*|@4OTX5|ws!W*CDh|UKmafe#6e#BJoSiyCUv!r-SaF07k6EL9v-Z zH}k$%wztL$Ok=lWab60C%KP@ah{wf}qTQBag107mi?B5nwLzQRis>bPxtwJ(r*jgO z!%*Rqaqv_cKBJ`Ux;@g6L$~UFL5^Tg?qxFS@vcIa(u?w1Tl0 zn3%8vRg(4H{cse)=hJQyr{#~i9G={NVlC(2{9gyRUyqy9x4pjH-_NTaO#g|soNt2n zHbdER_;&tWiduixu>M)uvAQl?aq#68c6cB?qNjVnmj4>jeFwkLcbLzFNt3pJXaDUJ zuPCynd}_~4PQ+RWOTJ!)YsNK`|@~wzMr?k{}`h5`nAk)@Pp;yBHo=&GP z*x)o3|Yy?bFn@oA(OOzgiXhg>KY_MVl05eCB($TcapFX?KH@8B@L zo8aKdfu(Aw7ZA~6?xL`;wWQ^3W?Rr-0OOyZ^Y;AJ%N?pI;c0&O`tb^6>W3^H!N8NI zd6|$7WOBP6-opoVNP~g?+N;G2B~3VXF`cKHn==kXAj@B2ht&aMv163*AGe~%oo%-m zR<^VX?ED(;Y6TqL5F61Iy$x@VJkfdOkg|r&ko(}0O_b4Fv6}GIw2oRqMV8VHPJ4LC zjGwYk49suJ`Kj#OO7o3jNHrZSdFj$VV8cKSGW;6|bSKUp#M^->)eq$Vn^=&wCm%Wr zfruRLnYugq=`p-SQJ?ZR<)@jNjmZpDc6PgcE}nA4P~z{%aNJjQ>Q&H1PEz{={I971 z6vukLSnh+!tYGQL36mV)Gj6*%lb)f-BPUP--)y;M17>l|uhJS22;PToF49;UcUra+ zT<-)=8i*?pUV8o4<`@q5P}CwK*%<&*#XWJQAVq-(fClBB{#prQWc|EQPXo#?F96qucV>p z&-6FODYnnnSwt!xIm!z?K$YJGQjP0mOR87A41PaFtFv>)&Y zxrBjWHZdd(Othe;Ih?)6Cng`uB(G38%Ykwy@6PUZ)(-m0aCu=KYo>tva)C11l~omU zWYdEPb1nV&i~#u;*VxUxOvXSFX{5~?Mvqm58>gqp>7IP-GOINv1Wxr^Uf^7w-Z8dN z-2X$~TZh$^CF{euy9I|paEAo9;O_43?he6&y9a{1ySoQ>cXxOAk+e*APv4%o_s;js zJoh_)@No8C>)lnW>aD7^&faThVOu3jvuG-IC~hfKEyZ9dt6p)cn%W7 z*h^w;l#^a(Jnm(mmWIZ93LBzwk-3tmgr3WrP*QeuVFQ`H<6MrtRieeOj87|G_uv_Z zUt1eTSVb*W>K(_m$RV@N4r@)e7ybBon6U65Qg_*!n1z7!ZDROg6XQ4sRiVY8641te zyGo$<5anL~fnr939}jMq^;kH+r4_|c*tN^3DW+D^Myx~u-qY)pt!#L)oo{igBTU1P zzyPDgE_um$S4@Wj1CP1IOLAAvwt1}!lPtyOy-VOsrJ$#lpJRCkZocOhNM94))J>G~ z8Y!VDeh0A_uR-xUK4hu$6R6q&vjoR`8BAAwW4%;V!*^HmJM1|n2;|-j7F0>N5b>>g zaa$ah?0|_P`B#O_m!V{Dorp5|TH>oih21E{x{Qm-x)M|At^K7w%cde(=aja;KDF}M zxwoA6Et;Qk(wb`|Ea%(AJaICJW1rSNJJXh38)?-gLE%~C1 zFvC;!^f=8;GtBwB^!lr2Yy`>4UdYvwtO825T_a=O5HeMnz(_tCKl+gU_qD<;?0^R4 zyG#>iWkZmy0~U}iT_3RT*IP`ZP;}9wvg*41WEky@Yz;#r! z?oowJh$N<0BN3os=~-TcR#NMMK{7CZ6Az=jS`ufwOv9E=rc^7y!T?vZ%|z>=F~^)O zs0BH-Kjq7}D&5~H*QYu%3p%lI*IR18rZ3HfKZv2(!rzOxw7pNkxsTzB&y#pNg~Hkd ztESC5H8NN$QPjJFPPdsnftl0s|S1i8%_Fa^>)M@x6@)Yr}~shFWrl=`K^p?D(M zgl!I^U%bz5(=R~0C5rXEM*gw$va_BBYvtr|ISkLM61tkXZ6zFA@1EE|Mt$N&`#pPC*wL3>o7Vvl#~M*>S&w%M`0mut ztYWV9+w%ngC5>Hc*r5IJ;}(J`*0*7C{(+_B2(?1{X5om_bXcWdPY4MLXf@jw2n1DF ziF`AmwzYYf#pp0vXaw8P%9;K3k{rfa%-(|T^>t>WK0!(aU^_awQuu6B`a)rgRKVNi zV84v^S~QHEvAg!~l=b0#@y7@}P!^OM9zF5prG6;yAt)^j8_^kSa1gi$LFd{fqpb)$ z3yO@O2SQtqKr%`q=++RI-K;xIYO<1tCjwGUbFD@Tf;#s6&@*DL(GXyz8a2|(D%ga* zjxDRmV2P5iElHf9mwnJ|dB!`FSxxxOrV-B7Dvfh_&r98ad(pvavQag(fd7MFj=A_O z>rL&_@iqq`c!?2{yMt)p=9r^5YDgNaLX}d_RiIVkeiq*b4-OIVwfic;v(Pk=t1Y0m z6eR>(CQ`979?Df zeM^m=sbU;*coZ?PAnxIC#F&Ur7x_)^kq{Tb=pYU9c$X5l8477qf`dahxo;VWld25o zgx1zo=zY*rRJ!fxq*u`BXzuRTU9g2S!bAYh5-32Ts zCJ&ds&Rk!&LPM+6k+A~A+GIBvJGQs_)L%@sj`~PqTLF(|ZS*ks=8R-v9(>wrJbF*d zY=>SKr4nae$HpFn|0qH?cFD_~G7?;JH=`v-R`4bF08eN}w27TvR)r2Y;8~}XB=O^M zz0!?tg0|6vq~u9>cP2{_?$FNGhA#7%G&4)L=|u{d6>Hw;^F;SsSX#xqiMnw4!%2lr zU305#wWlIOM}!HE0=&2Ly)}-*4P|bZ#48vFGYGc(1zBL1rmY0t94ph7jt$8hG`G98 z6gw~RcCNeCw%PhS--^`YF)z?;9xp-k(G?ravfP!U+(6C`emh0Bp}#~470|9 zrdJVCh`Z7gU*A7*C|8`D8(uO(nRMWXz}}&X*5vgEevlK@L!Qo^6vzo{n>K1pZ`3zB z0!h4`>gx%cGLXV=C}OHqwlpYRHiJ<8VCZOitm9yMECQoobfQV+7vI<{11EUlnx18x z`$8MPmKWAhsEatlq1u}}qHlD|3IT4AyXH!i<@tHdkvT5$J$Q;t zUT*@X6Qcw`3gx7s1kgDZF_Lc-{VMUnYy`c;{r0f2=7%LEA`P#!ZOn!8w=bWh zHX9REND<5VXSJpYlh8Ca()UQW?#yMTsjooKG?XSKNT&7)FYF)?konxi9kL!0poghb{Jidd$oEkKRY9QefH6ScoI7$%Y7l;O z8+Sy)?Iw=Qs)(~+tl}InhRLAcQY98j4)AYFhSOsoLcFn%&-94XSEOJ>2R(D6n8qqf zh(PaLA~E-@MUDPQaK7vVp|nacb2qEE11jWS#dfmqZGrG8K(t@SC%uTs{Lo8^%pLEnL|8H*rj7{Y8z_wObDBs9 z$fL$ZB;^=qgVbQ@GByRodcOu1Qf=68^y`~B92$d0W^YiB(6~9m$mD8Ug4GsH8jHR~LrOu(F^LS}%<3v0F=BJfcr$_?tHBs0k+xv~1RWX9 ztz2}5Pl-LztW;ZN?Z>cztL6tGkU``0^-3995;Vh8Ps!m}$);Ds{yQ#T$e&3oRQh>q zT6FZQxx(ALgHF03W)-fT_Q-T$@17>Up)JOLu|csip{f@lI?ubdN_dG7oj_!pBw78lPLlf63K6*?dXI?NbIN z?b&miM!J@f(2Rf4RLGkSW{=3`*eD^hV*-WA39K`KFo2{1`c!-jvrp`K4X!B;hO5d9 z@p@BG1#SaJH-f{t1+U4|s)JYKxaDNMdKVFwJN*=bk99c)jW}>Pn?;%k|2mPMv z=i9S<(7EkSo8=Dm&?UDn^*h+bsgZ7?<&9Dgk*8%M6gwi69P}=lJ$~U`6_< zeJ)W(y0=#zHY#c`TA^UtTE;P;l6cr(pTRbUL+@Fmf}!$i3V)nyceI;vP9=WiL_|q( zr8eR#KWD!pddxd?l$Yt|Oo9d*wk0|`7FWymKa^e9*MZ8L5l6Af~ z7NBb9L{3|>T=G&ao_sv-S)IHA-a~ra@uB}MYR|~lt{pSMBTSq)I+rhKu6c& zgla;I&H#bpV<)$|SPgw_dw2@^1+x~{e2IB}d(0on>Z2Ddd|cL`eIh}nH0t2Z_FKaN z1JsbWiC;~I`PJgY)A>jnoo{HZwbZs@Z?&IVf?%!P>1le{;IW^=w-oZMiw1xr$8?V$N;eOedTHj4z z+0YrU{mejZB0hM~cRt&pO0y6c!FhGi#Hn%ow*7X)?RNY+^Qc~y{}OF}ZXKthZcJ69 zKF|gl9#31DLr|9l53q$hbm-e8$HS{<~^!v`*Y^ zxGgtLxfNJf7nJM!-BM#^3){V}f89EGWOEC#gn{uRR94z)jm;vW3I5A11TZl<@oa?hlk=g*1 zo;_iE-79H)gxQ%|k>$R+JFx*6vPsj!#GQRf8TV+#alEgatoSN zy&I-TK?T&v;dWwP#K^OniK`=eiq~?prqXFN)f}J)8q%zBJYPj;l$&H$ARZk<#P6KM z9tY<=FgXoFYXw_ou2PaCZ66<%=y>MerXjm6K*WcH2W>ggT;)GtoODB5PRiC)z+_Ek z3X)rJsy{!uPvGfFz@^XUR{3*@0zYohyZ~3LOs@V}HOTnSEFIG^(fy$s6b-*;L}VI;*X=;S(Ib*%SLb9*_Ld3sdM<1YLPEJs7)JPs{7D+njCw#0AW=W(pO2gq77mWVjG#mbaImX*_S&+Ymmhm=&~= zKc(B+ee1h;d=k&)i%0A3j~}5U*rBA;?{(CdQlZBpgW;D{085S~CN4xWfdIF;kxi$1 zwfi1hg-q{3Pzu6B;D-J1`6%WfHP#T*&eCn+>j|<&gkIii0W66A=!eN$75G^lLNmN> z!<#1uu+E*Yvlq^{yAD`(*5|8K&*zcZnQAuR=#Y96V?GGG_>P>*-N~6vwbassgdx!- z@JBQeW4klht;snruo3jwnAAmhoqpFJAjb7>uk)v`OZ8S2ni>+mN$nlIj%yqmY|m)R$&34K!g7?} zfoIEkOQaK^|8ihNxmTw!n1-!*1&;wDOoM>$1JnL)hz=n^m`R2=Dk#WSvw2yMvme^q zU{=d6vFaF{DEe;!NR@md0m@CRdyx-KL6|YOp`?nNZahWcy8;QO%D3HpA*Uczb*9}m z(OSSXPrjB_#c<|xa|BY;DA?bKO4&E7XA2b9-=6q!3;6;JIL9#Me6V>I&t<~Og}Ix( zze7#)RvI=pJjq4{5DcXtU3g^H-k>Pu)PR<(^SY0j6mTmJXw-L5*FJ6NsH^B$#rD%i z?V~KAjY09>CJ$*Wp{0~y2tgsXGpZEHREM7*rPxsjVFVW7iIliu9{{`GYQuDj^SDL>eZ(@YIn(1*c~>li3ky6YS%s>Co@!2hODtO+V>y%* zBxxfuXO+5{ix}5l`zbA(-B&&^<&yLPLW2Cz6m=K?UWw14aG5ox#ovU@gmE}@0^s?tt$0$36Qd}9LO zoJ6_IflJEIWVugC6QRPL^-Z>)Gsrz}*z%}b%eBd(KHNj_Pru)^yBMF~&|F#g`e~Wk zZGq(TsOwhbahz8BE=q){Z6EB0Q>ZzM4o(qo*)$JjSXxzy5};`FeAr zVlXpN`oIBe-n7}EYi>a5wZx?IV&DaDDWD|Aiu%ITX2@t+43IHrVlbc^yZEXiQEqp7l)=HsgYRT*(219XFx?GDSUp zhhx6;Q}#Bm@yK9BzlYPkUfN8hK|KuXra_wBB7Q&9AXA@c68slu=)_tyuvSbtToa)Z z2^$lCZ=la=BAjEI_g$_<-`Ml|l=|9u6!fR&XxWWQyOM0R83b`Gi&>Y_!xS%p*qXIu zVia}^7iMmHg1QUh{HyLgRpo|<%_i&{R+^69oM}y3%noIi2UI5P1P6hj3&r$ z!Ohs3#`ky3+1S4=L!dbh^3JzhEF+x_P}p8$40hs}=xMc`aECt5Qp;#W(28_L*VHvv z#wAnGg$&z7*dZQ0epOIp9ynvQk0CsQs<%lZ+$g8(+LB-vPaUPjbK&->9w)Zt?o{LW z3V0KDKU1NPtB^`CSG8u72#om*{blr4$4Zs_)TIF#Gx{M$6(+bH^@P6sZJ#q_R!8r# zR;!=SBWs=*MTvu>(|9VeU@|A&;JQDl1&cirVv2Tgab&RQ(Bs{Nr1ry)whwHz^Yr$)^I)_HVqOHEv#oaT7P;m^K2i)V~T`a5;^)}2e6sAc~ z3>7nea67wR#`eq$Yd}Yb&>@(Z2+GkR&271ymMS)ysq|pg$j6l_>%#|u&OhYF$7boP zQi;Fv?uuJpi((qjO*SaACw z$>xJH6jcmNv)^ugD{du<(?qr3a=_Hj2Kx~37SI{HFM&nFO!=lCqj6~peBR!yaj z1zjht?8e1T?-jiOQ3G&h^=URR+Owg+_#?Wh?#Vp$4gm-Y$^5D+<}*K!Y+NqxcGSz5 zfMy+cXi`*~<(#f1<; zlMdctS1}ZJ0x8HIkvtBS+7p(QshF+AIQpCE$L9M9C2emd-e6Y}P29ePls2X5eNsQu zOYqHUaf3t@OLMDl`d?IB*yvAIvO^1(83u$!x?SW%?l~WB8tY{|7t~&o^yt%^iLGo; zSC1hF3l5F_@*P2YuLaj}F)I0CT;q4t1!`|D^TX@F+KfXc%*)b~2@R@NHyCXQLTXB~ zyF=v^p#+*LAQ(5w8DDn7=c6E~i1#Dw6+c_BINhJVxr(AR{WH3;{8MG-2YRO8@-0?* zFzkR4X6c6F5!jk&UmF^tg4D|L(=n8uq8(l8d&epM7f;zp6e5utOL}w=Ys#RJ&Vct5 zp3z^#o+~GSCXgnYa`rA(9@lRk@2u~i7ToWz9_T+M>iW_yrQID7QQC?bH*h^SU?M*q zt;-Hbo?17~KH?P7Jx6+4-nkB;+_CU@fGIaVxxeV%JDg-^^(V0;>IKJ$u>@41(FHdb zN3`NBQkS{7xnSyYS(dF9)VHfBcE1*}_aN*0FU3{7u%)Sf;Y zxrE({=6fgaR?32g@=hD!2YrNkq?)8debbE@mR;XziJ}dYk<1%`zzM~*>}fr$o{Ys0 z&I5bu${6I>2JHAX3zYd5MP|!xySJ>3Bi4iD&5Ae0FgM_42)UQMc8?Kza%_M6dZW@M z3WEKD?+ZEUN+woQTJfht++@5aEp~h#Pmc;J-#H~V3t(Sm|J)n&`rA1G8an;ZQIs3K z1QZ--IB&(4ulVeRk_B&Q(a|j&Y=ODwTGXn!?DP;3EjA205Cmo;65|bIz=GnF)@!9b z<={}iK81Ibz6)6BBF?J7YW?I5+#^n~h*E@bG~OJUflr~ULT4##v^^6Q@}cBT8mBsr zAVdGFdR;UbTKiB=2EG_kt160Ku!H#<_AjL=EE(YZ+GBA-a37M~=lavsV%!kiDxnUl zkL8>-Iu-3&>JWldKKhAHPI#9!&{w0Nlam;G0m@>NeIC!CGVzmP}y)t7e;oCx* zmfnqYxRV<88`zU>liE}9w%*!`ZFvZMzYpR^6Bk8XP9fGf4VpwXqoR%Fkbt61bS+q} zLm?tazM3y3Z(J9if`TaAuK+>j5Dq4AbLbr8U5s#7@?Lg`>Y?6q5bDS+q$(wfSDLHT zMJK9ibb6rxeZ?Qd?sZo@q`-6eM?~~`G+6^rBi(RtXtjyv;_19hqc213DN!fG>}oBf zBuyCC?bAjW&^#;nvw2z4Cy|kM{cp)0qN0b-BNem0I5fs`s`3(DS@}^?mw>Z!SB7Mv z!A}8ps(#SAG=FQHqVNSQ1vi9)!$3Vixwf|`dejP@%1?G6IG~)4kjU<8>1c7wKe3dD zbl?~nJD9~74&mV4vP?h^bwOj}u0S2!9Q=mKOvL9wvXD0KS_HU4`D{w3DA0IQ) zbK6IuU&2=~eD)DBEir7U9Wc;b^Cz|0hR2=UVO-Y^OTL~C(7_n7B6GJd@#WJ^H^$AC z-Bxjf>9{n9!MK>x)nmo_XllG|S;$>e4g&Udu{vM_+ zDIVP*@Ji9McwRj~L8Zy1=mlYe*10VaK7Yl~3t&Ct@^|1~f`(L;W$cMymPM z1;frpjv(t0@>*f*WW2JCrG;R2jt-4=#m|><5@|$RA-H(eJ9dulHnREQ$L0cgD!b?* z*@8C!?x|iVcEX#c?YSPv!xrsHN3354ICQchX{hT{pet(!eMghbLo79HSnv$v1BSG* zG;FR6`m^YIBo@9(a_cr+5Q%~7HAEFa?T+=wsaDUU*Jk>JS9vNH1h$A|LIbL>w6^+o zYIopZAMsh>cty3G?2RClmV_kk-{Nokr}Is;kU||Hoen{2+0VG_O1)q+zmR;oF>s(G zG_$7dT+b2$4=sxvN_+jus@X#Y{!g+8{Xe&D)9+r>C`&3wD@O~!!wYIl2x`k9$^k9v z_qs=w7aKw@au#qsK)EN(#h+a2!#{PY_q4RX+n#kvtv~EtJ?xJiqR0gvfKc|e+H~8P zfZZ9~`ifF6`@vscy5I4e3iKAW_qx>*oe5<7?O-@KyZePTB#WlU;>&eO44nweEe5owZ2h$gnX4>0 zY4#<_B3qp&DQai$is$3jc`n|;#%8dBsDknavxoJv=5mE{(F8r(=nb<%>K^+IleKWa zI0&}bcy2fo9`<+M6z9o<1LHY8#|#B{q{O5 zN17O(o}9RnfpMxzP-UJ?OEHzX*X5X|db(~^ZJY|!2L!5#+K##ST)#DXpkY53{K{k6 zr;b}qj}IoR(lw%Cr0CyLO$E>2BAbt-L^Sn3gx7urvUz7?nrg68AVG?xJHY4PJWfo> zn9T~m%2wmzqY->{cb;>!{zXVl4li^s-z=|sySY!GYphiNq^O(fG|V%fvwaRldHh`( zv*}2M{fTP*$^e!s$WHcT`J{>Nn=Q6{*jif|HUx+UvE{73nVPX_E&>Bs=(?*lvX z3rEJ0jN3j>z@{!F}9!VJ3*wPT*XfpHgb4p=lw zS$#55wIWLmKSgZG4mH{MW_o9Ed;yY$r&L;H?$tS@2RCat|&_TnF zD0=$VE5}r(#CMG0NTLBas<63!Sx}xqw4XLP{B6RUp$w`n3}R0%&ooXxB3Mt|*wjGz zxgg=v-yA=pR_8yp!GJ$96){$aX^Yo;o4|^97FuUG;T)UO(*Sh(;2@}Hqse?pRg@=l zb9!0^D8#-xFA9MQCVUE&%#P>A8Tu59T97_YZ@1q;#;FYz7UwvDSXoidl-P|aI+{XP zAAkjh;2T#5Nd=2(1ySlM^cM65$fgXoO~Mb`7k|>4B4Pvms|0rbCfXYv$1HB}FKjZv zpoI@xGr$UQo;V*#F28B3e*RF1jl59wF%Cj|G3e7IFLJn22t~_8noYGKNV~Prw)+Y| zg~?bA2Cf%68tAd}{uhA3OZP=~piU$Okk=V}n;Aa<6G(trbU0H25F|VlQcz#bsZ{tz z2e1P|O5iB8Br6F!p&v2(M@lpYNJ_j7dh@ZSKs$M^O8mM;2yU&G`9MeOZXUGiv4uB& z{+D=mg{WBkJ#Tea&*n91tm$$pk-nyWOC}$OohI;qM_nSr_!R zDVSmRh6(#@sdg80Hrgbpi{0C43i5t%0PbW?K`oJ&Hkbjn(W)_cp@!8%E#@F#r3%&_ z2u7mq{m~noZpPOqYZm*(9P;9zT?RZW+27k}v&j}+gCb1g$^$Fwmm^AzPg=`fk-2l$ z$8KrhYHUU-Ei#@IflGjL(BvQ8Awpw|ZJ$)N6(-Rce=ZAlMRPJV5=0vvvFEKn4oJQ6 zUx8vgMIs$NXpmDOy0G&`7f#%2@_(Gy!pHt11KOhLDBNi}QpTYR91zBE9 z!_y!eS>_GHT55e_2MSaEC$wrDqCNL+6L$Ye)zK*>vm`Z_&tOE*Y=Im{)uRX>P*|+i zES4?{jm?-@eJ?01gB7;7@Q1lXxPf5d8ZE7qq|Ai7OI1hbj__esN4h1p5e4iq zOq1ulscFxuhOjM4%?)W}PCNW-GFDj3d~WzpqK&I`pde*ZS-240RVLE#9M2zNP&zUV zg`H56CzIalRT7gAw|jh0)rHwYF;47ck(A*fCKvWcx?AUH5f?ZL^;9R#y$n;A8_77^ zoN(RY=Gu(7eBIU{MY3{jEA6p`*Ny;Befo84o#dYCeha{xdYck!JZGhuj)0Y<9PT85 zbkd$h4?_@AUA+u=<;-Rq5ic;PuuxG;S5UR%t_rv>$O4u^cP?R^5wm%879aN;KEqx@ zeNm^nSG2=l24|SxW>bMXt?VWeAj*{_Wx?w-B?2#A595(dh7xZq+oaq5rlvk&|Q$NX6gP06h^{FF`snRM9h9*D1w?q-*gWEzDVPeW3b-H0~>zci94k$tRlcvdsn+rYjjFST&Z)Q z$d5h%I}Ml?iC^Mja_Kx?-(R1Lb6c5plt9moPiN9#sqTeZFQ z`s@9u%6Rt56?e;7AC>GN3>oWop`qXsLl-}_)@TmlfDEHr#VlBJwp+t}V&t->ejDc@ zVFMDhcRZTU0?oBeL<--2LX`HgBu*JQ!thgG@^jT44I^7uH^`zHw9pH~9r(eA-F40v z?(`~TbPkz_rV3$SOZa+*6nx8*pl1~R!4f~{?oWAbDcR1J9I+%+7)A}3nwjs&xTyr% zGUr$ccew%voPugIg?T&46RXVBm(N;|CUtA-4GQ|cb)l@5TNJ0R^5+d3RC<|pbLDfzIvr=BMR? z<1yg`WYv!?t9adg7wozAq}5XjHd8tnr2?w`@{PS5b0Wx~GnGwO&NZ=zqn7T$&Y~i1 zOY=m=T)fZQHMS9F#)S_MTg$kn&F`>+#~H{|+9d6rZOLh@&~l=RoapD6WdJ2(69hUo z>KrsJBkMikAq9U5n+n2C8)uFh80d>DKR?Ud!u!SIeOpEAwmT~KV-OwtWj`|-bI6J%fH_67-l#}c7uP#hsU0g0 zn((Ta8^N~=0VfU~&F~i~3U3=}(=R-D7tcLflSWmqL@4wuj^})9XG+YDrDWidP1=DN z*cCwMqn)6aOTr8~7Ao~e2~ks6_hRvJ3qV%vcV41BAd#3YkErSj@!x@!m!aJ*V+siC zs~dCFm2LIYx{Oji5QnJ;)7cg($ni;1>Xz)>UfM1R?y!!NX4t2xEz>e*WSj3p$K~En zYcZM#KIabS5khjVh5&su2Sc$npa|XxF+fQtH9uasAyt?k0u?DX57!gBm`~SuBk9BT~yvtEO-*u0P^Ya&JL-mPi4x4-0KYC|jk6%wt z)lHJ&qUa*?rDdtfnZlKfVz#K+S^fn5bc2j-5}O5;L$L`%FELNW%)r{3?YQaA zDb5)p<2z`qEx(Ng^g@zJk?-lJkrE(BdQ&ls9VnnYlWVgY*c>Q8H`Nl8bBQ6qffSk% z8Jsar^U`QXx~@x?d0Z@uJGXY=M>3+08tC>IP&k9E6I6edw!%cM z6T>ThFGEI)z2I-2Tx^n)xMOdC=T<(qpvT{@jJ_e6Q@rZ_*35fP;McuPyBA!UHWMOe z(!*Q`eBZJ8_Da;z^**Bto&99I_ZlT^7dmMrr$vi30H~`0Ebz(|dB|u}_$fi9h!_gw z623MxMMc8NGc~%23!O$O*eiHTFv+YetwGK{bS7R5Ob|s)Jj#-PC46$?lP46cgnKSk zw`FyLglJ;QI}De`^4WA=eWFVt^}G0$(5xAqrd*@@avgRbO)ph0Fye6oE$`*a>~6n3 zUMT|mv@KN28E16Dl0$O}21fNnI`l-UMGH0<401jq^jcidK7*p9=aRshO3}%+b2Kfg zRUbHMuh`Qadniv22TZvj3(mQF8wx)b>H9+vmS|<9IF>M3);t{_dC^k~g>n)u9;|%6 zm4Gk=aS-HeJ+zT9Z1E?u_WZX~26Aba6rZRmkoxsswsl8Ui6XM$+`J|CSTa|_-2kL{ zwG2)`Z0W~#H9)64c%<3;fYX|kq1*OapWD4JE^@7}cr|df`L`qnx}9%i2Z-v3z?eWe zjtoX8nrbBnb{7)oJz(^vUxW$5)2^=N8?)t0DOAv>rhtx1jupxhBD!FNWY$X>UNi*+ z_?)TtqNH-REa{1$=574wqxR%DYF~<_)74ups4pusaP*!fq`L~Uz7mmn{2H7!zOkNsy5Q6EhH6- zN$XlBu9o(I)(kO=m7Mes#qUSVYl8z7cc;DAkJTeVGS~Ey(~YYsiqCHd@oz zhHKktbgW-DpDq}Lf3Z|3JMY%%x2Xcl;+ARK@~oXBxR~L3#9{N9!<~m z;di$^RI4g9){VMq z8{NX+xH*<9=kH=#UHYCNw@7yN4S;EJ>1!69{#-e0!~(n%o?M z@PX6NeZ%LJr$Rf`;fazyT5?y(`uGw|TY1AENZZ=umOwR@dy|?Jhyb_Nk?kGL^O56; z3x7b}yV;1GQ59hGt8yTB@Vm=Kw+wE7NhDEZyz;Pztt<5|M0$>F<*)1=adit=SfS*6 zxK}QEs0H~2Z|o>*qCz59R)vV~q9y~~$2%H=QOgo`ZBOPx;s*@!%?4PFG9X&YwbqR& z5vXSMQTHrEqrYC}-GIo=trUi>$kAlx^pA~iwOJ7&c4yxXy%Xk>y<3IlR=ze&79Af+ zHX?{=D3ReNK^FgLE3Ff5Pulp@HCE}?lV+mI3-c*tP1nan^)My%?(~blC|mG1t)1t5 z>K(xw-gp;X-r6lar{{?{BB{6aWA6_PEJE;l0QREDhSwyF zRO?yYbJ{^(=?bTDiusbjXwutgZ~Rc*!xmv<58Q9Pn}GZ)@t@Kdb4!9l1KgR9@Z-zw zyUjgVsW2k*f*Gm=nwClW#Ga-{y41ZcM0<8)D3R>zy+gBi$HAdS-@TwA>Q|ZZ>`@+Y zWxGWo^Q+Ok&=q1tHhm1m!w5J0qU++VY*%77A8vqOduF-#8SBO|LibM2)69Y1YHwZ6wU{ix+H0vVwk>{y}l zWY?y`L2Rs0@JcY^vD{T%vXDhJYh8Q`R$c~8#HkOuMPNEY-TBb@@8jPp%Rs?&)33#n zMSo^~ufK2>>N>}?Y{f&El1>djvkWdN&Mc_a*(PWAOqU>nJ}Q#mPLl;MKp66ly65x^ z*B4gj6o)Z_qy`y5do1bj$jF_t|}_)CAISnLp&E|=b{fK7_8 zZq|sEK5qsuM*9fM_ofayqZ)*~5)cebN5M8Bt=;S3TM==ZCFcY?`XZa|h5*W)-&LhR!%T~Uo1_h{1!5xrh_R%! zol&s3;mg=E@A$>r*6AS+u2DCobUF(Utvz1S2C#8Gq?IAKK+#Q3`_^vqdsWDwpWk+h zQ3=|xR;X^8h=*aa`QF@bRvR5}ph+J`!-f(9OgjvuB?o6rtRL+WB`I!kP$ziHYw_f^fRbYD{o8uH1L{5 zXUV7P@se3d#e$(#)mC5o~`-;||sZAec?hyLIix_);M{bAyKtD|4Fg$Rbw~=Tz!y^SCYA zOqr*(+@&8~@pLg$^>k?n9c1oZgW>opd){_W(-%%bZ>Vl5ZAh{q&g>|5mdk9y*}_}G zOxHQRxGRF03c*f`o~Sya?}wzLk;f(Zdq)WtBT8a^HpC)YlF9F9A%Hjpx&})=qo{>1 z_l-XwRRP7BH-2w66J$Z{P9;6#*K%))&?VQ_ly4+Y;NI^kYmE{5`Y<>T_$D~;)pRbb zLTspHTj9ZpC`!>1@p+OKp{)u+M7w24b+nu+^fr-s+{@fMGmkD8Q5UkdO0Aj6Zp_IC zU|tEqJyzdp$x#dDHb81DOeJ=P)Z!R(+AK-<{R9_zCc;8h>kv>x=-r}jogzm#rqdhB zQK}D%3f3Ms&R_%+PRKi!yGDU@!z)O-8MOz%9u-vs2MwqdZQ3 z{R`S9M!np4*z;~1Z2r$WKD$y!+xQ2$mE(bJ;^9IIXZrG{~iIizGhIAJNW>8&Ba@C0qSML-&<(FB)aL!l*-u3Cw;;jV*#X87vtK`VZ-V~yB;rqL4fW% zS;heNw)<3MIlh6vZWiRj5E=InH`^ z5l^Q$t2*j8Vi;N@GrtUqFnxa)5Bnj1v33VN9yOCBhgohu?s)!!w{f`LkxH6;VZtN4 zjqByylO7Cw;m_*e-|R~z=WL}K=Fe(t+*AhzLBwzi;cdli-er6i>WS) z9sw686uT3vlev}o>t*nr%*`xpS)DitwDl}?^jTm3|9+T;fD;NIpWR09^$pg10zWr; z{l-CHWM^l^N<-u5=t%9zKy7JbNJGcM!a_q!PeV^n_1c2U*4e^N+lk7;mhcD0&nSHQ zwz@XPR(8gg7Wm&$wRJ4*?KlVsUa#^epPz)X`pxw$Y^i?;NUdvWPV;(#hK`zn<}Z7{ zDkx)YXk=&mtIWT{aMHGV#h|6J`O)UDq4acr#jvusG5ewQYed&K(>K?*u(N%|q5Eq9 zD(!px-(B`MzNKw!Z2n`Mzn`PAu%$89`)j#g+u8pW zi2Xl{@=Aq2Q|=Yt=^s0tm5s5j`L6&!zS-JoTj*)q=>5>fLfc&5_LZ>uwlq50w#K?N z46iQumt$k1?eHt!chXrH+gkpBveh-xH`lhMd2R4dxs9BZ;jch{YBoC>E5pB*#nw*1 z;-9j;!0QfAe{FJMD?8oyuN39Aw9)@ntk?LU`;%^VdNjXn@k7BMLE*0j{O&CLPImeh zwy$yKSJ>~v_ILiI|4Xxfj41nKr2iW3Cu{t*&flezvaz(%x3P2nYc#8$Tm56a?^OG1 ztnUfrAL9rZ>zn-p1{!>C@=H*E4eP%fY}TLM@q60%>GLCb@Ms(U?a0rmz|8nZ2C&k$ zvDN=c{9i)F&k5sKgzs1QY4CrB=lu9RN#RSqrlg;avwzP8e`xco1mAIfNcl5{m5siE zu@mQOkKc9s`S5?)?N`pq%LsG+7op)tWcVHG?|S{0*uNP1w}bRU?C&{JR^R%M$N#%S z_|s7S7=&LukM+A`oN_kWR#y6YKZ*SNQ@<1T&j1{>&Fp_zj#KWHMSpbJ{Zd4{)*-(G{$0oa68_)DC%&J3OqlNvKJ$ZZzmxZ` zDfJp;{($grXOz6WFdzPFx$?>vW4%`%eW#8M{wqoFwav`%9rSI!XIoqR*D?p+M*o$4 z-??XtZ)t$9{VVnUpwj<{NdL0fCv5S(Cezjb|Cg<7t@L$YEvNfE;Ay``+aD3~Ki5bK zKe^Ta+D8A0De9MC@e6l;L#zKNqR9NhW?nOGTiZW~_TLR`e+l+)k8yIZb%MFJg~e-N zGq%8YG&0sT`c3%4H@5u|+VpMyu4MWjg|h#snm|fMSXLaL=lgW@wKn)^<>@C||GxJA zT@w3kPXDE@{yz8pUB~}PW&KainSXbk|M1%2b;-)g%=ml8c`dXJjLr1_mrVLk3~4_( z(JwjXr{wZCz42e`vhRw2ueX2VmYvZnrG72Uwe^f%srAPQ^FN~2zpP5Ivez;Dc_Jb4 zI%E3Ju-W%ji+|ZnN$PJJ;(w>mA5{GJ4!^dcp^d)b4@dgGNbm>Q{=3QNUqqSz&xZf| zBF!IE{PzyOj-{n3|4*g-ALRPKF!Vob_I-}>eSzS+vVTkazgseJd|fj55eaOK{xzxp zUlyMnEX`h5HU1A8=eJ?$CnfPM?9FxbZT_I^zn36?D$@T2Zv1xmjcsl1^?x3Hd`IKg zq;2t975}N{{d=up^}3cNqitdMf07Tcy5ZY=SMJA}%kRU}Pd52}?6q)yUE=(CHRgL{ zGq(FVbp1c}zB0P5TuIl=%#I;uh?$ukGsKB8W~O6iW{R1aDQ0G7hS;%VW{8=Y-bwoQ z?R4Kevu5s^wcfmW^W$jmqb;eVDoI;a^=a!jYv_Ng(F5#QmVc?x|Aet4`Qd}y--Yy3 zAV8bh&)3KA7U|!0%Rfu;zwJxLQ1br+K>_{v`u4U~mO%aY|7BU3+Ufnz98z21o*8fy5lQ~pLGY_+{?hpWy9)*&jOQ=)`Om(8 zl-|qyrG$UQi1}ZtQ39((q-+0o3(GH_PkmiWpyw0#YI3mrtIzlUt{n7S>*21{NHxUvIBxaP3`}?SdafpC$8TeVw847|3)kSrCI8~ z&du^$Nxz_(ew+H={thDhEBxt)dxRTk?Kg1HH?-wfHB>ZI{kv+$NDl-t=zJ@w&sQgKsb*BQ1$(X=zmPFVyO4Q9ylBQ zz{C6mGuZ*by!y6=KtrpeA<$rN0d(E}gx~>f-#{4M51gV4ot-WND-fq>U}$JSZwOpt z{z2zY#r;mrK%e_J1PwnBQS-YE{RdEsm*I~`za;+ItN(z$`~J4za-GF^0OsBU^^nep^1PddjOG~)!#7)?{sbLO?3gL_AWmG3ZjMpU6&tY zU&z=%_a7lPzs3AQ{AZQ_R6$-~8-4=~|53sJc$F1@_&tEK1=<_!i2lZ710vvC8R&S_ zB@+3YAc#bMlLQfokiEUFsh-1+=FojG(X}-c0+^Z`5&^|Q^y8KHH$T2EfaLeW=>MaQ z`g0q8v`#T~Ih_3q0lK)qz)o*lv$?}`rekt__m7o3G%JwgWeyQ89gk%hX z2r^||dwUaIhaU@ze@^n3%s)x~g~Si4zrmpSEp$yS>Fo`jeZnE*S5Ef5L%a~k`t zt$$1OOJ-SF?%&@@lA`<$4yFd&Tx_iRhPs^0bnF~P%yd6KK1K(e#JT7g8QF|D*jSlZ z42_t7migzre=hV7=+SS5vUBJf>KYmu(CM?XbI`FG8R*k-=>hL_S$45%uS!e+FRyJBpF60|2=821*TB?Y}(zJ?l@GJog{o+`oCT`Rz?? z4SyJ1fB60X$>Tp~|FP)$xw_=%0J7<~Jb%Rfo)%aSAWofI?%j_i+Rv1Kj`^AHx2`Pu z3+59T{aYk(vkGu`3&Y>HxBM}henZ{;r^CNh>_46F_YD7=|94LOYuEqf-@nGU-*f#h z|9k` zxop3FIDJ`D%??jI#&cEsOXMs#e7urcqJDQ3e|OEN^!cR9)&~+Eb|SQ#N)a%8l=HKb zn+G`YMCV|V8N^AX0I+32Cqtv{^mwI9lJuk2Te-BJLPt55*W8)6xIA=^{0?7S+;`|r zdyV&OW5#**q{eT*%JpstVROCfe!Jfbjj(P@nZlSslkV@E*k&KY7<1#D!sLJB+;;05 zI>&{_6fuz=8)kD_cHwK~o$w*jN|77;HmrHPue9+reFUq*{JX~4BkY74a#o5YLO!Hc=mYiqAs=8cn$2 zx6-{e2RWjin_alV6WO6=OhiU>P{PpqdSsUx%}ImfzTfQn)%%==K6>VAqS<1d#*hv{ z(q5zX41KdMsI#o!;&JqwhYrx*-ztiJA;bP8{ z<1JE{1bZqa35_Ps!r@Xd?o!pTi4#`#d!qnPK~;%~+1-imJG5JoB}=UgcZU*%TuP)3 z*6V{w7F~?2!5l6q_lQYq?(=90>M2BpdAY9INh!%(AJK@4(5Sg5MKp9xG}f1Km=;01;j$qE1YuMl z<)Lv1B(XkWm=K^_A4z1AB{~NvpvBXB55(L8&&E(et%29Gj_2(NZ3WxuI$QokZK01P z{vpZ~6x|DwUQI|L%Vm@(FBh!`N{?TpE)J3zBo*|7WH@5nF4*_Mv|9zgaSt-0O7Hgv z?(I^OpgDRM4RnswO=5?P=i`$Z`<-i*YB^=aN{8CTvDHPN0OcyJigC@1IlLFZE8}rs zYkO<)TXoajtBSUiM~Ayj+w)~?>}l>03gZ%NZ4b6PUB_lm!~iw}B8b6BE@i!s4(?jSy++^WBm-#tjKdU^I_ z@@mo09H$>oJm7<3l%Rm?fiV6)sVjz{gaqm>B+7`goOV`ocWK+ixhUcY$wHGa>}Wrm zv?t35HYf@0@7~r!hEAc9zY&fbh7h%}VG}HhFRL=gCH@)95|&7-GMq%;;pBq5?)J)IQ>^xkZ4~ z{x0TFwGh!IYv>mmi<04iud6Kx_JhIjD8oB?Xd+#7+Y*}LtBb?Y-aN0@5pfKA1Zy%B zVsr_>Z5Uev1rW9+L=mR4wG!VmN>m_c_c3ClQjZhbQbFzY`V0m-8k%~$nP}tUH4@$X z7tv$TQ?wKmywgMVOPIJA(chmI7hZm~NphNW9UUZ31pO)w^?tIz0EXjzKTHm403p$o z@;7}8riuFp= zN1I#FMwXzj<={aA_Cf+Fb=QZvwg`wTgAG+nyu;<0lfpAKwd7?GY z{H35buZX347P@yrBgJK$p!dY9MV+M6Zh`}(6VVVEN^)1?f*&?%2kC+xGo1ZuQfhFc zuhhRTliiFf`|RPw{<$3x|p4SkQpS_|}oHD}Ya&Il-`v&P{hB;{Gt8!$AAmdsBw^8TYVX z#1MIll>91Sr1LWqLNiQk?XJDhY5olE_FR{$dP0NL7&0{Ed{7ri-<4CvDCaOz0rHT+ zn0Sf57k&JJQw=#U*pd)Bz>MgG|WVyOXxEJLT$P{RF@-N=Jub(d*H;Z zvtenX8hKvar41spn3}@HjmJ>Iu<8lhwkE=LGD>1YzF1zG7)O1UZ^s|(kz_8a3hZ** z^owX?4N?_@$E!uaWA?xPLczXDOhe-Z$FyRnf*Rgpv`t1d@tRh739~-U;xLv?vQd;Y zX>0D5YwKPa*&u5TV5c9i%fhzB)D|rwR*}lAXJJ=YNd#c=wPPS17(#0*AIT@~EMI=N zQW?%*j8zjf3Rl`TQ}sbG%S5}Y>l;^7mv93(CcOZ~Vhr9qR?kXp9^Qsid>Dp=hqHf> z3CyE&2D1_NK(_JaJfc%=xvdT{ycdN2<@b%tHzZ{hvL zRmq5-@|kDI*#Oe^NJA2Y&RvGCp6q;0TA7-otE?m8liwCd5%%@J$C+mU`1}+Df^v%} zX~7XFWNO))M{242S>7vYeG#oX=!;e69t?02d?OaHaaap3G3Z-o?i~0 zZ223PKKLPNGKaV+n*zI#pg_^zR zKe)kJHM&N`8yKdV)Op>YPkT$o@TA(T&kVR)rfUb~PxRooxGKXwM2^c!d{lmYd~MPu zd}x2G_PxjQqp-IMjjjL#=qwi>HN}hlWJq{HhPsZoaA_5M>UTcdXpA0XCo2Au`d%

    (cQ)|cX2l1V0N@AxJ)%*!lITLz8;kX%7VIw+L-BN6dV;OhxUcKK zZb%sAGT^1tCFaD*Cj0gGH?+*}&2hCoofq&jci_*aBcr2=$Ku8Mw2aa7qBre<#ZBc& ziv`j}!Up5rzk+w8m6A^^+3xGJzvB69fi)H%URF6*G|Y6f(`83lK9C1$-bi=qNgy^? z3bGv1myFXS4K<6apkF;7jOW4^eGupi!e{FwS|0v+DOQ;0y)bUPB_c*uw+DalCpW_l zZZk<}nh$pisa4PsQFI8+LTjXMEJ>s`BB|6a~=2Z$&^Up=w7M^i`oUBp@_uZ=wzXJ(K?qb&{ z?=>q*ws##?ni43@Z;w?qdcS0IByF+0U0^`pU5#%?d=<<*r_W93C%u03IoR@8&03$_7zo}Q2 z({Gj_qFg`nAsXSURI^5fFXd^>k+&48VhDK(Ce*;JU`W1tvTaA#may2%1i7{fyiKZB4 z-Gn9Y8mV#kM)4sG>WHAR!8F?%G@rFhV`y#yvog09G;mQ`mx*!NN|`qrUmP*$yU&-- z6}nYc4Cvzx0SJ=;-cn6-Ljsz90r!j9AO(W0uSbjYd=in=NJ~yGPIH7!l$1S+u-#YT z9fqo~Tq0oH{YW8m82j*g-w<>XxWFU%h7Ru`m`8B~SMW*4j+453u!jj5)r&l4eLz>W zl639|&`b5!`7x9`>GXY@bv4qTi4E?n+^k!B_aR7;TXn|QOk&i~$0v8~gEa-$Z24wk zsRfX!giqJa1zy`)4Ml20Jsm2IE4YxhB;TF9);fQ|KAAlzIbfiS-J4m`n4m8Vy?VU7 zzg$MMsZ=W;_gUHBf4UkuY4^9^+0d(@Os5PIq|0ewE6~BSC@pky*(~J;hfpILTUvx2 z-B%D03{*7@IQZJtQFXnRBV=!xv0uKGAO2&M_+m z$ft92)GA5vl{R&UO_@AC<%y>nI}vmeyrB#aV{(TGk*ZTwRTnGzF~b>kFud6;dsL+k zq6|$-DK_ehjyx0SPR`DhMipO0c-4IA2E?oe)FmfZ?xUlNTn5l(Bf{}y;W+XS3oHw< z29mgmUFDuEDmLckhI7yBDf+4$&-3UU{qzRNQg?e8H>&NumtTRJ*^ zKQuCS23UqV`kEvL50*mc1{dVdpVM`bty9-%fNnJBrT|zb0@+pwc}-pfYWUm4D1vbY zT$PJ07oaj4dmL#)t{Bm(mLjMppk)Vw8#2;I??VsiXb)J~dHrxSF_>H}BVy;}Xs2J- z2Voh-RrQF&9&>Gsh=?|p4S^`i2BAcD3pW9kOk!_v<*qZl#_K_QB@MUsJduA2!t~5 z+NCs^$_o_Y9t^uK+XG@SgBQ~QQcpsD9&8|W{o*uy*vtgG99>@!?)Yw!-~n;BttgVw zd8ma)JJ4VP{k3FYpJlWGVRIFLZ@O%P7kJkTG7)$0a0Z*2W_5P7*43sr}TiC`? z);I!9CHGjh88!N9F6%zwRrrWB%j>8dni3Bw@WRhze&Qm9BVNgOdTf~~4K%@Xds|+e zq&kdhV=G#6*bTEc@$H5PrqZfntc*vhVO`KX^A-jrx zXuPi$Siy2+<<)~0J9y#9XorO$Jh-eFU)3rbUtL?LmM_wlX-|D(7D#_O{bp5<{Al6H zrLEnuf={b=6nga5!-0o0*Yd`;)y6gq z2m2<(QsEBatR;?Kw5Gt>HS5*MSC8<=274!W?jnG-({29R9KaVTTX4EZwET5V2n|zF zda!a<6Y_yiI^NBFk>nZE+g~+prF9g;xtdd5X9IX>tp71jg#_$G-OVsE|+E&ghL({bZQmLDcV zt^|3Q|5ogDvoBPK@%`{V#!^4veJ$PrDgQ|ScCDl&dzZ2Mjx6mYyy5MrZY&*t=wjS= z4!zO-6tpj$U`Q;zoTUa3;l5BiA@SkiP=1P~U(DSW+c7nVC^?}jg9;9N1PIJ!nJ zPDmPFSC;5_xQ=M2pF@a(cyB~M`GgHDf{`ykSBx}`NaFpn--Rs<02EMOEkh|~(bd3Z zy&85Z(|rXODWh3ojZExIa_POU+a-y*u#fm8E7mGhDPF|v3YYLPk}K-WS*_QdqGJWi zA0KSY6*|+9kPX>yT|0xn(-+~vRoi9P^ork_XeOgjy|I>I3F*{B@X&C;h7%^rCRUI| za|{J$`@J#aDK5aoFiCNJdYc-ZNZw`Gzi-qhyr~uk&K&;B_{GGd_vSk~u`CiZSQ;MD zyiI1@gvubSgm8mNZ0S(0@=oX~VJaOimO)?8X$@F9ZD*YMoMiui587%}0Ol(km3%e{ zP*_=CW?rnWx?48D)O?^3wD>ck?||>;R~Z^z4=GT5sW25^FK;<)+E8fKm+GM25a)vS z54{V{B4=(FDUCu`pQB)j4TRX&(?nJSrz;;gqzyS>dVxb$MuEl!hobZrwWYtv#TZVC z^VdbIHU`Tt!!043xMD`} zAKtnQK4uTr%^GY3l0*~fM>fqUUQu-DS>+u^jfKTxM?g1f$P($QEx|a_)%AL3Cnp8` z;8MZLdlO6wEqWXq4bpUU(hK{(VODgSZvQwGn)0}$POd~w+y?gZoZ&6zb1W&J2e`H& z5lk0HG!e3MTNDwaq`MDU3F||7KFT`#YnHrB-K0?_*pZ+gGc-Qd>p1F>NXS@+IFgNg z7*w*(JKRC`x_xFC*xkH43X=DFp6ECNP%kc6Q&@UEK6hMCKc)%k0C8i~^hQj(aex`V%`+lRa z>Y8t0-%KsicWLD-mV3B{peM<7q)Hma=O+U9C= z{L&9H%+>V0?NT3cpx;UjyMXqGFtc~!DD;crkPgqm6b3W1cLV?V@`R8o@(Dl1*yz2B z0Po1z2oI*{B?RoiRzhd+u3rVu@OBwW7zlW8^57?N`iXe$4r$vvWpszFjH1tVK2cWY zG05u(IVM-ej4*R|d|_uD8v7zRZttZD{tzE>0^>H~AHPC{J_{o~?9T=~0Zvy|qqr4Y z2vZ(jM3U~%)+94OfZVE0h!M}OCU~#vP(N~g2^$wR)?Hl$t5a|zRapoJ}7lsyac~p}LJOycPsKNK>2qWmX0P)CQ39cD^HtgxhpUrMt0eCKv z1!i)OkH+EF;wWMvXRoJa_ebv;SylMTW?1tsDa-Cp;k^N%DKQP1&rj~ofrY!)StuN5 znlM?Y&lQD1C(n*69T~)?&M!y1(|eD$+^-$6s;i@X@K&=L!t34plbVf2D1B_UWWJl- zo-s8Brp90IeZ)D(y>*OcpVv}Wh|^}B>TbLVVJqUtpFeq+g+6&|xAH(){c(FCv1dh!y9F9%pLsnB#7~}dV?_>3gEr07Xe7z>vX8SPw96L3o_ekD5zhTcC zZ50U3r~6EHA1YeWIhFUV*oN?7bUF{q3}xNL+Pz;VX5coOeLKnvp0d79ogX`3gj2D= z0=@@yz4cXVV{MdJgGjCt5(s`xT2jurp_(diBp`6y;l?AtPvF%oB#~Lmyz$0Iec{P2 z`6cmbqzeo5REy`c1M!ITyc6=n#rnnGm9z7r6a!W5y~|5=yp~$2U|g#s+Cyj1w3Wki z{>$AZ*iuEI7pMNkx5NqUn~KOFal;+=6oZNe4_@A*4k4V{)6>g4`xOBX{>RJaAka3! zFT=ajBhNN8F8x#M4TZa9Teu>x(%n6{o*$2H&s}J^BB7|!$r70m2NDM=kasr)kW@%K zA6&U#BQqFVR@QpHqU+l)%eEQXUC20C! z9kdu%K|4ckS38m+IQ6#D%hlJlKOvCj?Fx^sIeYzwMX8PZc#|jEr^^Ihqm!#sM^8TA zXms$sOIKIdg$~a}$Q4rQxi%7kz zZ;>rXFfA_bed+4?nVZ$f4T?mKkBAS^y?3=FJ8!BG+!W=;h`Hxp0@Eu%Ws0 zdC&Q|zHG`<{~BNFY^HxkvdODZYq25&rJe&d;)3Mqq%G9#p-o&xEU=cX$mgT~dPBEwTq1I?h(&rJrA;1~ z??Cj0W*4+orC%)SdwdltnX4fHf=de*PbfmAU$0{$h>~3Ey$LhCYBXou1&IX0n;l^A ziXHgl7=?r5C9yi$wkn-ammH(On>kpcw~#!bDvFg= zx*?vy2Qi$9#BgszhT&mn#kV2Li{HTmr{lWL;?KYvDL6J|`RnD$l#QC1+AGY=`+2zB zd*6wNnO^s@w0k?@J@b0#sQZXX5R|jl40;E=H#vrbereC@8}9g)O;a>s0bq|;-1_C# zWN#{{P@vkjRE4RlQ+$nbrq7b8?d!D!khn}Icb z8^MXC7LESSbD-1T`SH@xxiPBI5??(2S##rH-R0%poIw4aAzl;1#EikPnW`F}x-Bi) zK%*>~-vY73O)Ymlu2q>-hV;>&|N8(vU(Tf!7$t7fVTYLLHEJBj& zGRsh{^#+?n{RzUF(i4Fa@%Nxm0b&bD)7h>SEmEaA6w@cyEF z#uUn54Td?a$v~Wv%jM+~IjP7rzukX?_x);@MYyti1BbQ14k!m_?#j}Q zw?6*enW;?}sn>wWkKpZZ0f>MjD&N`w;dvNHCcgw4;kVgs+f1?v&hyQl4P0^0v>4tp z82uQ&O{y@-Yy0;&v4?wkj1=?JlEm(D`K{ycPfsdERf5h;&+Hv=3iG78lePp^f|!PU z&kU?`(HzUXRi_a^$v`#2wMcd#X`(#9HIwN1&xgLNh`;xJ@@EXk>fXC}xF*5C;EefUhDl=u!TS{O1E%5f?4RhAi zoJw?6RDb)Y_`|9S5`AKi%TE#2<1wD#){GOca9^hm2FKV~ehQ<)t&t%$kg?5){UZWV8BhiN}Mb=?4(){Yx_tf?I+AY?K6n`66$W$4t)Or09Ia<9$8wuFU49>GHTb zUt`u})vCUuYrn+o38p zsi9+=N;){yVm6#D1Zh(u<3T}B%fp%-)iq%KXbv6j=04??Oo@_pluQM<=s?7+d^61b z@SrS8+^0E?zHW3(#hZ3_HJ>rv3e=>#0IBHow`{S#qKf>fD7VjjDK!CJxZmILYZy0> zY!%!44%~FfAg7M7efCJ|%P;`&C7IZmQBoLtyBI<4Y$PGl+9L2-#pbBDBnx3wI;dr) zN4ujMrZDo{5d)c(LJX#f3yV%9@FDF%8GEQ?hkh#+2g3m+ad zTAwOBX~g$U6wHPtKjU5?<-_5dT}ILA5Wcg^@oJWx^$G6e_2hxRxOV8bL>egtN_T5P%n z@xk%pHu${%qp0W{M+ZJ7AAp(p=S94(es zaO19Gc>Y01Ab02YqKGT%ahk^Jkz(Q0w~E$p)$Lnqw{_1+Lxs=pQE2NLLCNL09tyCS zuE)>FNUya%I)cJX-+O<=QB6E`cU@i`w1v01Z_;H4k!*Zcfl$NzOhZF<%CRivLf9vv z`vDA&`twjosranj^cnL7OK4f4v@w5+B|+P#B=Rf5=r<*?ZnmPyQT;U@iVis$o?JJL z9R|Dv$yUuao7F_qYF&4RhDSEo^KRf8VcgbO0|Ew0z2(H>Mai>-m<;(%3P_qulCaIr z^LH_58Qn zGcb$8qmTDShL+J6Ms*h>FQgah91Qj0vm6x`K;>Y}ZCQ+7efu5jVliGv`;5usY*|jV zUAfD=>yUcru$2&(FP<^}0m>`l_BlQF()7oxvd~#)`iSU9?a2U2@Fs8qzZ-p>s5%Q0 zH&wtiWrs(qPf7Aieh^L^;N0YtNESEoLNrX|P12Js(ZUBurW4F?j!jN(|cl}L!G#7Z}+rMSNm zktC)u$P?{r3Au&|0Qbpm#G2#rL1cc<9UTs(lIhR1_Ue=V`q)|rQP10M?jpKrcVw4j zDol~&B-~;5enaZ|(xpxBZMpBC1iQQpH08GhI86c`X=eMWS6B)0uT+f!%k*vMSe{V; zc8LOMXHf!aHkBM92}+0fAX9HXQVK!1_$#3Rk}tuS%;ns9pz5No(oADZiI#ndprTlG zt%keb!7+{drzBs!3$faj5$_jlhHXT3MVUgt)K3hpx~64Yo#hu-3!2w2idFlLuqU#VLQVEDM|@$!ZXVy>ioi2M1E60 zokp2moYQb@O63ZMZO1Txk_FqL0-Ay0hE6NV4d(c&7;h)wqt7{u!oGsjD>Px}vFZYS z!?hHrRVC7rAi!*kkQmsaI|H-rG1xbdFZ^-Rbr5%~MU0ul`MgRlqdD~18hZRkzNKrz zW1pPA;ccTKpUN5g2Jw|%#*j=fRew}KT4O%tc&8Aav!A3zpbphsj6OrG8Q~}F(1%2b zqKc_ltzu4UnFK#qnVhrMcT7B-a0mI4Q1G*kJc`ne+@V-kNq6Bj}WGc`)} zVTDl0?MSm?4c`r&B-ddwM>vf1T7?RSOqQS=&f;xV(T6cq3#C3rN#PGE6!YdyXtEln zxU9%2mNaYXvyo!WhH@_@?{X$+>lrR5v$_j(|BXd9{BFLmh_|(_Dq1)cW9kXfC zwx)fM>@v8+DD{9`^i5?|8jSt?e+9v<%Pv)$0az2uJg#f_5ktZ0MbZ?Sf`Bcd`Aar^29&MHe^d8 z$FXEU`6WxpHAkZZiFK=Nsjf7qutM|=&6t(kt4k?BTcK4-?0t`kG*KXRO6BEsr-UY7 zW8uB9af;-))zN2OQ>!9(yKjRu(d$v?917r8+n3FAN}ELQog}B71FO$%v#z$TjyqL) zrN>|yAM5d3@o@(ZJ&X!WZlHN}4PfQBm4w4ZNuMox26w^DD5wu*{m@ChP`#1i85ew- zqNf$>L{rXW1Wd%#G)s;1C4l%vlj&H3=KWsZKw1;~R2Q z6_TtW@sMUZsENFU6t`DSmlbB#i%d_nopF_Z?U&x{ai+?HUn7{Uo)r7!90tf5^xW{AydNdQFkryCDX;+Sx9=48NNMd_dGv5}aebPDN8P8vs zO_*%v#fP13uAn@3wRl!q>q6CB2;!!_MosxBThar}$Vn3** zhVjjzPMUxbz_QtN`8KDOc~MGV%+r{BA(GsjrSwS4_8XjLn&GXwL)dF+dRoT;w%uxz zE5L~2MLvr=dC-IXe#4RsYWP-ribK3sLNa@zMIzN+OFR>1|54vrUBdxZdLopL6{8jd zTZQ^Kr44nnyxuLc+e5sw%Hd^fZatuVtZK=N;{HG^+X{Ty((MwtF`V=D{I`Y)^h&^X zJ3zE^z|yJf$!s>UyA35hRoC*y32J#b67jXc1Jcf z!v>x(ZsRYfO`FebuVl;l7bFfHxKJy@nzcS+pl(h0ryIzh&V=&!>B_+PW*P z;G?hm<(c~5+)l6TXjM)P&z@<6cKGVlk7GjL4B0E-B5ypnhVsg4EegzTI}^>~Nc((y zFEFgQS}_3LzI{SPnS2p9K`!?dL230IRBmH4GZ(1H$RlA zYgVjqqPFj<+@eJdRt*3Z+!84oWouAjnmPEj&)7;6Zdp^snpbIWPfuL>GsxstI8(c| zYRB=6`!CK$SsbT!;=o>rMT#D?k;()xM7mtO*vkhBC@iVEv zO*hC0Z}4CJ;(T(7r(cT`d)A~wOVJ3Bs-zHff*tqwuLHvkj6kd8x2Gtb_@XZp2(LRz z5z_;MH=oiw-m54RI5tG_*w3QM6AI{kJ(u!nz-ozflnLN3Gklv~(!tn|rBSI$Nw44B zONMPA6=I8eid_ZV9T96t@=cBRKqK9|5#9moReCS+IzKTA`Cx#kaJMAdr&sSoARlep zp}^0zazI1VE7rX;boz{zU}0Q+lIcaA-w_eQU3O{>kRZ7cggX0Ugf>dN4Nin8Qti_f z^LHL{=2W)1jlv(5Xe2!wJC^~&mx>`H^~2rahRv?2+R@aA>!`*tBc*`z4W;>Be60$r zQv@0@ALZaszxHMjVB3h6N{dCVPWG%ChJuU}2l-x=P>2jvt?QhOYDAeH!ss*x!Wad7 ztu>yvQ}2rGwTF{2LG*u{BSTDmWesUj_j3H%a3KYnnt8d@Rp{Ip&EwF&9L?G9iV_`N_8p``C#5|J z*)m?7%PWeCELeTdbh81kek>gq6dq5P{ri?t-B7b*hznd&3_|&YR#*Zej07_s zX%)z-mNfhdU&=fQM|J9YEB?a`L*Gx-PWZKvB@F0g`3HwdsKJlUwn4+4sm$|o8z5|F z3*j4q(qPR*7u-!gw3sQ?JSn|uGDcD-#Q-n%JdpL7g4!7b_q#goi+X#z@2{-pD4@ib zhVpxq1BV7bP|@5qh0;A>d=;2EEVB0x1s`UX9FkLrARtQRtmGu&Sg-W!#uJZyJqkI` zMIeWkyR-d0ra%VVlz3nRd9mU&6Hi`GgezbFIren7Xi{g&ZSkZbXSs**PUwquEqeYJ zb|km1a(YKic!w^-uL#Kxo(&eSnF@+dKc59>TE6QeRIAagR7X)!{y2Z-(9N!2CGNQ4 zv6OrAu0AxQ_G%^;QFG)0$vGy13ODEzETA*1Srv&Zb!&7%>5SeN^l~+@qh|XtOy7vY8qst%2DKpm<2~X7uJLP0^g-H8 zJ{_0*?uvHT+nww4dlJf0xC;)etre%&S{)r8SMF|}_3Rktn}|W(-U6IxqD!H+V>liy zuR~Wl+FWj5oqM_5J{6wu^SNJ)+`PEo^c);rY*MoQ9Too>MXfK9- z+6+*#IbYtWMyc!D4fxO-yxM4yYu^9K=Nykr=_CZ;k&)V7ES{;E;kKIg`NBO*WLtk~ z7kDW0c={$o!%f9&evdShljhaNaqw^JXncE96K4Bvnkj4$c}C%h1-bbhPwo#YZrNY) z(4Yf($3m1yyZ3yb0YWRZoPu}{1XGq{2fDV~$%WU(paDEk1K8Z?<7pvy#^;>jGpNU5 z&X#+jCzsEMr*kO$ECv|ji*!#~KKFT>7IdG8y?2MpaPF6bCKxJcOrCF#4ILiV8!|op zbvxEu?lWZbWJ`xTbtF}_HhWtsT3$(vMJsYsV&IU_+{7Mj@p#zP6)*=^t*V&r$vRqw z&2Z`;tBs{p740xEU8i#iKv&&*I3)7#NIlem+tckZIYRL|)RIqo{Or6crE$2Ve27-k!VSL@5VgoHaj~9WuT6=JvWHjfiWt_NL3%aT_1s#78 z1r?}h)M{2$<56?iXxc94Hg_VZI6TKu1}bqVJ>_Ccvxx0bRauo%3xfkoysUl^qes@+7uvyL%T{KnW%YfC;jr?w_a!sDa5S5f>MvaCeO}eK4_XECp*-{QvUhw z`h0I-;>3z`z5(s&SU_N@vRA;8z%gdn!@Vy&aX@*&>IRNg7aOBibd{zN07{^~#-P6D z2A{C2&B~sQ4)8cdew{%?mRMl8RBN4jZF{kTM))ztDZyVK@~+yKmBtxitafcd(844z za1zQ=1R!E2Vkr{dv0jkx0mFQx9}T=|OJiTEt!3aZXuC-CidGH+#z3)DnT9BhES5#y zD}48jJZd{w45|?Dd?aJY#&@u2|BxgGcSUen%t$X}o{1!5mQnXDr=V?swa6tQ#rTNF z*VKyIsokKt+1{;b;cml?c||1p*!O+*TzlT2fHId46S7X}pap&XO5Vx^)7)%y;t;x@E_t#pG+A65e&}Kt)luhKh z9+IrCV5QVwusN-691*EM;C`;5Imu>6{I??nC&xfY-33q0gN}!{A78iEOUyHLQx5KPer_sky4472QCjS$V11x+&@woPbuhpjs%->tsQI^?ix zRd#}H4!&3U+MUxss@aagr}Dk4n@|Bs&1;6L`k|no1y3i!A^Nla6w|@yeiJXEW!$J^ z1PLdouZ~bxUWv5|SEd5Qh4*Ruxw#VPnh~sDH1l?kM!Z0o_|@P26WxgU*Nx%-_TFz6 zPWE3hmzpv1q1}uqeJ4*CT+Ot4F9mS#t<~Xkj_H->?EnLoT?NEt&>c_pE?qrPA8!p; zMn}kMB%J2u*umA^56WpxbQ;8zQ|^zmrS(*b@%EhgOHynr4W12Y;%X!!g*`qc%xx$h z-UtNU^qhUI6D|qxVUtodX)$SHuyw0cfYlkp^YB)7s{uf+o>WqWn$ z=UF{puwQ=3e&n(D$)41ly(KSTo|;fsWJgA%8Gq;CqC| zpo~7m!TiHKbV;dY0#J3Z!{8bMJ|Oi_6f+1(ftCoBf?hkQad;pRc9t1|{QOmx!9BDC zQuZVSj}yCCnm(R>nJ6(v1}VE(J0$FD2J#lzQ=XRVQJfj20V`4aj119v%Waj?66%L904j+w$A1O#Kcuz)3y}XgT-$A3dwwS}fFB<0 z*7YaC`;xsM?@R+<&^*9STMQNZ#pHSwqJ7)~?(3!WL)(KrfA`=rifM9PBImdPBmJwm zqarVUDH=H<Rl0QmsiwQOD{?aIgEJ^$& zl92kKzHr510st2G&>H3-u!okx@UHli)A49}8ZkP8M30Di>*WGCO#LfDlei9Mg=&T_ z^mOJu8nu}!JV_a<)i=34!Vf)I617z8u3uTjzP{#HZ8QIh74!cqgZ^KzV*7{Rf_8$8 zWgtI%$jx^IPfOD7ONJkKxo91;bvQ)uc2taNSY?&RXm9Ox=iw|!u&K%R+bRyzbb@pf z5>u~{?lE(H2TF2LeXg;@rKAiM^oG8QrfkMy?`1?E{edBa7cvgR1K9^}*Ad;#h|&&9 zzY8mw#jz#4P`^vDtLOC$H?Haly4ZI%ZUQWEBpXyQ$nqMeqEB#YYm# zm@4z-8RE%!!pwkOVa(tlHBp2zC)QQ6x5$Bf5;4?V9D>F~`0q4YGDdObpU)bQwPsph zsP>SJTB$Z;cb6h^)j>9^T^un?#$3KoY~)_qWjF;Uw7_xBH#)mA7#v?9iFRbDe0l2 zawz6estX$?LyDYwH3C?B*X7PO+_+QzO0vxqn6OJ+uPXi{1 zG|?bR31AKLH;PIF?8{4MHo!E3H_Y%%=(@)k4uWAf1?=qSKyk2G zh3QEP(cZ%{Uxh*PLd03Tm2lD-$eXo{p2i}5B{mh%CH}BWMea!xO@$u49n+&P8_gpG z%2j`dnq+hC7+?6@8maBzWP=UDQ{=N)P-afKcHC^ zKO!J`%VJ+1IrzpqLdyj`LPFLd1_Xhb72o=#bRA6mU=G0ou|VhXii~5Y0Emd(i^J2j zwz;t}8#VK(ghRXVthT4R^&1mMcBnr{Y@7 z`FYOi<*~`@`|IoNsF_Di263nN{otzb{AS0+*r2eR55D{3(km%~?c(a>=zJ#gcvke` zjX0u2X#LFLim$NqsK@(dXV{YOqx(i~ilM`ks%3BddD$87`!drKSq?SQt`peZx$`Bp zrovm7MT{?fWWW?*YGSW3?bYOG=gmrV{UiTd>B-Qo0ki*rT?*Adf*)1#fd33pGW_oi zzQ_!fTvq^Y7E>d^6#rZu;VFu;s$7jf_Rv^f0@ny}+5y~HHHeWZkUAdKK{!I*Iw{nm z5K{39zZ_K}ol+blsod0Ursx46K^B3NsSA#EAf5aq%E!d5j*#2PiDDoSMWVSvsyR%@ zG#0+Qg%BGf>BwzV5*$u72y7te&tQpXfi=09myQ>G+iWp?@c`kqvVey#&;EIIz`=N5K{g^86anL)9hB3dV|wS_@Tdt zEUxgqA0rtYp>rxMr?Xm6XqFErH#-7S0+ST1m~0Wn2}XPIc4)0@e{{|GQkxiasm&K% z2o)1H_kBTOS{b--HXnir>{Ecfdn{9kIk~uVc#z}Cu=s7;2T|{Qp4SUjaat- zCSsY{8UGQniBh(i{K&yCpAqUM6@+OMw+Yn5xT5#{<|>HJ(fXH!LqM3f{Xac+a1t6s z`e#_v-r0A~kwWhDU(}nqE@qZIk&d>Um8E+onl!TS^MAd9PTyU&!+bX^nK*6it%g&N zD}p~hejloQe;KERb}%g1(+@n*dAE17J-=NwC*+?#VgS^>C_t^h$}hi|FRui0z!|hU z2HB<7`D9#aa~p5j&F?HX;OsxEpd?hM~)>o%tcpA=D)CZ5*eaPmaUR9YL- zuCKXIBt~dAbC(y&yxeAU2W3xRzabkmuolB4JUQF5;Gl5S;$S0YpwjF7!XYT#5lNgpw(UAPIHF*^XpqHi}&{D()Rt*SM7nTAGKGf z`B$58zeAwL-aNuS!zk|4jG*t+5kUeNfrdcH^~ULKBz{;sz6VyWKDDNwO|BZqy865P zFB%?2eQn;@qb!koeE~Mbp*sFGQ2s*-^1ob7{*P;9f=p}x{oljwGXi(Z3cAUw41xe* zHYo5KEQ7}oLkrPdqA&2r=PW8CTE>riVDhh6+P;yHPMM4GWx-6ne>6jN2^7?u1#uN( zy4s;l&zWk3YfsZf<)&?|=KMtkZ1U@kGe!NbXQhyqisiCt{y|yy{Ozvp2%$1R|8k%j zjPzRT@W>iHpGvt<9h)nveJAmiJ_9SW+R{6K4eNuRB~3MZ?J_MHouby;*B^Fql$%UK zJ|>Z;+!Fm=GN61BBWpENwSWJr2@y>B>ps_0*~Q|}*4T=(^(=?%9ylDyI?RFCH=3BS zNH6$MOgvw%i9j+Qa2{HM2|SKaHVKg?T%1WGf334}ckj-fw1-6VaC)YU)#FtFf)P>P zgq&PFU0=M9#Rql22V?Am4rgy7Smr^AdxEgZ2SgV_>TKSIba3&&*T*{Z%8PqMNGCd- z_AiAU`Lq4Ia+kxj``Q|X*Vk~M73W{E`j5WW|2J0bEDZnH)G6AQ2kgipHxE=^921O# z?C?(gIB;MvUUrR-yh907pgIU5^mc>*>Gp#&#apxAA3&KExxfQ z13kT}a;1Ch&$TD5ce84-Uk~Q1^g1|lp%;RWo^EHfnbvNnw7xEM-pyaA-_Ac*zCVSX zIU%7B^?0G7*Y6J(d|wY6wKkvc2c8BUoX>J;4_{yNYF>LEZN9$U&vY*X3+)}98_G*A z87>~(F*i$SuH1ajy;JMD2ZvA0+-kZ$K|B;6trJITKl5-a72B6ChcN_W14;cC#axeu zY}_xIogVL(6`jo9E}1^;s4h12S9fQ(jacUFxgm1BR$_~O)T92G^1s~WfkET}n}wqg z!ZCxu0TF&fMF<1(qIf~BB3nTsKog#3jP^xlhOcB1+U2Msv}q9DrU%JXz6&=#69(u^ zAu0GHDs;Xg3rkdcjjz|7CrZ?)3X<|EGzkvjW0Esa;YwyE^KUd=f_zehKSeNhK--+|QcO(jqN=m3<;}|gk!v&im4sw=Bno1VnfGDA zW+3g7n#=n|XKXU3jP@OKk4_nZw9qW$LlEXJ6T{!&i4%G9Wg0rUaT5l}4sG%BaPfhSiukciS)|INXsE%2_zsA_(-G z=rbwD!zowaV+s?g_|2qLEM?HPp3WgzO$RTruoRmS$JbFAgm^z{7vN+g$0r*{O+`Z3Og5f=@X5?V zDgE2dWTgLZj$1~ie_jyfWh{f};k!@NChestM5%bf<+Xs}zMN81x`&LMfGiP7?{<4@ zMc0JjBuq$ec(yZ(EMlVP021UH8isy#vqsErgcA#f2C`C5@tb2j({4K;$B-;#+T9ok zi}##Q*gido_q0qBa((z28hSv9^!-Y>5t#$a*t@N;3WdA4 z3`9;~1;UP9)+BiB0ujiGF$BJwK8<-?t(NB z`R>B!(9J2HZsm;a!l|dMQom6+5^iz}g9<-WC0gJ0Hl6NBMw!9;M6qM}*H!xulR~Ax z(;)uGr|^IJ^$bG)OJ|;g^&h%J8bxnuBrxP&s;aEtb7L7{2L}mL(L=!!&mz$=X`EUG zSOF6y_;vHB6YutqHOQL18tZcx-Ih?ngz}KxtjhUYq`)%5!N!glQlM)U*9#<$mqLQ5 z-x}8$?;{!}I`>lBA7A(PJ~uqbV^bpX$TVe@=Ipe-zHAcB3dx=g$zT1f!fqM?;6r8d zgou(3wBo{o3N>6`>h{;M6kA9n-~pfCMyS498AG`(#`V-d91k1u*vMO^4dW1j>N1K~ zK>)Ty5Ii-u1IgJ%>N0!PsGru&5_6(i{S(P_yUC1em2TdhiiP+puX`?mibQ0b)J7i^ z(dL1^YWc*st>DcqQu>OCbS6(KD6at7usgHz?Bykk>BAKfBcP11hvWg=k(YuF!r&2M z@~PzNaTV-ScNf^csX}DOD?QVDKkD(EpF9BQ0eO7fm@uNlMD_Kz;>7Sla(a{F329Vt zPTG>)1(A8+)#@w7%}Rbtn0!6ztZ6GR16QF^zI3o&NT00F6N}@~?MG$?>;S2KVBJwS zg>4K)0YbNu1O6UW`+Ch)swRe3dO#f5Fo+9Vfi(!|!Df01k+DOxGJ`@32Ws!7za9cY zpWL{4Ytg*YVxOOqTKdPXkw}w^lj*%z%P&}eK@9&wX_{mut9}81io7t&pezFbV^=Tj zJyx9voP1oN)rp=As+AT+tWV#CCeF*f>-kM-6qauxJID$=bfmo2P*IyRh*T9T#mrIqPFcYSb0ax`4g z2lZ&YF!5?y0ZG%m1kJE#q8*kAgj!4~c@7yCY9Mm<%g!S;nb2eP_*mb+r_^;ag?Xik zSyrlf7g%1)fR7bZ2^mMu;N_oh2;BjQLNR|??D&ssvOZ?;jW^j%ro>9GA z0Ci!;Euw^%YW}RmC7Q6OIHttWcEEa0CD3(0X2MqdMT0bXDOErDNPUAR9Pk`txICQY zwB5*n4q15h0QpjV!EDHB%Qj|P@SqABBnyeZ-hM98xESQWNy*I~NBR302}%P3L1oF= zZS(T>n*ASAAX@qDQQ7lHf zux~DIRb0b<``~`?Ec%$OCw6@Nz8M((UVqX3zT8kCnRCEsky21|Zti_FJ_>E%c{7Wb z-ch7+S!j*&()?kwb?k>7Ik)AQoLD$9cTYGxW1QuT3uc5do{dPxB%FpsC{>#!on=Nh zlhT5{3JY`^&+=zH4jQe&Bbbnc;!uU;X;9qH!5_n~z#*;(7EU*UH=FL=?>!80rPK*9W;LuwWh- zN`ViLn+1={cy4eTCjqK#YQ%Qx)Ij#coP`^SN*07Va8_?-FKD##IGUinU@pZgWJ{Cn zBDg3$L2EXb5SxJ^8&+&0EAEug7cNVn5Q0kPoR1hI$xgXh`Y1YN<`x9+1SHzsf zmTB7e^EXM|&1_ckuJ8@i54n+LochEqDNs&YE2Hyv=om#G`bN;rULJVCNiNlcc&>)8 z1`I)P6Pm+jcN+1mMa3)kflYTBLq(%h>Iut5C=>+N5>WG86wexRzTn>VN-BnHhMjm@ zsNIeOdtceFEipLqn0PBD(KwBtpJ3^dk&^$q%>PxTl=1&a-trR`1N87+7gWz_iUD}$ zLU6;g>%h=5O8e}g+eYSBkOmS}M?&8{DOL`r0lY8fOH;v}09{WPF9>dM&dU;99UPCP6!cMqTL+?oCttydTyXT#8 z4z1v45tR)+v9O_%uAmK30K$#Z(J|L`?x`h1WW8MR!ipWCGD?g3N^;BFcKlcPChoYG z2_)I{h+-2Uh$}n|)H!6Km-KSe@)N!{ogzyv`>Bbhy>2eprN-BDmYB1&5N1F1dCct9 zm^WvgZps9t1sv++)Sqi3N|<=r8iw7JS$uRjZkqqPjQ>^nj*0c3NiRVlGVt#i__tw% z-AOGHZLKH}v|J-^)+uET*U45{NVP~_&hxladmN0*ns;k#vVF*KK-zgF%L3%s>!fDH zTvwq`T;lmM3sO(D6z$+OJzj!No$fn#+5 zHA8o@h*nhuId)C5m8g*nTuBBsFH}}eh{vn6hr1Bp8T_~RdA_+(%YUh|79fo z!o4?wboXme089Rtph+EQaTpCW2zC>&0LgEEVgo>ALX!(CFo=eXGEKLTS5zaeAbfyz zKh-?oCJ=9QjrTm{CVFBX_;Yqfkar0;v{SM@?L55D2tP0gIKVIBE~!eu*7=G*xj_-o zQ)ZXYB?K}PPwUnD`A_T?js7O#CGKnyI#Pc-e9Fc>d})6=ApRAw|E`S2_)oy*75?w^ zvg_(2f~Sot6ba5mKn$4>KY1p6;AjmeMrf^c+vm%7ih#FVM6BE1GJ@lydR%Pbv5!}U zit<=wlhibO7K*}OV`rH(0!WB8C+8qH=Wy`07L#ea4S4tRF)?%W@MY<`NTU`t&Gt?^ zk+Xxvz?Tb&iU7f4!_ET}r{|EaHd7PYqTEa>v5&Bi7y8h-%{yjA^MtZJ+}xe4hviJv z=&0JBe6Bx?|;47=G`gHhQZGTY!BSwY#af0V=o zbJ5&tWz9 zj!Fmh}G{wfwuE{=qG~e|!E$T4~9JHvvW7CyKUa;zU|} zS3&3l)6iA%S|aPIwiOBU0|g`i0QM&bNR&nl;65aX9sPv}QfbF+w)FgJX1jC%)%}#U zthw8us+K==0L~vzd9AIo4`wQrqlnS-oR>6%YUY9VASM(d0G; zX{{)If0>rlRF9xfwRi_A6E*E=oWuSbyC1BcP%11-SotlSK+(R84-2yGm~H29u4H(4gPSdYo3(8 zkbSA2p@PIvd2St=JEP1)GqY;FL^f>BO3l2rQnh@g0@~a{JA+cEl%=RB8oN*U>;#R$M`LB{?(VkMsAxoolo~%serdp?6l0`1FN{vP~N`QYAy9T5|S6 zsU#@$0_M)JspIwb>NTgyF8ZdV$?nEc{~<-R7E-fI?|Jhy*>U8Q>8avMBb!pTI#yz_ zDEdt%?8ls5qf#nj4*qpOFDnG0Fif5>3tcLTXc!48Tw+k!0F)syO=OY`6(KU5WYEC? zr9L@~palU!m@uCpAq-hiPWeM7)u8TM7Dn23?4)HYEGuyfyJA;Cjs1gb?GFm!j#-+%#ih;!P!C)ejbN!mr%8}t^ zvWS0Vb*j2}9C3U5-7om}cyj{vSeZDryv4yAwW=7OYg{!M^)e`|wLc4FQ_?#uWZh9` z*RM6&Ff`)XlUVuJU}Y;{ReR^TH;ALl>Wawh)TGoC9RWnt=JPVk=>Y4j(1KPJ)Jaok zyByH7sSCFDJw3I-(rL_LLfT-#FTS&(#PCQ5xz~(cgqY6oPACA#peYjMS+v8&XO7VP5xHKQ&G5w+Nj-SJF zaytTsu=X4-ne74P$2d>em-%q_AJHGrckXYOA2$irTm>_5rn8*PFf#m_v#Nhgf5R>0 z4(Oduj1Bf4f)^;nWnG{e2Pl93I;ND=&46YQq0Jtw63Um!1HlPmbK36t;Z0a^AnmNq ziz?sEZpM}_t$a)10a2aE@nW^1Ig`}gVMr9n7x#ZJm@{MEWeV!gUH<{(=b_Z>i`$}jwd7)>1 zx0G}4W?N-~qq#N%QBp$=byj0;N9Pv(7>&O@oEnl1Dh z_wzHi$UALT86w^SqkZ=*mUO^D2p~C^J8ia3N{~F@MtonZ!L!C;OICI&Yaowkfx*a8 zx^{^jjyMLq%&ok_;}c`ydPn^RI`tgI`vYKLW>S0!4%RG)1&Nva+`af7Ke0{W35Y^z zZcDT4Gcs}7>|ij{;(eX8idXODC3Dl&V!XK4by_bs&9|#GsKQX$EELw~@n^Y%wIhkb zl~D3{yjPlUhyc7T&*|v^(};2<)^i7S;x{6U75E#@!Y;4Iuj$;H+DHR9cjSn(8>=*C zm-W&YI#;c$YdryubgN0;#3p2+?r>Mj%)KTo*>*64GDAH6wqJ!HZ|gbm_JIXxb(Xci zM8~2rHF!tnp2@y}iCkU11~OyquW=sDdJ3X}E?gfAfilE(nF$}5iPq@JOAaA*xwnh( zyWCk6RSph$A_(N3zdZ;>Oneb_I_Z8CnEPHLbViTAFd4OSU{6nqLEjG2JKq|yr8`A; zDCBf^q51(0J&?KZOg;i`c|d$ZT?u~}v)UuD0ZhQ{MA6-9uw-3q&l6@4dV_-@{aY@> z{%Vi!CfvmUODhZc=op6`B$~REW=e<7*R+HRDAL142Vw;YYYJvdm|A<^MPSB$9@r|& z3_mbeC_$rz1Lg6MLqz+35eJ5~a7{muwPnqt%5W%+rz+d?&yz(&@EI_u8xS`D%R?d3 zA$qM?1`b)K(Vn28y4n$nxUxsq)&oX^GZA7J#ax4c$OymD-?i3uQwv~%gTd?k@i++( ziHk-3+Q%%B!l3RZHV-0FYy*};Nu7;9YJ#?73A1mTKBJ{jHk3O?=9F_N;Pak8>pE&a zwiW%>v24u>*5rug>u#>Ii*Xh8y@@jJhI;{3@ez_fug)od^Bg8XX?ztqT6kQe{MPMe z+A|x!Av&w9iQH?dBAa1bIwM;ryFHEgHGROt+aJVVHwi4xsXp8$JlSR}nN-)% z80`CNux>)agTQz2qz1O;GHJjw{xoh8J2)XbwU0<$wTzqGFH^|R1nCrq`Hs;`5&j@N zhpSOVLiPOHdNuP5v*Hc4ccpKQy34tBUP*-PE;GdNDTp5o*dy45-M1nb$M7yf0 z)K|7J?L-CVwbrKml_ZH=k9ax!`_ww?uV;d<7j&@RBADo|E&ZdvJZpoNzsjWTP!`AN z4Pn(lgG6?_3(lys8N~&W?i0Z(jX0<8^ba9}{2a>xXo33Tt)>2(v#K00$=6}!M6P3e z;Qp)Y9RFls-KH2I8#(&uOxTds1Nw%zvp|Jh_k4$~VFN;MPmSHZal7cnwzpLi#kPe3 z&wf>(oqm(kjAk-*plr1J$^Y$csuw>RE8yjZu&gsJ9-;3K+2 zFD2U#z5VJo@710tE6KG*jPX1_`vW1=W}BMTscfAcgN{^%?wh=Jj~y}&=iuu>KLaJH zeT$^@3Ayc8I<;M+hwR~T+r*oGPNnK6z+bVwnT)B{d8mybKEk--ipQ$Y!T z9zAXC=Wx`c@@J+Mew{!-SJZk^F5TM)Owe9@rAmD^&EIXNFFgT%aEqC+R)&PAU2NV* z@i<`jZ7D?^-a92f1g(<}8E2a-Nev?Hv^Gy&i%TNbnrlV> z@s#gtREdG!-_$ClkMctzOIKD|2GvVn>2E6zw@-TI=$x77A-!egTUCWPIB_4zF_h-q z9m7uJNWmRZX>!#2^A6(Kas2jN)9*>~4|`W;uAblMy9?+eu^Cp;2Eyvl^N!|L`ULM$ zIdlV|j~y3S=mrH#Szhu>YTw;u*g|x=fcI>d?$_S9;Ju<&(}}(7yN9h1323LTqADKK`9)z>GzGSYU|}4Bl4zA^U#LC? z)pKF&+Qdx*jLmo!{7@yvlXR`51*VxUAG~m3e%mAoJYb<6Bdba#cy-ee?0`<5sC<0|lmyfFA(%%c|$kkIh0oBdvFQulG(Z`>H zM3Er{wzK57ac?YL-QsJD<9LIlp&4U~);*asXqhg`4)9m%(#NP9GAPo;-E9r%Xl?8@ zXAY&^2=L1H;bFQcG-KZ#qk5*egyE$1~V1qPC)Sc|A{?FZDez^0P8Vl8SW7-u2V#wDj>^+&c;! zjUK@E5WmevNd~%)NmmQp(zPm5@BOJ}9tilB*CUt<=B*8zIc3s%)yg%K3<3f%%|8Zx zf)^?H2!vA1So?qm0EwHx6NKd84dK*x1eApaTbex8o|Qec^A*)I77Dt}?=U(Z)0uuZ z&Ylxli4u&i*PAyVTR$(ojvzsyU-qfe=29x=6}5echB<& zT#A7ICAFdQ@RIwy0D${P_zMS5_Ur9;>&l7KNw}EEh>SiZKF%Eisc~kC!689WSXaDq z%2VKqQwvq%^Q9PxPLwhhT^2fVl!W5V{JF!rOXVRKN-Fm2!ZP=g$v(xD8d#N#Sk0h? zlzn+@wX8AViXvp^Q5DSH1QJ8OSWROZ(F$0#jHSbtFqBFKsw|!g%1xBgxfY7S7pi7T z(Hcu>43xbQ!VS0o~Y5ZNX(j+BFOko^@UW8d; z_^5~q!p!-k%);35;-_KA{e*`C_n~-uC!*&9Rb)Egh`=wN!7mjk?~pkCc-+%rf+7?J zi3KP7SBK&bTyOG>QV#uzcU_mp&z#Ge^O`FkK4=Nrg498En+?nYC-!(Q%;BxhN*+5x-p5lSF7KU(oZ>4%Rpe9QEXWwC#IYkr zXh!%PC5yhnytTB{!z$3RfpQ`kkmeJ&BOP(xxZtDV`0|Xo-l}5T z^DxGe~#6eZ@li z!1O3gM&yR`m~#VG=-0eT938r*^SqW2YOz5iGQ)-%)}_rjk&&h_G=xZ_Cd~ga^JiAQ zg?M$0QPnp^tx~z1w6_`^7tFk5#_h(SG8k5T7*6)Z93pNZ&IZ+Zt9#Vgz<3{i8`+3a zWXp>M?Opq0<${`zSb@o5i7rl3sgRSN!>Z)OY#}@41lb!KXos&8exL`8mj=`C2aMsy zz_^*UFbQLZ+T@395||n%b(o%HC8&OJ^*pKNVf}p0(TDsjM*n`R4hHQ90Agz0K5Emr zhEd647${J_)>+fiVC<>MMf!lYSEv3vK;rTRA3daRRWuHHwxJe&!uggRh=2O6-5%Gk z6S8i1ZWc{!UK>f5F^fFJ41JnNcSw&f6wuQqOhQYLPA03-f;w2t0f%1E>!gC#1WyT1 z?G9I!+?YKH4RXT0T@Rs>_xfrYKUZyn`?>{AO4O+E3wk8p0aeadw}_OFg8vR$M^rT} zbtP26?RM7wcW@}T2MTD8O{LwHse$-g(+Tc<2S~PX zTrr*NU0a1?20;aGNn01z+g-@E(95B&ok@=R8E8`Dw$0RN{z-MZrMmPUKbO2IIy*_q zk5+c91y+MCwY8xJi^2w)BKzSI|7Em_oS+_Z6z8WE84@%Qid*BV`)qx0gZjMk-3n!j zhfYxO4JW$#ikD6T-CtK|V0@2v9`T?};%l^_zMy3`p*s0U5~p3KC+AN>X&KH++dLlS zFBzjs{nfi$z(MNkuOKgv`bm|`rj7eE81>8*^(3l{c~>=-RNMk%H*=(*?an#ii;PFl zZmf+RA5f;8qt*!$;FWO@a*O#)=5uzbj^GqeBo_NSk$U8k!qQ2}ZPb+t!{urjIcfQd zN;TD*(jz!F3`as~TPh;DNq@Vv$E$Lz9hxe(q*<28lS2C>eGZ31#`A#56iDOz!X`Ja z?&DJoWk~?<_sGf-rA($)h9_edO;=8mWvz=8=wjoM^{q}9w|$<@Q$*Y z@>)^xD#FG)vWLg4fE{ex#RZ$+z_-&Wq`~T~K=OU6(7@o=9+{_MLTL`Z;jUdoc|V@Wy|x zRk`|A)wd*MAFnOfi}Uj_X148q<)|$yF%b?3EDNW%7NX*wmAE!6Z=RxcJkauXtKJ# zV8`6bM0lSWXKU&t^k?Q|{YMeQc3Cp@k2MboK8k~Lp4u;zPw?0wq+z%|UbjEp4D_g^ zo9@8d%qccXT_J9Ks(N_9IagiTD$EOD6|kv|i(*riPh9ER5acHHiY@Uoc}*a)&u+|3 z{=Ib%IJ8m#gQuEqgj*~fBl$zq?mC&X|4Rn1Dd!5yg`AFn) zc>%(;hGdS!hwjpNB6ntk%{QNDksq3G*YQsFU9UM}li*xY{;=N`vDu94q}D_^R##R# zUvZCan2`6{$r%$I{|dr^_i{iZylL4+aWK^n-}f2RrYI`i z?gOGUm%?pOlTRkE&F~j*07S7GZCP(*T{wRcP7ZN>i7mQ~D>tmylYL0Q!AeJB@N~$@ zz|EAhQb8Sij`HxXQnYpl@{Agg27>m^rEM+jVjd5u`s;p>V5#6@?mwW=6irJ@yRM^2 zrT%X32|7b{xZh~X9qY+KE6@5TF9ZrEAZ4QNyCDt>AZq^dr&TSr*DTY>=T37- zEE%mwEE#_?*Vt|zBS!E$x`1nQV{7hsb@mwM5%r?vQme8^x|fm9U$Tz~;TZ$^YcjfB z+9sRIl*(D}0U%J6g9KRJU|@pt@v#QG({O8oe=LVTyUYr$yHha9?G>4_RCa)hgg!2Q z?QQ=%25m2OccM13r+>OxtBnw*LAVzhsdSH8p%NWfB)ApduVd{A2e%kiC;~~*iV!t+ zzvm+($gdxwO${OUN~lL#9JOG+%NNkU1m(SHoQs|Aw3NL(oZzISh_pADR%M|M4e&Si zF9pnbUaz~`J=HPFo_Cvl(R$y`vxke&X{}P-9z&30-gPR+PVNrc<}Z}t-OsH zCrx?mCp5Ah7#tA{$x4ZW4P|7DR%K9bzUnihzwUp2-T?`gyy!(P{7?657_SRu%(4{d9NYL>m5(x zV_?$-0o;)Vhl#|t;9OTRWccdlSK-`r3U>FME;QN zmzCj5HHt65bkFJuo28U=(!p$1H8=@1qK1)2MnEDk69){p2{YIvrm?wa&@-uLxke&C zOjU~NGVZXw9eD3l@>QI3Ip6S<`n-JloM^%BpGVlSW54Xi(ThknZJHiM(3=N{qE)GICMe~F%d-=poGYLyfiHot!F&=SNO`_TkO3C4>F=v2|B zcx!>W?R16dH^nEY{4Ku7&71@2z_Fs4Jn88KA;ueVu9}KjlgXaC=m3~ULcFYZCQ70B zhDipUSTEDVI_)n*D2e{UjcKiBSc|1Mk_8 z)-BLs(FA}x(LwAzA%M>avPC7a1^xQ&w>hBdk8n-;qr4`IQ~T2k?!ELzSuh%421%!ClC<4U*9qFNYrYz6>pte=+e8_;a0koIVcA&L zE6Xo#bbn8D?Z1HyXQw}GA&v$&t5!>!Pn%ge zGdCejBCYr~);Fd_pV_SdgMltO?p+JcnR&=%aSJ7;SgbUyD5q#t3ES6W{L-7Ak8CZr zj^*S>#*`iwtlutZO^V&|CnwOVs$6-V#eJeLU%`Qm4rHL`6$`^Du3Y7ToutCSKkF@o zP9I1t%uPNLi<8EbEXKQp9Kz_!luF}(e!fCHW%O~G)se9gB{G)<0l7bxm$iDFRxyc&&6WngF*o+jY&5nnASV#p_wCPgVad z#QAD2Ka_c%xbk3&cCkNJj>^292Zi6{;F0!Y00g({k8{1;(Hc9@rEm$^9knG~*;9l+ zQ?`N?-n!6IR(N+RVtvaq54)jY^+zA{`NoyU(1gKjCwS7zWE)P30B!m*R2&Ec@FYA< zi}#V@V|_W~r!`qUPFWaoLDO6ZX_2k{C41sDP{teMgdPJ2b|u0G{M7dakYV-xt(`AC zx9cl>W#9FyJCQPBJt1toP^2Ui0q}BpezaTja|o(u=N;&f*ZVOGJcut`u#nJ&7%56G zE7Td6Ce|7QUiYKw=KZR&69{|+ne=|6&J)MKz4jT;`*TRlaAjSB-IAyF=$1ph?Dwdk zw0x7~gg+YZ(L94)c9@3njnLJfgk;lSYwo~I+{u3u2Q+M%x62+(?e}{R_khUYC}=SC z%GgDG0&R+gr3vs*=NsJwUpt*3af?rfkWF7Hx~~ab8BxzgkS(M)pcQWqTm3kalU(z3 z(M-wWHsnKQK6&Y^c^ba}Fa1mRVj9_UKanT9b_5U8{PQ7eL5H4*7xP*5=1|h2Isgd` zcy5ZgALkvi*2Z5Md8L_=pu90`(VZ^z50;dS8mb@UF?2wynu(>}au6p}Qqt#O>{g0v zG4tB{x}A4NVbJY>pie;&LF+iM%t5-9jV3IlHgQtDh$GFUCAdk4yjy^6z%L?dM@i~! z9UEee#t#O$I+Bb%_W#TQL39pf<_7nv?M?Q=Zdp(NxOsxjHJH-{mrxt}|v1{T;-E zj;25w#*rmC%B1LY)<*Z*GY9&9t|2kLtuy!ctp|s0poj$`p%Rnu&tB_}W%|#bzf)Rr zu2Bot6<}@lV+r88L?F?CEHWCCvW#gQV1{)DcuTFRjbA7QI>UqdPL*a$cx4|)Uo;bM zRq6#AsON!wcMXw#`j5&%nHj-=Ig(qA)3)p_UV~L_CqTc5p+$0c+PFD2y2+CC8hkDD zl$yvj{)GIRgLtVW`y8$_`MpaG6P$vZ;385Viw;-XSa}3eWyk!}0IG>Z-sJ#{E*H1j zmHqfq;F7FeEWT1y!of^)^;|+KNDj0}Y^#CV_V{GZ;ilx8)R*?_vl`8UKbK!FqcR8n z3VDb81ti>UTvAUp{@&ve>U6@DheZu-)S{3>sj<)%&KlbuijR$pIn+o z8%i6nH7TCP$nd12M~28m-!#A1Y3svhJuEe#6{vM5Mgl&glgT7b17#n59BU_`rAdT! z_P{{O4crZ7t-ZhMRa+`bloENXv-S|$tPdj*XtO~AMbs9*%Cm*Ne2t8?Kn~_vZD;C7 z`zrS{Q%8FIZrIb7z^a8?FpyPulm8eH=^r-XVnX)KdF{)S+dAzmSCD7z)o8yB_jHsg z)f=g4sa;o3)^tg!FM$L+oX2Q$4PpJXon?>4jWZz(#zY3U%47p7rNjQRhn+P|_`fK7 zry$LuZQV9)+qP}nw(YDmDs9`gZCBd()3)tO>(+kTD`K4!_sod-I>ys@=)JezJ~^^1 z=)dSIBrfXI|Iii2=Oe8JO)gj8S9(`t;;IU{a9aC@(b4m(@XRm0S3HxVebF(OsmPEx zwaXP6;i%=lcT^|Ip-w^3xMfufiiao};rnPK|ExH6M$zPKMYbuk6|O4omp-kuLYQpRoSe+;VIvTjrG z&`yxZ1n(;|B~BaiODiHKD*Qr9TvQ_HR!**O7GIwlm)(Y)mQjiGv#L_I8UgRuN)Tt-EO(tY=!y%s zU(yUhAu59qW(~|WsqUCW9Cs4mYbhuyZY6393y~}@^VG&@?!~ERpsAxJFO2e2+xeIO z99{G#GWv%l_qmLVLuaP+=`V>TCDAMhi%)E3>_^LdQW7b^JiFTN0KP2ADO8`&w-s7z zn0~uoqQNw^TbQPIn)}&Vys#!J#NWs-&s`%lU1vtY(q%u`S#mqGdJ&Lef4+VAH_nOs z_*Wn7&EP_J#z$X={OBrAI*&P>rX|ld#)Vcp20>fG{-A|{Fgq2v30+Sq>=LhUxi}Db z?-I9hi5w%Z#2~pUgEDMDBa?&Qft%)V=`o)?YZne%SH z7A*8`G3Q-fdmdxcp$LYrKYh6aURt9G7J?uq|B9d-7A3(L7#GPMe)iGraB`H9K2&f- zdfI#bme}jlmXiK(KAZtw;drvgj6XK=hk9fiP#>PgFMXCER+RfABHSah1n&HR`|JbB zJ%#JB;ioP{UclZq>4m!cgBF$+Ar%IX;!(5pmOZj}ox}?F?3(D!IlQY7yqa1H`&}e< z-9AjaX27PL&1h@pGYRVygROL8XZz^P%)E|$n@-fs35spxCf)m4&ctr?HzfFi49|Zn zCE5NL>iK^jw6Xk0dg%YusYVI(RBC!j{dYty6Tm=3mSD~Q_4NNW#`}LQRN1)L{sSb9 z)q+-2U0vyAKB7<`o_x}o8SySwnJ+)k3g6&Srw33~DCHmx@}Z(6P|FcdNQ*I*DYafSue>k)eKOuOj~;1zH#mLiV&wmJ_~Hz>F0OX?@?Rm@@^-%6vAq4dzV$hc zfWpKSAw%i3UpvFZOXstEo=&}IE(9cU{zmizaW?;*w#SWJk2R`@_Gqeiho*Tis+n%- zeJ_sKG&V%8z!FF#rd*t}8#m9i;Fjdb{@hhv?y~2*nhsqlMdpUj`hDsDH5+h^UU>hJ zVk?^JR3)Xpp?AC9eA|@M7KRSREvU7B%bUrD>XTh3nkI6R1>REgRTc; zmC8WB#3{n$qf_uD^U+%D6&`5=UM%X?dnWu(!de|_c8=ONbW^KTLPjX5MN+Hw#xu-r zi8FotM4<@7?uaOmlOqL@7oiBx#AtVqHl$Wfr!6KN>K6c}A1xQ9Y$ zF-1f_iBuv9;HL=(EfRL;rIIh#1mSIvKX3aws4_A^N( zVxVx81%o`c58h7`lO-+U?VNP4G?;8IDr6bG{&?EAT%NhUG~P&3Gq**UNQg6C8 zvxntTpU4Gk1dB_mT_i_7cAxou0;ByKirqyE+?Xwn93M&f$$cd9;Q5|nAu9%MgeDW$ zu->izg)l;4NJ|TZz(nAN58h2BBib?p!~+6j^rPWIFV}!}w%wljxDlM98UWCu9}MU9 zcsBX+o=&}>GGq|J39N=&vwiBO?X~)<`1=d9JW*nEQL!2SC~_g{pI-Gd`Z+J~?*Q~Q zWiK$mZ*3T6pon1HMaVP$Bb^BuArO)xpcwEp6MW4kH>~HI5&Knj^T3OEv=>aO%oH7K z=Gn#(e+)zy< z96m@VM%X}UvSB%Xq3f9F-frCa;~_BId(Iia@|bart$#v zExHx{Xg(6Sw3I4&hwv8hxAY0qvu4msz?!z})Kc8^&n6uV7KyOp>JzBrm?y83kj^N_ zq?dcm(ENJJN}*OgUc4yZ(jBVn{V6`-EjtXUY{|7{A=j2?fdgxzB23Av7JM(39z1;sfeIvPe;q- za&bEE*7z;$H~($YCP3BZ${t+)yMEMRPt!YX=My4i!Oxp!L&mYX<4Y{P$8M3;gn}QuG9jRF{xOqC48_qzy0SM=rm&C< zl&e_%@8+x)t?7R{dGgj3(O+w$0ynw016Fj#+N=uDUP-~B1D_>+_ zN8~4cJc^n!v(-vy(U#bEXu)7Xg*qE5rh?0f>NK8pVX>G}<14ZoICH=2JdJc_Dc~SJ zmxcO2V}Nge`7|OePEYOaJ30VwKpi*;$;lrl7Y0Fixgh3^s%Y^2v~qhw82ojGp5}I% z@%jX<>z)2Zoxb@b88c!hTR5LG#T8v~4C2FiD#^M8K{s*ZYdAYV+_ax?ju$@Sp7k(N zNQUmR=zLc!IZdgqYtRk_5H2Y8$m@R|nEUk{Ta>Tpc{B%Yh?BvHCOqmtoCO?cDXnx# zUJKCLE@)SniFfMi#D%LRdek9-iLgsX zr-q$na#alG*S!E_4-muAvT9cmgcDtGCYdt?t+L}TKMD>BpvL9j$)z*u7_S-KQT_>$wdZo8WGDz`#agX%B056UEyBGBdcp8Hr@ z1%yFJF#c3|dQBN-kD$!$8nw?;GOv))$dxdSfT^?|H^~ik6`l`tJ$td_d&yQ*A0iOg zv-?V6R53Nc;S`Kgi0W?Jk6v=4*$+z_qR;`o8Cv<{J#G{HLyte~^W(i_$LpUeaJS_u zm|7}xSW{^UK4odwDhWPC>2zoLxeFl&IrJ(w(3K2cA4rpR!U=CYU}?NShStO_udbF! zau+e7WJPWE5HmWgSI0ytsLrV9i{&3(s%Nw|(dRd%oacMP(DzmoCNpr?Ba=cqX8K*GZ~HLK<2Xf z;#=JtGuFTDRQ@7a%w~Zsy$sK+s10uHSh5RlXq}XHEf78u+e$5fruP;R0$KA4t&mLu?!4RMg`#EZeyO+x&Sf-);D&o%78D{mOCS zNOotG9XI(=T>Zg61>qkw8{0O}TD{zXhS4I2VgjeCF!TiD`)WqE(`t6Ab^k)(SQ8X< ztn>-~eYswH6{nhueaq@^-#xD~fbAk*`TnO#zN>}W6AKkp(}yas`TVbiz98d8$I_Xc zdLZ9z?)9z^YtUl6HeX{pKy1zB9p&itnQ;7`T=w@)tpShpxUcRcrOyj!xzd3o&q$Ig zQGZ=(1Bm8+aqk*p{aCic;qn}iIie8()Z|=sR$jCt*Yk)j5>?-)NP_7etS-_H&zN*? zP}{j%gigqoIPa4@ddXaal{BJ3L^@q=wBZ1(x5gk|#^X3}wAPifLSL8#EmI(Y|3a*n zKLp6XXfSJVZqK8;KTeu^cU&1lZjX)EuHIM+P1SGp6QF0~1oDN%yxH=ynql(n;|nN{ zhl86+;F9><8y55egZ$N=`dP<%vpKW7&Si!PbYBu0@t@cw@q>HYKCg^_!&^Kkxh(Ey4 z%UCXsvw_Me9yVO2lzL*vB^)M(H=v~Lo!i;uV&j|HOkA)KoA<3_kfnxWB})I> ziu`eX4%i^NN>~_orJr0N75$Czva{griB^|>2oTpgxgEkdDi$G|r4e1Wqt~{TSOx*_ z@Y{u-A`-cQ;6&;n^8#axB(BT6N#nqlkGxW0Q8p6&RmnDQW@pkpL6KZJ0X++TF-veq z$h&wkp*o9xMF`ST2CN<5h`&iT?}qW^bb{Jc1iXxiJFVTi)ip~dqBv{}+O7 z-GTqo-%uq@l?tpWa#~K9=DKmaRXRspGr1Je|7oIm2q`kvN>sWF*-hhQ({tT2aZyuU%={qJFNd(@gvGB!JOH;@!C^6p)+ zksaI7pcV5jwH2D9_TNlRP~JZVNhaHCj`H7crza~Oj27VfMyyrxqa>pit!mmGRgx$! z%q+S`BND1A;G1oet2q7BBh5>mk5zH{kZfC}`1;(43p+DatIM`#rQB{dr9LOL?-il6 zy0hR-$LkPk<7odZcU}ypy~7FNa9*A7<&M>X>bspLRwjFjiZ}gqz+m+-GoP=$6^FW> z$GXh*0g->Z8||%^?WDXz=sUDd3~^L^RQ%pO?N6#c3N+PE`qqXjbkLF(ds*28UE>W$x_Py$6&$FIoZ&jbB>)MTf7m7S zo|RclUJUtTZ8Bu{48T-#!E~xl@_`D02KAMElPiw-E^sARi%*P_iNu}4rJDlb77BW3a>Hg24Cols=QGeUh>x^B z0GIXdeuN!rI2a46!?N+8Gs|tzB(w%0t?9@biZ(#s8d3WX3X)mKf>`?6Rn_y57aI_L zyB`H7ag?=5=P!?+zb`XCktoMaR(Bv+ld_1bHKa)EW@Q98WBK6hFFx`iGlWmyJVNp) zy4>ou>w6Q8!Jx{sqbw%O2CcTldlPVcUkk`0Zz#^u5W@ldYGeJXYXJv8bF_|=``{u-T;huwd zo(lj*Q|7J`rozDKR{7D=o&0((N6v|nzdOfUODC#DcN3@XyC#=$|?L~V(x8!tQb zzj4+3hE}xdR|&AD&j%2RyEMT}?%qc`SA`qG{qS5}6hJ@DH)q=GCyWL1^coQq?=sUg zjb_EK_K~EW+VF`xxAn~0oe2%P;%PEoWQ%qt#e|t<7`O!{kZk90RAaq@=?vpx7LKh! z=^i-V%-2^+1>S5eCF>h@ANFOOW6MM+d*CDx%gbd@RW#;m!^^aqj4zV| z_5?_4v?kRIY!NdvyXbi*E>2$^eA%UQfRv2uV~n_mKi&;b(;sl9{*HFbWlu8sGnd?f zgU>R~&I!hSd=8F?-!G?=<5>%foLkfzJqZm)@|eR?9=krm_>c8)XuM`h`V1)w(YoQ= z4Rj}?@pOG>n#Z1I0g)%NPFy`*h*U(z=Cs320QgUNzc2~53a8;Ol+#_&m;=1?jfmRn zPZ%1;=DD}ea^Tu6Vs*XvugW)p_nv5ZJm=4&(aVpgwu;CX)W^n8nRiE&Nuy=61`bkz z^z5j5h0yAxuFubRB8tpuDUtg@7?YVJqhZ!avW_P3Wfnr7_%(nUjA)OTNv-QcjuASf zKfu2Px%JUD*J8II8&wG-TciwjDRvq??{ot`0BvXuq6`CAF z=V68ip^Yy)zkJ2^iTkj)>E(83RIHNbS|{)ho`S!4YSHp^eMJkV^D2op%m%`s2WSX4 znpSP&5g*K9sv zNBPoYw=K~_!-!bZkpAbPzM)VZDc;b4>F_ZqNA`pnHOo33h32Zm)Kn<%{*Fm&N8G0& zfMMI~zjo377pMMz>CycM*6}|*IwmHC-dB^&K5&O`Hg+H&4htxa|9brYLRJ1>n{-_4 zO#g9hs~4me+Umv+-PBb9iSj5rkEun&OI_n|)aVX+_kuU0EV|a@;7#6kDdQhHx)ESt zx#`R&$J@tzaQ2|4LxpN{~`r%Y~dz~=7mZ7#BLT3Ut_ zS(ARNmuNwsOaGDdA!mp80n=aZ$=kh+_1c@7v~zXvj~jt||Ytk8#+OXn9KgDxr-vEEY~E;^Rc>A}tM)xVVPGvoFN-|AetC4RCc04tdi1{#l7 z&^86*tx|VHKawHu{w|V-pvS3_2Pdy~K(=>;enxutwn}(x_Ej1fM96yWgS#6dlv_Kl z;0}OcX?q($OGjt*JRE7vG7B9@oQKLE!d{5_)rA?Vz~=Apnbc~_5o_4$Ge2g_;m1cz z$1)8dWf}&|@K3LAGP(}t%YB>-X7wZaTMEj(7B&iJ;B$cCM#TNthj52-?VVACC4Bp5zEAA z5pNt}j^;g3KfrP7J{FP%{}oHQhe!^b6h3T2TbY`#ZW%AhpX~izoNmupZXj7BscY+{ zc=J^`MY6z2}_8_y0)?tR=4VaJ;5bVBJimH4n8FIv}v&+XU}LVT^iSd|mMV4nWaXErZMSz2PTMRL2nsehrEV{IMY z%z`CM@G8pHMnyI8VE21 zd*FOva&+$`2b>lD&e#9cNK;T?dgOg@WGyW&P4_R!v~lWwe0b@|6DFXa2V&!^1#)KS z<%s+U{leujgWr+hN)SP_>@r2$wXl~czLnV?y=UGcKt6}wY;*r@?0I&4hytT7#gF$A zmJDD{kgnJF&i!;fT(9I`wm4WX;;c*iV#Z4grI_kNfO;{8n3Q1bxECDP*Ia@4sng~B z0Y_#r=U9=pWX&4S(hwig^VRV^G-C&Dlg_ZiVv800F5_Osa;c>Sy^36NyqE?(rG?w8 z{;OjNgb}MiGWt5Y?f6=0Q-R<(x-cItsW_ixLa#hmnHjD}xWL$XE50K!wI}!bb3lqs zZ*&Mor_EPk$e@oeP{qAW;-XLow;}r;*5k#gKstUq4?VWf&JKGHU3D&$3K++i*rn}U zP6OPxgLv&vP_65{y3^&w%M=WFwnSbXjrbICSSA z;=EZ01i%wS+lm~^E_Vy+l7It8{9|K3E!@P9=8Akq8fa2Xy-H+64oVC8R@foW3rQiI zwb#aarnl(1#!^28=7)=>gR7{ksm1EH{4x8auoo3M?7hHGQBs&zYFXqGPeKW!Cm@hf z?8Pu*pJGQs2UQ0d2?+-WNeNj;RaIGesDL-kzsrJSKFIOxP6R9+cX&>j^bgL))de~_ z8lE27l2Sr`VzFh53&<+hO^XWE(uEogH$OZ7%ZH&>lkKV{u#`GWzy8Dd9-2^ z9qj|XXmLdQ4>ByaH?M}fI_+J`%wq-c2n6?P4 zdh6d^i>|&?dE0o^@eoy1lcQ{!<2}(^z6b!MzXVIb?YR3|#Q-Xfb>Tm3VnGxkA?wB9 zY&fqpx-x`F@lU;kO%hsoB$*5^xI=Pb6ZJ`QG=YcJ9K>x2>@pyQaJN0LqekWqaL=73 zyjGu61%HIqwh>S_4aDV>ILMVtrBs-QdMJXyys|HMMwwQAu&itgjB1AqK+P5L35t8i zZ4Q|Bli%I`Ste(UsThpYhXPenhysgQdpT~3^G}I3w!+-x? zuSfD<`o?X>`lj37Ycs9I41V7l^0=1Y))dq4T5*0{S*DN9Xi}(j-4CK~E@SN4^6P!R z;0&VP$&S{PBzQ6;)$(jG+AqfABUx$_#;?Qo;1!8+tVpyw@;~&D>YjEznzcwuz|sH0 zpA+NsM@)gII~7g99S!X9!l=4M6+G#2?~eh?Z=80`ASRad=_{|g?!R_ZUZ*S6$M~CW#k#cqiDjE0yG!=>p ztNspw;Rj5PcL7`*aT|xvTS5yo0WRlbqoxOiu7RbjuBxOn;Hr(S!-u_z(2l+LaZM-) zU4y`RMq;PP2Y>r|N1fuH@b!L&@GsBdIqM0|m^a6yhY!0Wl&E$Rt<-IzmCfgN^yN49 zSx3xreN+Xto?L4UR*7Yv^tRs`CI4+Te68lvxW4^_k0J49AW`Z$rnS$4Dt->6?R< zhCu&v@3a(9oCTr?$?2o&-J%`UI=EQLl2*BSFU|gjkjtKM<7~z5+im4h5i(9P&gMoN ztw?{R-k}IAx@~T^h^V(wR|nFhE?HBUTVfo_;S2b!k<@p<<*l2g%M#CI5@K zTEF`%#u|>=@`atP1atA|!#M%k)kY#OizL3h=_wkys4ocxzJGZmos4gk>bR~aMKoD^kY`20S68c-KD3k+g!?|21T zWKmbcDgAYKBm{y8HcNVPgbt^9wg4R6195A)T)yTqSmUr3Fbgt|)fJN!3;q2S5qtEO zptHVCZx=6c>$7ab53@9xGJfqn)N)KoqMjSX{um?ugnKLkJ>>k1T1qG01_02k>!mPIQ&%iM-v4Mmt(W&HaS!B2z(?+ z5bN1x9r+p}_edT|0!i`V(d-d|7&}LS7^2Hv{8dqIOX+dxZ7Vy*M#LjQlM60r zZkcm#=#IHxE{2&=Jx`L3nsnzd76Za3bm;Agv2!(U>2jZf&=2q3=9sX*pPm2Gj%}z9 z1=(cWmA;m~;+I0sq=JFEsj)t5?iDcTBp*wcw`Wqgs-QG zyIXZY`n~1)&Nvz8&Gun`CGz!a!>@etLg-mD=o1D08$UViYZF9_z~2Mnvm_KR8#|?$ih5&mQdkmRKuAlEmYu4Hb5OWrlT+V(+p+LE=-MgpTa9{uouPCgFmk@adJDfzJL+K*@APlr(04yh z932CjU)+X(R}`vWXLV2W2phh_(}guzBn&M=7>D_1ZC5Q*oJuq;XTo#oxvxq*i{8^} z5?0;J-Tml-9976UTnf1ml2bUDsOle&7w4pIJKfP*3ouhp^17|EKn>(gGK+G>*nM0A znAuzVqSUS;rr;zUAoSvg^K3^XdvVZKD0(28{f&+^TQhJ|=|v`g2Vx>kk)QCV!#f>^ z%dd9_3!|0Wu!F~AKT8;{`r5Z+T6{_xcE>R*I4^i1B13#qzgaMz1OE7XkpMMkYO5&j z5xJPTPvL>K%`3#2O9rhai0-L?E`up(;+e#$;nVX95%N&ERGHD{_Ir6$!A{-BZm9!L zg8MR@SpGfriJXw}C7sHrqzT}N(eCu3xhwsOSb!~fK-;ALYi0gvHoB^Z-v+&+|2;sM@mmgRSKkPAUk^k_^lHlTs^ObA zu-^?F^OXo9%|o>u0Xhc;!h!P;q$M->5bjfmVa4j>fQQbG@}nn9Fy?m@-6;?6BuNIx z0XtkrW~HMU@1Gs8q*8=~zVJ;vlI#d+2dCG~>_##FrH?~wSp99;?BI+wmICThBP!u% zUTv426Efe+1+@@Z7C15Gea08Dh`c<^p?c*eHOQ8EakvXud*6L8uDqbZ% zq3N9qUu~;w73TQKtiB#&grE#t-rn3yllPkf>zOz5d?~ar3A`{&iH@C<9fH^(&yFK6 zO2F6;3ml(4iaf%ux^X6x?6I!a-{G$y$5i~Ip0^!q0-7`(pRm{2r#pf^BL(M<_}*s8 z9rvW&8-&nKM~er7PgyL@dns4ub-!}-f*wfNX;uo+w0DB$(WZml4F$}`m9Cia*znC8 zt*~s8CA>b$CeLc6C1GqPFR~PHb5<|Gqp=M`hcfDbW%u2f4Ffr34ciM`SO$Gj4De5# zk4bT~;jx3?i+kfGg{pC9AZ_93blx?zpoWk0mN;pYFeZmb-yp6_u2)^5K08-qpJ#7d zWWyfc96xYld}%DWEn`ED&m(=vj3lP!RJbMVM0sxwDm>MM}EycZ@2P1ZZSl{MQ} z?P;)II}QM)yi4&?59~M-1&TY9&@6lM8f;r^FNN9qX3uUKWKBrLrQH#maCfLweHO4CQ`as)sfM(&^Y3H6SPstmgWOT>gD^1m{o|L(cRMDF!V>$O9QOB*SBDe?@P(| zoJG}1FBF>ITB+ctudhnc?etm5OoCsp78YOD$Lemu>Tx{KROeg?cq2u*Vr)_?mNqT# zau8<=7dqGuH&vF9@ZMYAAoO65OwPe=A%uD+x*l*{c(A+@fRNmV{FY^Z2Oow*)yuTw z9P?J?KDt{zb;ETZLY)%D=S7w*u|Gmx-DKaDvU_Og5%H!emC%uuGSxO7m<{0)95+)O z|MvAYCe}9gY(^{_HIC>-FEp8>D{2kuTr55FJ}8nVRI3(I45WDqWEWgx%SuA#Z35dm zh9}?VjNP!|BT4gpMtiZhzmDe=Dd+y+ET1COOM0F2z#Fl!d)aH0sS{;%I}<18nAM@3 zbmo0Gd(Ta7IWFyger>jj>}!82O-p7%NGVr=tyetAsH`JJB03MmqUakxr}pSo$4v7Q z#fR0Q1jZ^3P?ByyHV##SHGGUCJ933{OXtkzPVmf>q@L~yx?(Rl4h7g1LZm6{UuP4l z?0kO#yBvnW5`qa3@rL$Zld0WM3zFQc#MknYWWb0-ybHin((0h?Kv=}nu3c+3jwy9; zcApm=HfB~37A2yA7pqvczCxz)fsVv~BS1DJvoGKq>9$ZdulQ@qVEvi=F$oNc<$<|D zSM{*T=cnQW(QuJ#gk0;|rW>m!@lNwMoUUgFmwJj^e^^@z0V5Co{#NwnBS$C!lF7@h zm{pvbm}kDbWxT$39at1Pdm<2_sf7;D=2i|yws7mGGwl;D3;oovF8QqlPM#=5u?C|s z%UBU?dVU~NFljuc637>WvapRij9{!cW15&hfc!rGSl1Xq%M5mO%PP8~l3ofP)$3-y#cV7~jDKfa4#LmByz$7Fk(FeLO(6{7NgaaA&YnwkU@HQH2e4r2y z$0kf^QH1P5``f)(wbl%5!Z+B4?CcNW0q!r2-JT8pgf8m2OylE*Q^oXH60Ut>B)<>j zAjT8fJ{>npE9^)0a?ah$p(B^MLQwIRIIjR%~w6V|4Q`>Lmb zxSAgX2lI#xnOw9gnX=@ii3>29Jm{zl(WH8u^f-y&G%zk6daACyk(F}CurD=HC2OGy zhnm9@!ZcCjmbdSZ{B8-^cEa5-S--EyX8!xjWW#}%BiS9`4cJez5y5q4<9KzI2WO(< zd6tRjQ?4Aa%;@rbWhIt3f+peD!AMn(JfN2O4+!ISqon!~FYSDBKb zodXLpc((o$Q_?VBBV~hhv8lXuRs~y=G1I!q=wskXkW-`6fCp>1hZV>6U}zo%vk5Kd zfJ#UhmFCHU{Xw!e@T~>wIBj-RJeB2RVb#x+#I#;~T-3&z^iST^Qh%(pD3}Xz8GMTz z{Owbdp?DgeISUJ`6h6N=jmuW`WSpp0M8mEQfRof7M_DBD&Yl^!PcIc|Vs{R5_Fz$MuuWK!v_{-njZZ z%)&;|?%kTJev*-reb`=azR}QZ1#)`1oBo2^dI#iZ(<@lICga*Gdv^_!JyN#MyG!D5 z+MO#yj(FZ3>nre6~W%iV<6nQ@75o#xZSVk9hlmv!h ztK0wQK58;hPt;{V`SDB~{fe<9+KC#*;%Tc>a6gh;C|ejE z%`Dvpi$(EY$M|5MmwkiC_zgbR>stAlI_X9aR*jbvPOr~2mqriCKzG8L=3LSuOqe0z zJn0dJN>qNkbT*?ecDVWIH!}WRxK4OT}+e!O8NUnMo#aG(+4kD`LrA`Y`ZLRuDKTcdR1;k*sbOv)YTYr1C{ zffY-o2zZ1M52y6eb}i=Y)(3fx^w2~SATSq7F%8rW1w9vG5^HDu(+VEz%@3sg#5>|` z-?8@hYF^}i+<24(KY7Ao?Y-R}?)Zl!A++FM(A^4{?qA%+CCEB+N+iOqxqt4(3S&!@ z8Z(0c4f-a(Dj^nuf-5TVEucfTp?8vYWIIovxE~Mev_k=Zbw2i>8ES5mQaTBhVHYSk zXDuxVd(fS71ispvB*WJ>F3&w~R9Ia~Vf$6yWGuGw;J>@A+ucS9i?!aw@9sd{&|9Db zV4i8-NH(QbTg78(j9oZ_-m1Z*FH%fiszydns=0wK^Q~NWLtgl`$Kc zdLi*6Xxj^8MU(x!3(3|5AM8%t*%MoQzZ+u?6z0uEopHJUz2hZxFMP$Zj$t8TNKmm7 zsY1av$CHXFM+)pAR^a=tI^MXykm~OtXcm4j&K3S!1n-sg^S+*e(1(p51^D(|L0%_?Lf*R2R3?gH&3%@h(hP0Oa?Btz^s#bggQou+!w4i&v(n8VZE zB26IOOV^dkiwr97`E_b6db%mR{hM&IcQ3w)a_Wc5o6(MmF-apN9r8^)bX;U|u&Tqv zlp8et@6RGTuIfa4gEp9YgZA`oDDy%$ZQV>}v&lb|=&HunAMfjp?Yj1uCODG*@+@iR zw57RB8q%(mbeBDf4ro%YOkpWU;(~rl5x;1iiN@NVdZ0ML$Iun2jY(H5M13Ab-^R0K z<;OBR!ij=jm#>>11T<&!YQlT5@XP3cri|lRC~IFu!wsKNhYOi{cGaW|F*g>eg7F*; zAe5$MkyvT20J|_1sjk5>er7pcw2`w`a&Gh#VhTYL9u|S&*7?WJuQ=Vghna*X-kL6o z)T7p)FJ*FW>NLYA!;wgB1eX}KcH2-a;OnEAA5h`ZLUO)0La*GH!%WOMVv)a@zzj?o zzuzUS&0SM1#q5Ga2B0eIA%s%%C6+Dx+>cq3H~C5Bq-7IlbK$9f5=vaCU)S(p7Q<-bujg@ZiScEO8NvCuemv3A$@`uOAf!}0y`@gocR?}K7x=?8{HYGxt=rhtF|hmu8Lpa25;h=nu%Z}+k@ z|Nn{MWBw29qxwe><_zH*2#DF;74yFy`o9*z_+4v9hsnGyPve>X?~W*#9Hz z@7fpI6?ZJvNSzZ0$SI)%7=;YD0Xl%J9~DgcUwHsbHjs@(EfXM?2!xoJB6d-PHlcY$ z)@1e;aljQ9A0wF^nY(@zyPa}Ky3RK?!4rAN)t);sn!Pq*VQP6Y!cCF(#qd*bO;P!G`WvKpB_2cg*iZTdA%+3?6rN+vor|+?+vQDz(LjX8Bnh-C4Yu7!3 z+85z+c_GZq%&!3aCKQPwEYzEsE?oTZSGzyNL|R}cKJvA8=V3SZpLvB1$ugVkGsd7v z*#%4mo@#h9?h9LR7Ty31?a6|n}LAG6U;x>$@Sxy~u&_sm2 zcEb`@hu~<@ij)kxOrn%2Z{RDG8Kh1u`9_gqWMJJclhk~esAhTm=~E3H3(V`pABml$;zcu<^6Vux1^tND?z- z$ic2;$;c2;0MvWoh?F$ofLkyavm3O#l8E7hpddt8838z)0EP(}VTBR+Bu52$YKlRH z1*x^x=%eK70y%d%7`;$f98v%*0G4T01^yHQ`Z|Kr^m$2%1VE_=U52Ra z@-LMjC*qdHM2wwwKN0cKh{1=8oC);$ZVg>9dV6spiHsDNyf zx|QbVI7bid97?l8177la*GdY<3GE6Lg{0qWVcjWE5xG>wn3PvJVy^`>5t~N1)u&27 zN5nh!MuhsW$TR!OipS)WYFOT!4bmp?KV_h15l9TzY~L^w{-9dbAC)BaYm!|RzcP(g`I~BL z(EM&U=?*WQ#)iI((e%BSot6XjW+2W$1w#*|yD=4w4Dw6{bUluH_PPHS7p zkmXVxa5bp2t&SI80HRVpsNzU2d`$rK)N@r!f|uDFTx{>Pz0aZwKL@G-t`I?g|MGeG zNRmwz8qSyc%8E?kd9Knx10}F8Yz36|7J$Ywr2`Df{v{MvSpY_W3?UG)he51_B4&mn z!IAZqA=(I>4ZA~?Q(SkUprIh{wTw~iUcvGb9IM%!G^<$#Pch+fAFfSR3MC(91KD5X z>J16(1yoc|S2LKJUjP$zwGJzPN+O;+w17+e4|(9fptrhd{?BH8jK2T?r7w=gjFP*e!XTe>3fb<$qLo%W;fD<`(g`}EW8(CF~V;AJs z?JIhjz~5HL?z7yxdWn1wJJWk9zjlMEp_2X|ulA>@B z28K2z#N^OJWl$<*-0r!dig3+@>+f_5{4Z5)=KaXmMhybJWgc%Qax$Lcy?|_A>`K=G z)#%v~S?9zKZFFJIh<-W-?{NvEP~7Se2(4rO)r#BD{e}rDHju4T%(nj8e5ppz;p?lA z{_Mn+fPAc$ImEq!9~O~ZpkbhXu(kcZ80#4%pcadaJu%=lX-6og|BteF4)P=nwnW>u zZQHhuY1_7K+qP|+)5fpe)8@2o@7&${-hCT!CWxQEg}oWiaSD=;#pg+!TP<#d+n;KO^&T zYGg8gg%~2?0pPJDBzrXBV8;|Fl+YaD4m-DAol{itfCea(M^+LkfJ0b5%J7F+B2lja z81yhCkjLh^r^Okn_<%eZ^gA~)+3879MW|!Xznfu6q>!#}4b+!r)Dt%ur?J{WIpp^s zP>l)-b1~Kz*Q?|j>qEr?;Mg7*8#hgpK-5Be3l-CaFX4=t%-u=DhYnc+Z;3=;xG6!| z)aNJb`U7{$JbE7MnLm}@{qf`i^1Ph7hzI3_10eE7UJe~vc#~kVlHV#I}^9}t(3+HT;eJ*f_+V_yvT#CPlxMxRK%)xRhEu2%G3q zNKh4-KnKBpolM+!@=e9*nml#=0jfzXZyW5@tj}5Vf|Zel-SbTnwt8%CSys`#q;?DL z1i;dwzA|S@#@vfyAfXL+BxwPFblaqCjEtn_M8j?1CZO-sdpj6$u5hnoC3p$q2i)Jo zf7(1QD{i!W;X@PD)d3ZTy)iQ}T!>X!T!#S&MR<-J^GyE4r=$6?h-mJBF#haGjB(LXH5AU z!aWC6$p>KmF2fNt@*d|92|L9JCxqd_Z~f;%GxoWpTciVM2%MPqEZum}L9P%ub`Wh@ zbJm(pz`jr6Gg&~@raI6`Vd&Vc+64fEgqJu6X$XVs+MFH;~^m}xz2;Hcv&Nv(tv@}hW0&E@|q}7pVTU>L{u0i1QetK+m+Dm|B7&Z2jQ=n zd;t%R^KRq@qz!Lk0d!_9ZcLi$3k}ylR<0A;t8c5Ktu*2#E^G?)`~T5g=a!%!I)xD4 zDk)T}lt&gvGtDvu7O7-_kA~tK_3dpPna-f3P3y+hJDB=$yaIxn(p+Snev=z z9KC8Z6xAiPgx!K<4KZb52;)MKB6%j6Uzc?%TB)6%UJ2Bna_SOUj^VUy0z0SjYJ@qj zFI|#z3+LWV-5nV4_OSKUP*nT@wATeC9mvd!j9+dk9WBYn(Da#&8edu2ImElMud&~i z*ZuCV`mXQHZrj=Ak+6#rc5}RA+AaOAXHcz!41i7zLE@eYjumcEb#bOkiJKCN#9`m7 ze)I;dT>>efJ%u?4%%@ZF2wYboMWh*RIm2wS__?%wzi1euVhPi8tAhNYyE+|soSwec z%=oR@@Ne?}r~-)Bsqh)#9z&2Dq%anlZ1RC5+4mbyDjpw_u+t;u2*x&X7pw9JZ{4Zv zC~`2Cp+#1>OhSXWULieow8kU;3YQA*_~Xix<_osOtH$jk$gZPCP6A22wW5PjQa{q9 z$-!AyzS`&7oTOyNn^r^s4Zf{LSOQ0>8k%hm1>S`vJx52!8wP2GrYPPxcFVVEet){- z+}Q=K5(<-=b-E!Ac(K+TQ7LDd3IzMhn-ve~$7bkh+`h%5&tVL0`K+c^&jg-B!X5`f zKCkx;@LY6lDer+zsK)PG^|Pa*jLk`vp@A^N=5vmLh{wIONqB=zW#jVZ&awC;vU7|P z+IGq@Gqfppz79>$?5L4m$MrQ{sXfb2XY9{UJ+D z))nY%u=3O(6?eRRkg~n*oC2i8vA$$k%cAk(u?Q8_*l)2lb?eNaZjSI;1OZg6z)jus zI?`BmW|E4Z5$%!_o6Q%n2jOv2I~7U??&TIhIqi)=b@lZfHhb1DHElJV8j`%yik#g9bt_J6taqH6 z4SERX0-Qc(@A^|vZ88K)euu2bry)ggndF)=?h&{TfJA{+8cm$xUi^p~4aLvBoFMiR z8hh9cNoV_-$YLji_n(1SfhOK-4JE{PlfrTsG{e;lCsEH*(j_rwDdIDEwPE_0ECQVZ zTxK<%kc!YV5#`P{7Sp}HzL6?eFM%;NfCRw~$8!8-ZTAsiS%*p!)APrAN67=OhXccA z*75_ivMc#2@XsdtS$emI3Puk*t82|7XSk3&??HvDN@i6>zGV54Mmd4fn#*qT$kjTb z*hsZt$Yv8>%70P@-7PeHi@!im{#b?sSOi~!+E2Swzw{NOOaOfW{s)eeg&nmz?9UTL zB?)A7<@SC1JG^uLY>J%88UOgj#!ZN(86j|NOFHQ2O)S}wsLEApP|oIQ!gfGnWwQCm z$VtdIvlFEcH)A)K0iO-dbGiL@hMW(^mqmw)0{o75@jdel0U7rSkE6r7)~fjTBU^Nr zXyyRzVYsGr)3hxr&PM9G(B<7+>cdymvkFI(cbiVgzpu)++!AB@fzyJ3CVpc5v=Y_C zUYRIlx3mjXHmp@SR5mHy-aQKR#1=Z;-bjb;lY9<(l?FSTC5C}gJ5m#ZjML*pQdO#C zCp$A56FE(B99?yAgUpd9_A~7u6nV?IdCy-uPsm=6QM! zkY9iI`Q9YH7F~_ltC1+rW$~aP5-3n4L*OMnZqCkSF0am%;{6|aoEfQI zuyJaBb|t9lehqV)YhxdJ7&>+uo3FqmH@=B49NptiVbRBp-cE#o@YQjy_4A_`6bn#^ zOafzv66V4BPv6UU-Iipv?6!`$pHweqy+cBVW6A1U&e1JgQi3sr`i%$?h;dj(fW4f#<7bP{g=^i}4SEFKS;j%Ef`<_s5d6m`=JcP^^!&#*BA_ z*g7F{Vn|~m2eb7_wVrZy%6Bf7`ZO{<$M1JakF7f<-pw}MRq@a3t~624bT8~@6T3!2 z8_n$mcBv2M*5-n!20rkexfZel>w)in3+eccS;I}aPvPz-;tM=u864wie6NMLqAfnC zxGuvPj+x0n{rbd$7>L|PINTA(raqD-M`*9I@t}uFOv^l%MT@k`hAZ(ho-hlMC`F&e zB8iYZ6b*(B9Wk%DP$9xKP4RYGjUIQPgP}{U?DKs44?i?ZV!`(dOCify(29S z7mvOfGJiLY8!l^PC_LC|ARs($jJ0Gn0LIpw7}xUUgr`-Nr|#k)>~x!|8fpq&6kgRa zUbrl#m^`nk;bx|I>7Mi;5YJB*i$T=XFC+JGCH3-GM3)P3(8eUDZQ4vU%{sd383Kw` zi7pedv%lh@gk!0&NhZ?%5NnNZ)AQCko2}WeduE#GsN8V7wf6M&Rg`d6SG%{eItZ$) zE1lMMJv_sDxDjS%b1`LP3sBWtd@>e}fHdc;A@SB)-zv7lH(Q1U%>*bJMz4f#fCsJwOnfKgn980)UVoHoFG40UuF;%ZWy2m>VGZQdAA&?6B>$?Dz zQLAnRg2+es))zPTpB62`7HvuISe%%)t-GR^z8`^pzTVG~!+YF$cRo!^WNFP-md!vBiTtRgQYis4~(8;a5IB_Q-oDY=~1kdb-ThQ zsZtlgvc~Fzf31&p@+a_m!@>;zPBJIDB1-)0%7dqnaftX*i59}0?FjaxzS;hn<)?zZ zjf8z%*qo?SWjMNC@JHlECqw_J5U($(9JA(EB>xXxJO66-xZGgizxCVl8~t9x7ru?B zRG4CzDNlizTyN&^URQz(4H~ZW=q&;oq0->i12k#zid7s`;@b))w0T_5k{;E95^53& zBXs)V?gge*Y$?5*bk-HFDO&bg0i^|X+@+omV|9MM;6Cz8@I3{;l8vBg+worcy! z26~I_9=GwM{INPwD#jQZpp> z#H9~4p=J2X4CZBt$yL~d7c_%jp^NpVqEo!1+12ZXq(kp*R}VyNqUyvPoP8#0#O(WO z^q$%p&Gb*K2qXL=$~xHHM$#vhWE;fGuVl8|*4i~ad?GefjToxBEHc6KAt4fPTt}9Ad@G;UY7mDv8d@n)3QH2`>y} zV@kutq)7Xf+%vLSZyNfBR*oscg^~JJww^f&{nbcmW7*Qd=sEHPcQK!Rx znItzGEB0l*7J09@CuaS@UDH#xW+0fkf2R6Ym&^Mwj^Ziqz*#!p*iWB0bXL3j82n4g zw=8Wd8*Zp`6yHn)e6&Va+Q|cC-5SSP8(0#z)w|Yg8Cx}{ar_n-@`_X%oYFO;VdXIt z8>|z8CRXVQdnDS|Nu@m@Z9HuS&lZv_#F2CV0Y1qWb4Zm)`d&m9NDgn8cw-tLsiKVrJ& z_?I*ix9iEh=hVum*mw-b(nM%S9XgoW>wY!1cS7TGw{3|w0xsHY#f$qX#f_VXe(<03 zqcN3#rG!~fU9*}Vtk@T!hl@>@zfJ4wBxMY5JI=Irb|06;+w6P>VpCL5@s{dEa5+1U>-P({{~@zUtDb1P0fO z^dPRhoASKE7i4ds35GLnHU1#4lX8TDXeX9K#1yP)8f!t-S|hA-$PTnDDcZux?%<&n zf=u9Zx%JOu+1i?L1ayJKz+@8g=;Nlva@x4Y*zB!l(jwz>oy>~4e3bjq9O}SC&I&S^u22#H;s}W7xDS^>yreV-qsMJ z3$lhZO|JfO=5R(bfT8l&++)UVt1s_=+>Q?HOqT$F-^I90lI@R3d(2{~Y*9}cA}+)L}QbVS9?O$!R#$O550i;aax zrw?&XG@vx$$pmpVSUGd(iuMPdM>UujOL~VLN*f5(M)&1OgV=5t^r$E1wFaC|d*`fW zc^#&jPJHt`hu7MJ-IMmUkdEl$3jkk7kTbQ?@m0y9u~R&u@>$LIYjwBl%W%fKzP_y4 ziz-Mlj3FLk3i^xqk)H@83CncOyqvpXdeV3b8z} z<{}C~0#S^;LXz6~NYxfkrv($Jd!+#H1t2#IA^D`%8uaE^l1R6B`ZOfUs&uQ7J-5?3 zinv=+6n$FPK{Mk91DOMGxxD)4w*jXx-F!QNzpc}0Z0!3?aFd3mp8u6>>d1>?pBk-zifeviJCQr>kq;nxuL(*0;Y`cDh$ zr@i#icI-7Az*r72FU7BQ2#Rfj0{T78cw^tFRN@#}Q*LfIQQD-gN;F4Q*VafIx2{eh zG#QoOXX7PTj&RAu9`Gb4lMQBOr~|#QGXilbWvh;9)W;^>J7pj2Oi?ds8SC6Nc%yB7 z1qQxj@+JD6crUxh*7}~FURQkc=ObACdcaH-wvvGR+lmP09xFK4lnC9S`#{{^WxE-B zz8$LT*K>f6uP?4TBbWSHD=nIBeZO0V>qvZw3qA4YmEF&zNsVB`$WVS@S3#8Fa`72VV0ZUWcQyyT=+k9D+8d_O@oMUz*4X8zYTby4L((e}ZD;K5u zg?tMIC4GnEQUtife|~X?Ilp}$C(xw2mbyi}+fyj85VjKS#@+$kHm=2gfXBV{OcO4X_?so4U*`h?4PK;PEOyNXssc`Yi)xo! zB%db;{*e0o&z2oG1h>rsWcn8~_T>NQ|F6n-u*(gA{hYUDaq|D|{$CA;^DGg9lKzq& zeY=0m{^LF0qHCumKhTz2-;_8fi#%Mn4DVgvc@JHt!-TTz^+B@W8;a8*xKkMbkD^at zUME_GgPdDgIAf8S@vOB!-p~HeT3TV3#g{os{!qtjrH*D>^jjL8f)li*%_-?7t-ca; zF!1!VO6FEwK*z#V1uDJ@S`D9>_Z8fJ+=wTia&AITmFMzqsHvsz+;P8_N|0MIu7Ix| zy0W+Qx(Fw}g!Abd5T~}42+EI}Jm>~=3|!Fz#Li~YZQp)MFN2*gagKY|7~ZRFC)58y zaMSr-@zIa)mB=nOE;h_K=$TL49AP6%I!L7#`Wg1b`n7UAML#8q*pw)|* zQc?}stxZ_`*elb#^n%-F{A`QBPKv#+S)vO^PN8_>;)}T1Ld+LPoQru>L#&mN3aMHN z!rw(Laq`~_#gx#6HjDluZAGa2;8!RvITnOBDGa;8FhLf+kmM?`#s0DkGJYC)0LcaO zfyfJV`UNOKXtXJ0E5s1{-fj}^Y_ENuf1G=)+gkqce&FKVzb-~2fSi);8xqU4b|=i@eOKBf;A z!zH5AZ8eWg6M_BS8%WU*{YRlq@iNG<12z8_z{8Ke37RrHkYKLnv0wubpnPs1UT1^s zn61p7`U3a`u4(hA0W2N?+<}u{0o z=sA3k2WWn~GUORQ6o*oCfoQpXiC`NIW0R+94NC~R^F;)9h}c9CRIS)GexX8zD9dCS zC0+$5L0RB$QM#1oBTeX<)zp4ZMh&W|t7nKp{E|RQU|WH4w2f;}eJxrWmB7 zQPAvC)Tno($)qhi)_hj-k?)4Rn<1Ag>yIsj_ujgz-DL%{rn8!x3h_X3OtCU`<7C$Y zLPc_5tlsIsh?e_RqvvlTVT&G|?)g^wRVDHZlu4RE+9)q&^?yBaVTG6Y2jjVM#b@V;JMQLi zg8+$CDilZrl#EmbnqWYJK=j)|x)lugGg0nW=_@gCD;)?Kl}wYEG#dF*yr8LMyBUvi z@v;*tWtQg_nH|5KbK$}Aa;Wvz zG<9#+cYa~rK!?7k34-JfX0_7{^(WlE8gXPJzChFyTrTpv*@r}tNw z8>K^mfydvmjwU>7$5@@GUo%AZ@{iY!} zGP9H`zJdY~pz)2Z=V6#4$xDdyth$r=2o}NR;VXj@8LVaAyEV^)Eag1LQ%za2k!4I4 z_ig8@&T2K}i6#?f=~)O4*0F8p`E$~jlX6FX{wN~=$C z3r{YO8PZLOQSs&KKxaH`gSg*D{MzsfwnDxqIeJ~;^H3619dL-o)RTC zoUpMNW6a7EJLZN(bOiML1?r71tOi=8k;^2C)u3s}lO$Dv!UIczQVs@99(P~4ASTse z3FAz(Qm#Z{V@p=Avr=iVQep|Ln+$ixqQPk`B5hH-q#Q;etvfIz(C4Pp>><&?2I0t3 zPDeZ4sZsvtR}2mhnqvH`N=Z~_HWV2eKMTe;e}4L z(B*HvPivxuNCn+mGq55J#R_kcZWU2g@r4)@4^&_i!17`f^TBfniHa;9vp;P>X3vz4KvlaYPe;rlVuFB-kh-MZD z21ijg9CG;713XzX89U*xtil1Dm1A*i{-MO{C6?F?mSxViV{M7jc9ChR<@dJOu#Gxx ziSqVe)0$Ovi!2=09adQ&)*;#1D+3Ia%1hNKtAF}jwMDwyjTUoq_$=hYIpkK4DKKND z#XLAgrRU=A!IcES->N0vD%F$)tZkJ3#lL*g{}7Aae12<< z@;EQ4RfJ_om`3g&Pt9L?#CFJ^$o37s%i$+VJRAz?A!#Fmm+}YN8kWV%a=)W6ML~y}N5A zTGpfUOEXcp(FPc(F@6W=Rkx^;6{A^QVYRCDi(JW`J72CIW|vx8n37Yc%hhy)r_dQ>}ll6^fTf95W*Tk*V9Zu*;_8$FpRyxa{dAtKFQ?sT+| zyAsKuoZ7Vu!v~UMM-PtF{_j|7m*g*@KSD>4QB^I5;9?`Q(I z+L=Nq>ufFB{8fLBx#Slq=d1*$-iI))adtoLt1#}f<@@y>%e{m^xX3m#Iy}y5j*~be zX4YrR9KaWb(NbB|)maHWK@m$aUwA-qdYyUAG{aXa5Y+ zERt0d=1Se8(ZQ_sMWF;j9U?JTZ5_}fF;g%Q>0V;{@aqH>h_7j^<2y1IB_0R`R7BuN zsOTW_70=i(mWWd*Rs_n1n|Z7}iD~S%sAp_pN$7Zy4|Ia)I8=hDN~;AUi1bEEAljAm zAltuy+rN|~lIH@OK|uf>hmHv3p3^`Sq2w|E%RBN#eng(b6n=5)hvNDDMsmt_5>x2) z?}CNW_%=6a{xLs)@E$klR>U3%b>2(yI&VVP>Zlf*&~VqFQ)ZM4GUjetiMQa*9l9)p z6fFUhkVpX1Stb-AyO4A$69yf0}`vd0RzL_ouy4C=lWC|Ri4zp!Xc6Y+0ZG5d)oi|l({2sL6thCgrD z(yPVRnxeQs(tk`SGW*6I;1F*VF)1auqJ|-w3mVLH1Op3_mxgLG0;;i1LXvmYGBs#i zL3dn%&{R`e@?ix7psqcbqX9p#wifV7E0wpZ<@fo zv_t0E z!U!9>1vm8f=8Gj8&U0ed+C~UPV?P2a6Jz8s+@olqzw;f9*y%ONp2usn(y;%$+a}rq zkW|{BQr83wwMK3;lQL2SIrK>_igjj}itnA=Z>b4@p zTQ^uO_>-p2rv059)6GW1`r2PczURl^9q({k(!O;?ey~Lh#T&4;>e6VL@K;QcOD}Lm z((B6Zi9fHE08tJryBpV)!!h-YdDgcX*2`&)hVr~i!Q8V}m%6Deifq4&8))EtdCSl_ zDIIJXB?f3Yw4_R|iMH6{vhYsevRYu;ubp2xaB;N@##l}L+ZT3rXO<2%H8qH^S9bW7 z4h3!X3U%rHW%>;bGD26=GuuuqTW-dZI%p3no=QHKriaEFp5qhk_(gSkL)#|Wm%=^c zK3+8j@U-kf&G&jEdXpyhKirDaqIPETWgX2f0U9@b^5G0ST7qN#6rWgi%J_dEg2lQE zh&d{xFm++o8@qKGWR<-DC)Q7uue}e~2L~|+Z-+H0E`ja-zJBTSP(Q=bMhQrmJo?~N zgQK_6fT9k_$-nfKxPVPJCq!yJ?=dDk9kf|G}EE?;Yb?cO5w-qFff>uDxYHNYe zZ%F5_PcLm9RBGy;N?j6U>om-|P~{iw)1+S<2nC#t{Lfq+imlE+4@e&bsyODfUlQDI z?Amu(U0rq2rXfIEW>u=%EPO)PVfAK-gH||~ZCPFA`i&0nOB~P)k8al&H2UDO@Jk(& zd1G*WN3NXFu<5j$AwR=8i9}B+@(3QonvN6rzaF1UhQ`7z&s4q^>_CV1gg;mn4gA{I z{dTMZoNNd6?mE}3a{C~zOKw6CuWmiUgRjD7hGnp&KsE+1BiEUq45BW#dBHGZCQH)x zo8+RJt3H9>mBq*$VNqb5mq$~xtjY$%t#}SQ4#`lE4Y>WqXw=NCyUrP$xM6GeOayX_ zh?5Iw3(<$3S8Ibd&T1XQKHCGDnc3VtJ_2`*lN#nUCXXX(VXw>gelvUwnv9er>}&%X z?JDk%)pPV&CWNa$@`thY{!(uB-HvTK*5KfCtL!q zpPG8Ihm~W#{v1b1dKdHt1c+Ab>NyWx7$08wxO+Geo(oI(gsQb}>yGM03aE-vru87@ zYjGH68r!VqUE`A|9(W6IkR2*>Sqsyu5)tc?<@WlqAUo{|2;6pUwY4$WBoQuUZR~it zz}*Axe$Lu#C>2%{R#($HFgPPz^ZMAd$`r_>VK8l-Mdi;HH;fKCP~YlA4IYLkrm+Cn zxNKaH`wTD181jCLicMi9AS@?6%u?!EQ*&e_I*m8r4d?YEY)V0~ZQe3Bh9cs;dt?lwQyK`Pq?68(~nXsu{i}x?V zS;l_o0=h1_MDx9Ep|UU&q9+OkexP}+}3qDGE8E?TX0%%qEeE}DpIkt zKp!AB{m76FJ}w;m^Q{8N$;QXWDbx)zYmMpayV^$7Qntpn%jaPB>ZOX3(oCmhAS}dn zUCf>D9~cG%lsJ)_OgeyIILc|aT0d~tG@mpmYQS_>j?T&Z;jdM~J}yN98iGc4TVsMp zI|>i4)83-cm`F#Oh;vp*vYR!4-~n{93+ZRLDN#`3890^7+toeoV`@sO(irz`+2c>@ ztjB@XRuy%fRr;`-bma6yer|}oy~kw<7>BZz*MIbJS6grIvf3D%WskqR0UH_XWzo^u zF%;WtzgbFiy6BiN##ot#17O!cziFWK48WY#_3hV~vHrxShUUl59 zJ$jYbxXgIfJ{HcgcvF#8vlB6(G^h4$M!3Cd#|K?4nL!<`ox@r|!m~qo&B)}=Mj$QT z{PQ0Y@<#!MR`XXA zQiAi0sK^;xPEJZINRNm^G0XYsl{sFuNFzKyD>0=Ikcm zXpY#ukRE!wK737d5-^{{SN+|q(sR>hLpk5=XT`S@T)}}!00(XJ@d$^=A!z57$#?$P z-l@}>mOc02bbEs2+hMIov8dWLIJaG2;}#J6Y$qKc*e72WA#=`{$vhp}Iz7%nhbtOJ z^|UiH2m8GYv2-6d+7~7g4KE1CzMBVoI>x3DvD*@b5V#inRD+fG@3AV`F9SWH2(K zl-@XBrs;jvljqYaiXU6ozoM}g$(MfrsS2+{gjAJ$CL?Icg!AQB#TGVOnR5Aj%3!`@JkGX#4ZQ_GlJo`AW04=2H?yqI@UEFt1wPg)#+OIf6 zEBjpbw70B1ii_*pi}*l zRB&Wo%R=;Au|Dz`(!Tc`c%Ow5=zL9Yw!@L;r@rL%C^5POwO6Nbt&r#EI(-6&`r~tU z4-J0d+b6r_*Jl@-Eu_V4G)bV=(ofrC+l`KXYFNV#;MKsXx=xZdG=)Z2eg#J989AJOBKli9QWDiagKR9jN}IdYrLA)ZX@_Y=tO55993r zep*qdP{&6Ai&ynu0bpLw=2JLUcYb&nq6bLd&JXlteB%Ip)4M%U)?};+Shq>kHEz#?s0yOmbawj#6E2=20#{! z%Xfy&a~j5U=**mN`?liVQ08&T{M$7Y;+@O*1vio5`-X~Upb!3*%=rIBfIE4zhH(Fp z?0@1DS(Z3}^E+q*lJZ)~VDz2+Rm0PxWr~KQ3e%yg;P*SH1UgP*KFSW}4aUE!O;yfX z%VGkZzHIJVhNUPfk|BC;K3&JLepdWd!eU_T= zuUp>Rz(Lo2@K>WD!Q2+jrV;s}Bv9E4#Rjt_`e68sW$0gTULegM7C>g{mHOx1GHwqvqpc1G+ssX>tZgL;A-*UjR5fu58_Q&my zTG3WFVsYJ3BZ79KXwPD-$MvD!spfx#)|RYPqZ^(*emCx8*V=q9Wl6 zYD~Gg4`iuRt<4o2I`6LI8hj z6nC3H;9*XjE}L`Dei6PT4Ak#;$C5;QEH=Ws+NVWuT+h5XT-YZf zYs4SK9wy#snMfP%dthgc zbjvltsYvPl0(tQr!LZZB#Ld2BI zk7ez84QM>CJK5)RmP_ZKHnGcmaEH-Jc0xFjeh6W@h3VzMnP+lmFJe6$=;6r$wqY|K z=#@$`(I7QP6i~Vkyeg$P!bN>Q?)#NOZ`k%{HfsFH#rfa#wCFFn(^OnK-(s%rd40F4 zgXEWFNSVPX>EG_qRhS2W}F z<@w?LacEg+T`a8md4(v{Z7$a4EV%!Hu=W2lisfNVK3)FH2!uN&vF(u-!X6SfW7@p+${pfLip72H>zB|1R*35wVy@TcAga&{{ zz!M0(9^{eU+O6mE68=rtayyw281i_8K4tBk-}V#pBY^ef+WQj-{_|(|A!#zFSU);e zW-4-aLJK=BoggO{jmPP8nX+O|L19ulW*aXB`F%7rN--8UB7ibNg0dp)S&CqT)|+Zq z{q*42MTGM>bPk8`-Pu#jx0#Gzz}@yV`L1Z1Wzo3=g~ZwAKy)O9D&wI{H;r1>7(|hrAhG^KVi3t7=U64&xhejd}|Q2_L1B#`0`c8cs2d} z^m6>ZbNb;>j_3j@n&~eWU`~WO3}<|848baj1kPM^3YjG3xq6$1>ziju3)EOqwnqa5F`X4zOVD`*^mW9 z0lqIW5!rQ0g{x%|)7^#@}fyVC)5f6SU!lut6AA)#%?yn@H zgiCC6j&s0iCv%Yr4*|Wm?YQPzXWQZLg!x<~o+A5$=%`(RCfh~Ol-iVW`R~t3J4JfG z^O+?x#UHlcd~To1?H2d>@Se{G^Z0((!>#N~0(k`gXrr;sS*R8Se&4qbYvyKi-X717 ze+UPd{_(#Js6374V~82;eU;x1>M;W{TRi99x)^8E=C}DB275&r`9G8I%W4=K@&xU^ z$6>=6HM?#X!v2P3VDk5#0uB^2$msFgmir%f8*Ftb^q)8Gm8Vx|Nz^|JG$ec9_p7T{ z80&VrDNJWEx5ALFQFJW=lE8d@`4bsl5>V}>sb%HmC!xyZL zlu0=AM(bJ}K*&xZr=y1)_D~(DJ%kqz*3b7$U5SSrGxjaGdgB4&kb4yx?v4a$n6E6W z1i)AI+q!VJ?1w0=s*fJ+9##G2GftiU)9dvXoBE(H(Lr7I%0P- zhTnOel6Jt4#ezJHGR0^@5`9?B5)B=ysWzOdc=*46x(T~2n?glqZ5 z8JAE{k_9n8EH^!B$Lh}a&~D0@7~)vfd~xxYb#?ldA?pBnST2(`r$F#IZ4@2}TGraR zKM6mAaUUx;R3$#-*mY3c0zQ%6k*318)dqVe5S;7?+0uA32gGtJOz8QnC+8r9@_g&c z_}S8tJ(EQY_Czt*lL&eUeSPX%dr=RsS4)FS8La?m+4>ud=k5u*^;~J?#eMNE54iFy z;K}-3LJ43u`yLYP%{Ezg`O&dk6wc*x(qO_H0U+WD#$BL(jpXUt+8G10DF5bp4j~$n z{H*#!X2!g~@x{3>$ap`Eg!&$)&eeLg5x~69aRRpxczs!~S|7e5^+d-9U`tUNQ4TO5 z_Ftj>=o9#ELf_)4yDr&ZHVfj`=Umx1N;b)2i8c)>LpcMi;JV0~eeh8=GE{VQG}^_{ zSn}|{5$IFliq3B6Y|wp28O$tTue!^nlqtw)SXHB@`1%$N=~y^A<9R)_Iz-u>M0`xq z#Hhs+jp7{Zo#;6zuwk9$!~U}MjN;tP0HIXLDoNW_*%=eE@l;>N#iOK*SWd7@q37J6 z1jDGK3}NqqTyC|9Z-tDBw5-CqI|fh6f)S!G`PjMQ0Y3JC)*p6%*|K`V|Ksr|)Jv!p zS*fc6TeYls|0cc>#=N+ODID*IGd1Yxv2nW%*|SG!=?TGgL!$IH62OE)A?h+J6IQz| zf3t)?TLq^KycAwIZ!8o|pZ^~KYCx60;3&R6gF{+^Eq%jQbq)D~_M>&bgl`vIWk04X zgyBKDZ27`Gxl;W!x2&F2A<;{;_e?kZOp4(ilVya zvTY)0ORY#S*Y7;qcp9$3`%7UAJiT=O^p^>z<02Tj!T<&pNo1pfL%1fO!R$AZfS+h^ zAWim<61F9jrzRz3#UkDXn0+m{PH#*W&0jFVunEX!47XEosGfA&gX2ItN))v@h|aMvAq)929IYR6 z_Uk4Z{CvyxF9g@v81|I#K;#G9bZ*c~FVEeyMNwQ{U(_N38?>*pl-2KQz5p}`?61Ij zSSgX@70g>4Jqf0h@L&mON=w0BDQXFZPmf)=xSN!Fx|-m1BKVn`*zFXyCRZih8lR}O zs=h%S5-({!O9SbHb+oQw$Uz$T?2mNKwHdz%eqi17c_Cb$f0?_ZiU@xBdF$4T*wDKZ zj&Xrp;8QD}jrCmPyn%pR zFDr0DsrX=!z<>Ghics#Z+0jeI5irReer&hNy#*>sb9z-ma&qpbaX&4h14UH)&DDRQ zeDD#ycKvGGkTJw|wo5<)FOrmP}vILJxjt2#-6 z93-+L0MRzsVcv!(zoEmlWAi|Tm|Hc|zx3#%Zt_$4&lk|%f~ylO!bwk#yaNao27Ow&Bup&$ zei?UBIQof4x&9(_sVBZ&P zW=-jqK)=yHUuf3b6(SuN3^EycaXO4J1 zW;#a4I6YAAP@6%lLspmpnMexLOi5;4j|RYDDJCbV=^8K>9eGJ&%z=ffM7_qK#_yCi ztqqASGTSn8h$b>-H&R72fF7el4hD@jFKb#x&Qm}pz)6Z_Ppi?=g?=$Chz_cXn=Z!A zw7L|%l&5r{F{_;52BXbX&htwg+=(XI(iHG3a%RndMhUz$>nNiCA+IRIjDOrrU z>L?teg^aV!>^cvm)&Uj##p3_r;{UW)j-ofx#8hBDX<&Td(^mpn*=5P&+JU-j75J>+2`cis7+m3>oTyOUZip=TBURPt){z*a)I+BPRrsM84 zGb(AX+}rCQTZ{(M>lK8%zq^f5MC;@zZwB9Kk4^6})BAJ`c319ELZ&zePnMXnOj-*n z*I{y)?1bLOHumV}T_DvC)I|t2_ICU0K-9HGXICPHO4FsoW{5Oz<}D7$NK{sx-Qd$Z zHHiB;i5Y4Q>AsIU@E*NzYX~(M2Tr9)eM{FU^Z!0JdSw5-!tCDPE6i^5nTts$ok+(} zLJ8+%JSlvfki?A!q@6cmu@knNJHZDBbv__gZ;$B};!Q@WGryH^Bk22#!K~$j3d)Mz z4nk+s`D2QP^}2aWk}9*V!P$hoFD64=fup6yrH=)DX?MC?c zMjyshXhf5`!REHw2|L<9&CIsEKo@DYnrCEBxdIhudoT_^a?fA1}n)ga0i7Lc{CFsZv=t$7(Z0dRM6SQie2XAZ1? zEuZ|7%(N>G<-=4maq74+NLPLIE|K60R9mZ!HlxLe>IIj|$QPG-R0R=yr`0awvN6Wh zR>TV{7>%AHviAtHW9eH3M}ZCpOe^;Sy$jC7w&WLOROMTqs3P;qm=tGh0~{dlzxUDC zS6<)9^%X(9HV1g%k@NMm(QGLtA&3+#*A!6Q!2Y;1(7)V2zSnHs`-9SPAgXM{gclft zUX#b?0;|T(Uud=pzqk(SO?5y% zGF~w-4bZ5s2jb$xSqZ7)G=z^-L`$U^O0WkTq9rQ4p0U?kY#y`Ig!~G=hn-rO2Km}Z zZK^@5FXT1Bqa8uGbeM`s9i7FX-dtcNAs?V^?r91*eVNaDlZ60osVEL&bg>W%(dIZH z>OypO7dXU64DKuhYn?tH<(|m-nON>VE_m`Nm>IV_8Of4n6+*x!HnST&{&kBR7ldL0GiK?rM?>B zQ06jN?G5@YG2~{XYBfk`xeD$Mx{py8@u)njGnJgYH=a$yVMt~V232F|+ser~nu`8z zwj)3xASgfq2CXV9j2pgoHa8uCbq279kxCmaCM(!T$ZVO99p?+^JV%Sq1+p6YkkF+- z^&r8}>I!mS&RMbvQb1P=72q>D(B*xfx6x1xK;$A8C@pm5LOSGU>N0cMlj=5L^ZmHH zxKZ3A;|{%aSzH18EXU6|!dv6^Kr2*Ll{A;OdEWpY-RV*xsP$@thOFjRF`69E=jVnk z-;|dOtD)c!bilr5q%pgij_qvkgg2pRDrTb)Zf1|LGJni- z%JiJfM_WGa^aX6YK$EWqva@~>+SGQnh^G;1<#VIC0L<_UAZ0Hchiw(tT23?_Ike*t zrm3ycq7;&c`M#haFJGSvDw19%D{rW)?%cbs{RQrR?q2R8?!k#ipZkeE^x<`nDCC*j zqepAqsKpx2Kcg29@?oqZ7e}ksfb_S~>LiOfIrD#G7~pLWy|yQRFn+bkj`=`FCI7^1 z_oIqZeDqmgz^?NYi;ln6(KJwe2+iOzHWj~44g@v81=GIDvyIkcP(-?-w#~r`{jo>6 z*&~lV_ie92)>5wh<>FH?vs=vMJeoV}-Q# zQkCP$PEE>;+R&B0O>_u4kCkn0exr&GG}_5=diG;rDtKVQ+$f$BoOw z#X>%|M1t#bNKt7w=d{PvMxYUc@RCsO;nA-zIWIm2yLY?X#At})hA~=2?C1v(pW}?l zP9pfV(dn**Qc@x-PsxnWiP+RG`9?$s!}-g_#|aH&moQifSiw%FE)rq|r#5KGT5cJm zPR&Tm%+AV5$Vmbs_+@qe{!TIMX`ubY4Y<|#=o!}(5YR>y=t7*PG8B6opb;kg*PL%&jhjn)+R)+Czt8D{}!)02{*F) zZARNuwLwOO#)&+j#A7WY<(GV)V?5e?)+&?DvBhXJJDU!-)cH!9%6GsHaK|FOUJ=Cw zq%R`M3=JkYvaU5|_gC%o5eMqs*(?9upABiKuR6Zt`06im>IA>ic0VJmC@9HDNl8t~ zF3PPIRW(*MiUl{E-C4gMTh4;GMXPR)%~n+PI_dbC@ic(RRp+R%7Gbv98Q;EoTogA_ zfm{kiNQz9>lDe-t8(XmIECq;%ELE0Pu1wv)k-UxaRB0S!k##LGdqgPVNGCe*VVTb_ z+#b+%@_KC`b>E8f-)SkEV9F}qV^k=4Ee+|`F*=!E1$ppFSIlnM0yPz-ZDm_M$Nv=6 z*-IiI5irn-pxS7)^7UY2Zw_c^U@!Dq)BoB3WXVow`dv{(sIkfoDJUnNVq zJVuwV&OmybQ=}-ybXw-HR~Sv6-L@KX+vLQ%k11|C@Wt1#6P(e=0n${-%0!aP5k?+u zP%GlJ5=HE-CYr!j<7mb(RWoMq0eUA5xaABXNBAV49 zghQ6|=Au zv+!51oSGq84Qn^YMamCutc<>C^_*Dg;y)Vw=D16th_`x%PNvNzT;J}cj51cQ3IkGz zSgf>a9atDN^xVj6;cw*ilyh<@SdH{b44&=uX?u+~sXpd430*VWaR6}L7u*h`@ks$*aYCa1@L8%`%OpjGT_EYfW%kqjat za+5L-MwTGGmZCM&he3`8nN29C`5FG^5319#oMacf9y922E?K9|PhK{E87v0vJE#mq*?`jRO&9iW-^S<7XOInqaF4pO=m(#B zdOUF}Qj2-)Kw)cq<0{e15Vj^eS-Ep_^Sb|~p8uPFnJg`IxTTCV)4Lgqw|;lE&tY$< z-GMo)q!1uclbH^wB+s3V+N)|quNo%v9r%=vzOc(TWdBv^5&GznmG20yvr{N5+_`bv z3~pHT$S@I1yO7_Y##FRlzF!8*AvNP^?oK2-(;?%)R!vPK)RU?_PgZJT)`nM(M0`x2 z>YxL6il8mKrqGj8pJWZgGLA&mh#`^Oq;bGVhhj!x4-bmlCuhWXw8^Y~w>K(_@j>%f0A>z4Ye--Sbs%rWc1KVXsppP9J8F z*G{^R3*Kit|Hz#SmSxWkzjeLOv)j>1>S-UwTXoJvwV4 ztbws-(hdSS1#LS^eeO-IsXK16JaUtN-$sUp`u!(e$LY&E0@)ar2oI)~?9IoH0jMn`kI9&I3(-nK^-zK?+?{`!++)8q3@)T807)PXtCxq+s zY2GgS+!6ZWeo+Vw{!M-R-*g`T;Urb=5bXEQMIjEQ6z8U;^$1~8JC$x(O)9K~*rYM3 zt5R3S#H@jJkkW`yTW@c&6p`)pImYU9wPP(K_>kA9s1S0LDv3_Dj$5WmRVC_kAO~ci zH)=9gCMHC}vw)Polt8n!V>cb-ZnPCa1rhAu8P~q%KlNL8wWF!^mVVP@$*SBiu7BZr z45taFV=e+Ih27A3ws!s*bt7Dat~Y9rla|ZP^gh@_c>nNzM#Dez;t;=FR6~FKa#@Yw z7q*(cQ@DRgQLJbw#H=jLNISK{gBvt^OO0Q@Ptqkqd!IGiJkf2D$ASEKgbHhTcN8l? zuhpyKLg%K(LnP!iBRpXm!BVb;KET*&tG+x7R;Y$bDN?>+UdFy|Gt_7iU;9s|+=Ev5DK(pL-DM667WjY?XN zV6wrS+ff2uDDn`&j|W^%mlxf#Da9hsh|62Ex-0sG=tubRi+akCZ`dJ>r3i~wJ39Yx z*=dK5dVG%40d#N;^&>@h;l(+i&>cM5P}9~# z08SiiYy0}DZx2{V2-^xf+0SBd`-oWj=M2|9#W|QL*N{{8d*=93)zz$$2%|+l!*I{$B49^>x z3`jHMdsPl3=X#(<>_SAVRAb4e*U1QXPj@AwOf)E`14+w+WTjo<7FR;G*$3o;@q&Rt zhQ!}7wv|JDX+h7;l2phwrI`%;6pY2Q%T{BwSAAhLo2*77f8TiW4~)s^vh_Zi;*=6P ziSsZnz68*c>}XIG=3*x{g-3L=le0#q49X2932yP_~PYDh{CXNJ&J->!<>*+g; z&Z@KXE!LD3Iq9?4k9X|yH5GLfZ#Q|2#Q=3kf*qMV{X@48p)YhbzDa+2Q?Wz9`j7eN zBJnQD6Dj%Iw$j4Fq_{$9TJ!SG2Z5UiSfU32*B53Vdi7Ek(vWoKWU1oK5Q7R;m zXCHf}-`#Q*J%&2I><{yNG3h_Eydaz!_m_S||`W|5b;1^hi+ z-dEHXSt$~7quE)F)mp@NjUtxBWX2yT?pgz!y;tc!6pfoVHG`9}K| zB`g#RzQ^XWRcnbs!N_gOVo^DmoTf5TL+3Ik7w@S!vgc(jtgt2E=g-+CI|KbQ>BGXJ zT+H1$U{GuFa-L6(jDch*^dbAlglnto%@dWFC#+B^ElbDnNH0_-XV*rxEI@kqAXe26 za3e-uoc%BH2XOMJ$5XcEP}WXliFH+#TWULs4j^!FE9r~E_1qFfHqhrtqQhTJSPe0- zvK+3!uIis#_jeq6t!6v&l^rQ1$dj9UB&4f$1<=6v>b|GrKM!P&(@NoYvoAg@3Wqg$ zYof?$TG83;E>!Q>kBs8+2;SBUn^EkWG_=7M5P#|)`;^gS z>GF^aJ#=BtH*_R@fQC}BXyR5OL}!nSUmCk)8Rp83u%;H?hh|5!qs8ngeG?01*V#`# z1hQji>I`wno?b2f@+Gah9>`w(R_Krx_fAse@GTo?lbFwS3>jN4?9rY1}AI#N9jj^{xJtcXutqLmwZZf(n) zS}P*d7E2vgt=qKdQ`Tbed8J0JSZUmBf;#ZHO07=v9=(fpKsEOaqm`@kmS8DS0GV2| z+$(N?a~6c$V+N+oP^m8i;h2SiErrYi{$T*XnypM&K zUKGZ_3hsh%^dnDl14Z1EK?w#UmJq!&AZKVDjREGXwuMW@Av8(S<`=gGoc$MD)#~mD z^nd7|Bed!qa!h1;y+TfAO=lFIW$*M%e``4f7tdvJPt&2?06JHE5WaE$_{qDceV-r_ zdkc|?NUSBrAH z#)+o8z?<$J15*q2Ju?Pq`=Ua~z!p*<&6H)58!Qw&X&ZV6hUHTT|Y%w}6W3DQKN~hW;7bn3i%-^{PC%Hz6G2N66M4gYSa)VD? zf}<rMNGWZ7wT;OoE zx6@ICK12J_kz5O7mtrE&kc?zq4j(c-*{B{Ht4BQV)YkLiVlOI|f?S*f3C7%J!p)!` zt33>0qNpk%-=AaXu&XD!&e_~Xj}Zx8$oJ@!4>b?D_(5`O+j-h_4%!9R{A+G`rW)Zz zDkW=PVWJK!C|d*^y4heZ2)JO#H%Bx^w?won-pV5%NtkBk>zOceCFJdjHRiGSNle`#R&t$cg zAElGGxae3Q+k+a71_d9_YTlN^x~qDgG{Bs?Spk_kldM>bsyCzJKQ?}DVCoEw`Z^#E z-j;Gm5NCtLm~D(T>n;3jQ*Rm_#`+k0gURee7S)QO^*RD(jdEv!DG4@19!OQM61|M! z<3Lo*XVVfAf;Jk^7Vzb#f&L5V!Zr!ttgVKa$+)%6tr@}mVp#{D}9#(CuBG*_U`nAdN4pv59@L6;&>EHVGpCF(&t7T4l zh09^&n=slWz}@x3^Yl)jBB1xtzFX)$G%1_Zixetw=@PPm!ev`6SFMsL>f^JMn&k`@!O7a1$T zP?RUmf;3$gke3Y%Ke?4-%r$12@=za`YYV(kB0dUMxl2N5DA%xT+0#=QE`%GnDSV=~ zz#!u%0x{#bp#fSfjTnnH7>mfi^`)4!N}#f+(5M#6jag=_97?=ipO4Tmx|R;)AA1J zX6R5lq@&|=tJjFd2S(z#Uj6vLLKEB7cBLo{61AyVVEx|2R&fK5P-;-9l`4f=p;4*T zgfnwR+%UR}QT5KAmhAzX7tPwkhZEs>)N&eX8DU*nsLMvh6ro})3Rfnfk8@vd;N~;Z zRR-NO!*5Vt4prs~Ag7Ec4GfM-hoiEU^x#vbI1j@($CPc-nGm0Bo;~(DM|0&TCW{5V z)#W0zoNi&tD=Nx-#oOxJO})@$%yae!P5M z)T%Pqa}TU~k(-5?bQ!SkvEMTehs_RN5>hU&XT|jaufNaUzqR*fu~!N@Q2{^ono_tn zdr3HYq{@d(rPR@8ujOy$y4sC4=N4P7XEy?iFUN(H95M>k$yr-sYu92AL%F+=l|KCF zn{z(KJiVu>v!i_RQ8_>FSmP^e@^yHRAPvS$K3@n}-5Ydd9k-ZKC1*-9vlYsS_>B+^ zn`_}59B80-RCVrp@3rE3I1A-7Kt@7F_lQe3?G89~j@sV~WaDX_koJ3K-yG4a5SEmf ziX5YfF`CRg^R#N6m_T5PGEJ{E6c`|j6cmAH52%zPP{||I86@NJm$-69la5*{B#)e& ze}xXF_tN2XwCLIGLfDi!GI448n$>Gp!5T>30mq=-*@7iG)`O;U-`1|3zBVlGTaxCA zLng}WY0cHf`hXKxsOFnMR{5jQrf@4UVd(Wr<+R7Sen{JAL;PMi0S!eoVE>t|d-vDx z!}PyLUz1EWtMikQ4yRPg%Y3aRd)}H>zJhy{6C*JdKY4r-3N`KB?}|hr>f58gX|MDC z=Y;$yMSnL+y;`pzuW;GS|BZ2gcLC^i0rCeQC^tFHUP8s}ftxxe+_T&-|G0tSV+M+$sNDeLEGKag9d+Kp+#v^Y` zMmo@=qL-;z_$W6GHj35+ZNthU(1WR{t35MH91_NDtY_b9qx$-Qx3AI9uLZK-`v(el zt*Kch3WGIiDXS&X$_-f@A`vV$Itg8;JifNmRdkTaLk`mu-vU$N?E$$Q@%W%BDsb#_G+2GU%4%$-9?Ap^PHu@J$}H6D946p`v| zuOvAsBWm%-hQlH{5l+8XbcE0Vb{>N;WkWlTTPQ@?v^p8-y#WULTuDs$+SDi@f@`bN zckCBKR~_wJ+qM1d?ur)Pjx#|{Lf*RVkryx0ytj=P4v^E(t#Yh@YFhHZ-EvkNjt zsIq#?c6yq&U5CTSySGO-kX&z4(K?s~D&00ySKI^$-&HsY2qPcnRz9W~hQ}cSvjEgsNfqCJwWaK%yWMx;}Yyaw^ zqGC}9x4L&c!mC4ew>G@p`1X=-6s>|^={tT#SW@UqPDx5l%JpW|i5lwa>%@W^wcS~N z9;pO0e6p#smpgr=`MteVz?fZT54gzgh^@;{CMA_DLMjaCM2**zs$m{+6b_bleNCVmeX~!R9Uv*nY?my`0u5JZ` zHHr+0%KRepE>+ppoje2n<;j8 z)V@unH!c0he_DFurij0?^tI`wD}hXbWvdb+RA-j>Heq$2ks!^;j4pVEuif}Ojp{Jl z>qzmj^1U5M0quN2lC6kF2+Euo&kaS5sMAo|%rbcilpzJNI;~DeGaCB#?4o;{$vf{A!HCMYGbrn01gVY!*r16TvWXS0On5r%1+eIM@<@MXYq7S{>UO(jAwfvKG z+Q~)l3$C+q^cUfqvwe%W3CUb=f(W83(~AmgC1u((g+%acrS@bY4mVd86`mHExdsX$ z0$y=uY}sP*)j&O|$?;?*C1r#yJ{f(DE@(meCW0>?DT}r%OlcOii3qMo+jA=UP$;YO z71fotno7|x_UnAHsp`BekdTZDg;(U-YI_Zxdm36~U|Yb|i-GK2?2|&o&Ro%0Xs4qY zqt#^P>&Sv42_jp5t}0cP=G_y<%_1Xj73F2(uVD!%W7KJi%^)R9_H8~w1K*&b-X7;f zDy3KECNEgEY&kk70(%>{ER`k~a;456fGNjl6^C5F{wGRI^%(faFY4Z=hdKoB`U&sf z1;6p3b=ix1a$yx3>J}eDoUzroyO0Z2V27gu>)R5tKdfcds14i$dA|dM>JPd)JCJ`nWC&Cl$}D*X5xl#C6G0L> zMlP&xk8eotP`1Jw(9*J{**E{R-UBUATT#A+_&SP?@(+t9_INixl1tjR>FRxgpV=n* ze}tFU8Fi`2DXAjJbt&!Y(t?Uqh#(tY;^Mgh&%pUo5$q~E+-|#f5|@x<**lap03((DD!pr47%Q_*hY4ISVsrLE)tT78GOst&f6ol zUfaaG(V7c_>oeIS>_b9caFGnMHL`4-S{bjAkgO>Yi1e^w^0c||W|;^MR=v^q4r>2^ zr`hWHzYz2K%(YyIJQ~8#J=S%^H>GaZ)Ile-6>n*jE|-OeuTDvbh(r8U!8*v=LIl6e zJZQs_0BKIL$sRfGJ}3Gf=%C9@bTIjv4e7nJYa=1u-?G=60;aIng-zUzgy0bN zA$Jy4bq4qscLx4C8_5>fv{sGjmGZF8%{!CZvbq$z^-iT-jy0J=fqx7}Js5~P>?WskcV$<78)@6w)p?}c zYO?e^`04+#SBT+#p)+teQ}~a>7|u=jO^)Gx&-@cX9_j4x_mvExxt(#ff{)mYW4()K z^*sx*SLbg?iH?y-ax?QYh`;c+^{zJxgY&C$eUggk)(v&5i}^Lz`dfl3Y$}JYOWK*< zoInI;IwM=wdzTs2{Bjz6S&TOC;g(&U9nDRh)m>iVFk=npBq8jbz4|!Z$zDdYjQeM1 ziK8h&P!|D^Lb@}8A*GX_T%sxdxZr=F88);>q?=NGi&8!R&!h?pdTGVMQ>P9dJSFZ7 zy1f`VB52a=*^?%npZzJnocW)~_mDA*j_X-L{p(CR?&b<=aZp5aSnb;KJ>^}soz28A z{;kLEpMqN38n;*PGMbJ2dVBsLC_$ywsZv%(uM3M@v2Nj}+1W&+*J?lwYKz9IKc9VK z)4_FJk?rg1R+?3Itpf?F(+O?@W&^&`cO`C*X(Q}UHy2g^UZxqhwKcnZ;kFgK!#bjO zryS7PRTkwfZRw2oBGu~~!&^5K6z{j75(jn0cct#hUYi}38WB%$Shv5!&SEwvhNrJL z=z4B1_vpz1b_-IF1MR!JIu7nWvF&_0`Mn+A>!f$`KLP%Q|JaV)vY;r)%FItF%uprD z(v^Ag0ts@!{6=NFe7EVie0Sl|lx;5oiH1x(NropC-aHAD{B7xf2-*sjzTzfNmA%nj z?I>{-Rlp7?PIN@O*6A0!)_IoJZ8`;{9ej9_8&C4wJc-a{|HMlW{XV3l0;aM*3773% zwEg9_mp3m8U$%yLB+Sv8BMpa|4ka8(I-1sV;X6w zqcLdI8`82 zV%u3$UgvdKoF)g)qY8a;B4}@rHWxM_7c4Os**nVJ+Z-o|k>3x&NJ6-WxT?-ym-A6~ zsxy#&#^nk*)vwE`DrgMXe+IW0xO;o{a=7;rxAhu-O?%KE(aAV6*4iXO&YWAm(WkRwZMsbL=jEq)`o`abb5>%B6BD_B6>L}gdQBu ziS`X2uzX(t`|uBee(i8>iV)l?m)y*WUK_*T3?D@N3hZVScPAakjl4+l=T3f|{ixpK zgTAGYQPFEIv)zSpS5)XJ;1@-p-*eLzagT9N0{0lXfhTegJjy-IiC4*WD&B)-cDYMO z#jCDyPvcj;XFNvnd^&AWPuL=1_js_RMiJqbaJ7FDjU6zud%%CWv@)ybQr2*{UpDfF zEco|_hBNOA@#>)eLA34xKd=M-S^+(+`Ip=h&mSY?$1nQR_-{4w2VM1S53;YL*L(Pt zrUnz?7O;sFf3X_uS;~16{*)S>l5mTX) z{0eQ6i_oE8<#JCj`dn{*8CELZVtpyerBBeIUE1@mhKW?$N(X zrbD^b?xFwX^XQwB@Vm{t>E@mz$bBSSy(N3%=**)}u(bqku_O>F4U>jCt$>w*7# zFB@(PEB=dJeok%dqy_v>!28>HJARmP(|uM1arXij@S~jGP1vPDbpV|yK)RO(x#-Ov*H~3* zwMHe{ zmCNEby5Iop4eyFPxaQ>gQ<&?E&Bd0F>Kjj6C_(6(x#P7jU#rF6+nus6_jHPcL#x$m z@@9s`&&x%+VNk+qSl_y_`PGi4?F$iP3k`)jGDWg^nPfcC2lE|^kZM?r){=`|&8JI| zXBeGW8}5qP5x+n3X!Hs2fXC=IlPeW%hbyiUE~)STAKiq|+1%j$U+fP!QqBHa73g0{ zpBHwYr!nk#8q3r;rR`}7awCw-WwOBjX-Xuv{?T}Nx-)?bVN-c{kUFO6I=$^f(9~G8cd!) z23w5Pc9YS=Kd)C!{^Q%lJs%4|ku3slB{w1r=pv>Z9KDCQmBCs=x=L>-)FKm2CuzYs zfbv_xXSZU${_($l+rQ^y5je|5KnK$iUBLBYvO(EcCo&;)AVT~- zl7K6npLWvk5v~PoLYAVeWfBQw<%^*EbayiQDI@plO$s3VF>yByj<;x=Mc0Cw&E_p) zU>~R7cF$rQa;wS(qyoyy#N9J3!b$8KL7#E~*hfBG@(+~+_-h^fM2A`9B-|JNXBd@N zZ_R~V&}&puJaXe1M#HZ;0;04*iOBzQP>Bs3Vs6-5!tOSpRct#p^#y$3A0P?%wU4W( zDV3Xa_w|owg@>BRASpXVOnhVknv#~+{ZgXj%7Uv=qq z@5(I+JAoW%I#hx_s1~a*{pwUXYobuD1c1x@!_i=JdA_3kD``J|x^6kwE}S%dx-0?~ zL*h<2d2^l2?zaz?x59S-+&wT2qG2f#hmaWV`7Ao$NB`~fR#9u!5H|LN^swMp_8fao z2u-qv9A8Rvc-cDO?t}^41F_t2!j13d7^OvP6Ip|-U@;pl{5}{=>C#;hZ^03Gy?p=H zJ#Fo;6&)agZmZAi!*tXsZ9`@nNvSdISBx@2? zNrme(*G0xe#jVQ@gW0g@5S)V&Q;DUN9H$zlnGU&3h4c<+f%<}yRN~Ax=R!8&260P; z`5MG(tlJX6XfZptpiaHu(YtjdWC|N}UM3k*Rz)w=&|%erY_^k~D&)79!H`yiPW9^8 zh*1%b7@7>1BCip_&h*zK_RisF@LuG`Cdi%W4HhfYL4#?4(ak^KLZX*;xp&1&X+EL}I+ers* zqtEeA+w<#VhzxR6%4}7(VvRamuSuJvlj`J(G`(DzoW2g?$)@^EhiTARI&h09B*&HI zpII5e?lkb*DVlT^xm#VVsvz7(_7szKbcJ^v5RDXMN~a#gThw-S&0KPgtKk~BI;OBt z&2LwbTU1!WPu95|NSM{Mo!K^G4>ztPqa@P>bwGSUF4QProtSz@#h&?Z%hLbnr8Vog z#i=71gJ$i7XE1xEZ-Il*V6V5=-+Cx`EC2ZI@74)%4|iYsgUTzxQ)V(-oZkIg>Gxpwidvezw7q^FmR%WpeZx3MCy%oq-vXgpO@+u)it4x~DNw~3GUoI$` ze9Mmb?@QGS*Qrv-B2F*cz{p$%o2V%0tcM14{P+$3RCpa7&fm05K!+WAbO`-yU-&zM zkJyv!W5Vhzz%2A>P$s%z*t(d=)b)H|^RDUulf~xP`_56+8aWaa&kbC`4Gf>4%;z6k zgX|I|zq5m*-qT*R3rya9Qt;cw}DP4|;%MQZYIgp#m4VZN7#V_~` zO6Wj3Ud*q9OXwo>j^4`=X73TgI?2@7Rgp_pq(;ITh-icJ(CGP~_1N|^$BSCvLvXwV z3F!Y*oLQ{!XaFs12xJ|%wXh{f0+FbNxXsCHZ*6UIOAANPs^kic;Vv-RLUk4zTV~Jm z!4|OAn~TY5`Zb0J(>siP3LpEJk6I-|8tM<7vL4r0(knXzH~fQGB0QW@^cSm@=D#{M zX7i*c=3^8SI@Ldt-)@25oTX>y7J2XEirh0d#xOISQSESwFDMSuP>aW23Kirp7sq_v z*>HPtOsYIh8nc!g!Y`zNv6nY}qbADDpf6ZS1e{JLd4|uIz1YM*9cVV$YRpAsD;>kM z!>91oFWYuicDWmgv&Q!cbRmrzacdfvRkj5Br?7Vk`DcMe1(-cmnK>`TEec;@DAu3W zJM+Jrd2$pY?t09cn_+kI~LkD>R+&~Bq6)` zX2z*&WXaJvJoWeT%yU$;)i`O zS#sN5OgtByaeP|*18(lQH|P9*=jQzG?`}#+UQxrCex!LoJ60Cj12hkwqK{Y8LY@{c zr?_4N^P=Is3Ma7R^WTvOH&FV;p#_+OZzD73rpG^-lD}m18MR@T0~4KzhSOcaj)2bV zcDNx3<@^LZ7vt z!}-D(3_D`pfWh18(&HZfCL~!AL{q&{?Aq73@4%6YYRyMw@G@vFVK&P)SqiTFP97n7 zH%TtZfH<7)2#dV8U20?W`6w+x`qWw5@qu|5unqQ{L6~Ip=|}qPyf-dCxk$cQ!YU)z z)vKbARZU0*yw$a9n{ny&pcZT4sHm%Nsn(T14}WhSW_Jw*XQEU8S1vFCw&NrB=|bwQ z1`~$OEtfJ03@f{p^>OfwVIGq7yu!B&-nvW?w~vPniJh|_zf;!v)TCQ&a0N-{Sv&K@A3ZE&8w0HGiA5(e@#7>+^9Y!GLIysq7v#1 z`zyr8s!}jOX8@Q>Sf9=5nZ7m${lL#EwDh4;npIQMqd(ScG54CSW&~oLUpD{=@J$Z> z&d(78$p)^yr0H4M#t`^`qu$vR(ge&Q7=XbO*haanQjZrAxb;liS8xNOkdPO6lBb9u zTKL?&?6rrOS@G;KtfKk!uNTRMrHqs+`LsI5qNE-LeSr$}c`9ta`r4mFMK%xxDK5ec znyi`RNv0xC=2;Iqr@3rsa#uZA|mb9>*Y*!^zHLEuaG#}|epq>8*UeX(_WQO*to z;_Uf!Qua$m^5=hdnOD@p5$m4!YsC-VW3t@;-o-4Qgue-!=ptv*0sE;||FOvpXTcT6 zbeSVRk+*^KorgqG4tb_KmMn-7XN&5y@hd-eFM8rgefcz1xppuwSwbCy4N%T+p_%km zy1kIRm@44xUd$T+KNIY<1DKh2-od_HmaBM^rlL|D+;RfC|b zK`d^BHlUeAS+`_1iU(;i5{llB$CSb5kV3;m*|u|pDEV`63+~(*iVclNKIP@n6F1n{ zo4MrYCf5ra3)0fkb}-ZXy{c67k>qW46E;9$QVYJAf>!or7G^!XyG~f=60$(ZPGt3a z9FpXBI0Ye*op8#M!zoElr%Mu)AmscFXD3?;3T19&b98cLVQmU!Ze(v_Y6>wjH8~(K zAa7!73Oqb7MrmwxWpXb@Y+-a|L}g=dWMwZ*Wo~D5Xdp2&Ha930n3!VQ>-Y#x-~j&+qP}nwr$(CZF^1I zUemU1+q~=T-zVAUCMW6Vs#K+_zwUu=wAayk{P_R;0?SNI3Am==_&oD3>L(m9pKy{WmZKFC14J{U{?~j6Hpc(Aod0VhB~~T|mj7I(??2}X@@Z!t#CQM@ zk+2RE7qYsDXvKzCwW_0FH4#-&5tt?kP|;Nv)RRmqQ5DmHSk20FJ8o5* zTGg`lrj<4CsGqR^jq@#j^X9duoJWR$*~9N{_wH-Y?q^&G6MH!c(zrqVu^!?k@Zheq zqZUE~?buUd7l#r~Xf;P-v4|cK6?jDPw1~Ge&%nf0QL3jt6CbD23EzTGmkWxhY|QLnLHz|IVHM`Djn<^4q74tGFl}J1iTVmZlw;N>N#ej03WQX zTnvOdSfwyftF5A#jiOhTZ;B)1#TkaFgNulcNz9>2sk?+l3=<&{myG02@$%*pAmasr zsg6eimlh^=ky>Y+=5>t@4kBLF6U25kT)ZN6ZcfSsMvE3E5;pdGVUx3s&fQYPnZYUT zQ5MFjtv!8|Bb)E6LGOOlqTr(zYQ z{Y3af@z);!ssyN_B^3x%DcjP)3fm<&s@>AoP&WDOJ}mX$1^z=L;H_F3n;)9F zjJ^|FCd90eIo6!+2sigz!)=BMp~HQw(T&KNCNrX6oUbpBoZd-1DR3GP`Nx^;&<%zS z9hf$7L8KvoFpH7om&dJ@6`)T4h<{q4B8c(px}b7<8D{e?erF-Wv$3hV+ zXFYkZcTEF6zA1Pmf}xij-b0buGOdwqzX@5~R_tS}+K#>EZ%Jw{>#2+y>lYkPC63Qf z&huqw#{+{dO37n#Wb2VlQfy!ws>W|)ClJqQ6BRnyc{RI?n=nWnhXdrScxU7Za$ZTMC|eTaiP0Q&2@IH=K9;QZ|uL&$B-FHwboc#jacS_L@cTOEf_T@Lz6#?TR)4*YKUBh?L4hZB14ET8&X(CK&9Cs%YBUd0-UW+=fP?U&j{Lk6-OCX*X$@u zYd>*s?mzWH@LvPP{>?8U;h;B_gaF_el<>e{&D-)j8Ms6bq_KOjTKhn#ir(@JrATPg zdOWhkx7LR>LHg08r53|%j@Q^lcaKJopf?n zb2Wl^m3gK6V}(Gyyhtt2dwrJ0_weq0SC`8V*LUr4C*!iid5<@CWrG8A^2-bCcUYD~ zC?w|-10|_~S01!Yg8E)hq+IT~33nEV;n=J9*7`dvARS#bY!943_}C<}`npfJ>Rx8# zMMxXeND6Mv>>lFiO^jRA)|BC5SB3)?c;3b=BbR!{%b5@5ZpX=usDD+I(HI9W2$f$h z=+#i`G~3A!isFbvIBl`=wt~-S-mSpa9vC`}(?cU7@5+O_202GtRJ7{o=&&k&;JqPJ z1Dg6sU>b!D=fDmNJKn$YZTuJ{&2ZY}}md`p)Tz%lG$ZeddG;PHZ|EFP;yr zFOdK@2&4kFpo~A(xL-3sF-Y@P#xc_e+eGrykLmc1aJ+D8?g0wdyh|{MWz-X}Nx?hn zr+3VskG@|q)y6OEm&A^DDL@JAc6DYr?b8$cja>7y1t3ujvJmis5{3<#AI!UlyOS30mbK7!2bzH9!9?kQrVFqXNFIuh<9Qz z#9ly4zkpV9`D`wag>S~%HjSU#-qutR#a?3dob`$>r8Rhz{EQ?;sfnJvtv=w=idTJW zhEH_SoL&HKjcSDW)(2qL$7;&5!dgA&c^ALQS-0~P{FR^Jis|r}xt=jp%ubsq;u4wU z4#LFD=u*KDNkR`Ic}Vj~&{j{RTds{c^)LUkFO8}ocbb7Ss;$Ml{nB_VuV9uL9(Zs* z4lyP{I}Pcip+2$9yWjjP+_*@8I-b z%=Gksn%30BaJ4#twEOVM zN@uAjv<(|uue2ac3{2fTmpuVbQ{3>sWn=7xq>G#urk$wXsQ|DJ}-WH5~`Z zG_6CMHeG~{Axu@B`KnTM<F~RixWnx>WfvL zN;8Z4RKijLt3RoO3$d-BAFHJF4ZHS5|CmBziE>%G%88!h_!Z3>$BMgd6qg|UDo{Ek z&h0aBP^gcinUfq^uI1v2PlS<5yc!{!rbIV#l&oM$;qOsSrgJopRC4ufNCT`?&bzUJ5a2JArAXz_-uS^fMFc_72E{W;6vYl7iU1f6FVyNg+R^l8cYpihX!TW>frbk^pwgi+)-fiD;vFDvX@hN z{iXM}VF5Yn-ysbOGAdfSDevizk*Ima6GRLb|0Z~iz~Xm?>ij&Eej1)dw_3fKIexJd ztr8kn_)*squdA-n7nuPkZ`xsd6NB5l^S}r$c0@Y47wHDI2P4IUhD?CLi3taQ+{kq*Uzh1qhuUEGd@!1+_qnXUTtR-NV zS|VDk^C$qg8m|v>;H1dW-_Lxrr#rldu=#8Oo(hZ4>kb;gX{Aq`704KbF+)(0mn&F2 z7Vj`l#a-UE5g(09!0P2f@w8WYniXJ_ZWj_Wpn@S{imIK0xtIH+Kuosc>0K8X{) zw+X70Qd=pm>+XL|H5z0OJG56|-~1jaVYKmrPx?Y@6@Jx@grp^-STd@_0h9TH@*jKd z`L$jh|KWc{3Brcu(bxi$#^Z+74LLa&7x5KluV=~#IiY2d#qL%Mm>2V)xk4G-*vSN; zAx&k;zyO85$W?ZDM~ipX?V_bjyCho@`d%5d>XrX3mwG741hpj09d&POVmL2%PXmm1 z({6J~hsxa?D!mr|kOB>vn>uTj>gjDxv9{+<*8i*bJA}OXJd5Fw$OC}RyypA6I~A*k ztjdN}IKPz3fHW|cA5ntmI`Kn&;&}_dJ8m7(9>01mH}6<^b=Q7<74@WzyWZVOau`Nu zzbbnx_R9oa&*AfN!8%OMvxlfR{=A-~_VvyV5=*ZLzIorMAA|^kJ&;7l8z+SQUWSm; zE^yDd;lP{{&FyC?&;9w>Yi`PeCL;cB^~BB-{TJ=%AyDM)c z@QYitQ`zYlbj!n#Y=_7Qa*EGqPicJrK6YVRv?|`O?2O0de3V`<^dPZCM}}@et;v<5 zE-l>jTa8M%d^2~%_95A=MoX(Xaab8m4zKAc!rm2Uw`bpiOv0#_Ostt~$LM$FgF=6J zq+;0kbe~dnFJnOUOhFF^JGjxvvpYpj1zKX<;nHzUr)Ls3wYNG16kG6#LN{=quNOcz_HEQh)g`LY%?u<$;3pe() z7kYLHe`^pL!FTq71`(+=0hE0gNTlbq82jMkH^~-{UoXv}oK1 zC-?jNj!q)mhEOTAAn1~y>bFPVPbX)Z2Wh+lC$y8XqywbGm3b7NqPS>-W8@lCkTkxs8aGl}=#VbRfF; z5#symSH~T3(WXsw=f{v)W4p$F|6fuH4<06QKEUbxdb-9In&8d(kQ)^WgE7v+Q|_Y+ zfvAey`bA&C1ww>tW-z9)kkzQ@I{I+ERE4$R0G$bZR>_6bR;V@3YYdJ>BSaa^1L?Q+_mXn&A6pxrg{{Nn@jq8(In# z3n2%4hX_Q!_4PXc5`-HR(YLe=EZl>#rt&S$FzmKT$sw>JnJ*E8>$iP}#x>ca$tnGN z9*6ww0d68_21oKMu{5T~6rjVj>Zt7Qd9^VER#)4RJXoGD_mdKSLsM%U z-$MSO`f#j0ccvNDR&?KT2X8(29%O{-mzfh$P|lidj2BO@K<`hxUbD;Q6V>1 zX_C}jl+0cYgjEDHo^`1$|Gp~-+(4U$4no@ru8+3|!zN(hn`n=frttDX5hDKgr>Ym- zUN})PXh^$EQZev$H3W>i2R%Cl41e+>)`dEA5 z$qu4g+L%=W1A<9#90rV+uUu_!!QPoDH8o+MvA$nqAp?8)kb&v9|J0^Y?tcSd*_i(y zV)?%Vu*^*ViA-7>80;Z1u=Qr}--;h*^Xt&TWCR2Qk{bX47zBW&{nuIkBjWb|ii@(d zb1?qr>@8l9KFX#ac0wG55;agF*PL&;LDh{Bd-YLJ8tbn@>sP(yvae;fSvBi&52o^2 zF80cuWz8r?#S>dQHB=zKzaaTtFXS=bzqK5aHq`^SHP0|S*g z0EsztW`uLZIpiJ49C}X}wi36({rGkt+MhDsSRL<+a*lF>Je^NweEm$l#01rxjFjZY zx;vatXCL_K;4~S@O>AAN8FX`KW#A&whC{1!ksA%=#ztHiy;(R-ygDgJ$oMF^SP4mZ z2}x-D%q8sHeAL_|jMTjB#9m@J2@NI3*9i}vXbd4fxvBYB`M9|G=t$I2(DPA~l2Py* ztv*}p6Vw+)ISDV5jSofF?+KgC!$V9)N5e^uk4$JhU)FQBhB(hPBWM4?IOBe7u5Y62 zvmdL|ey)on_3M|b)iB%bv@UXTesU5*UTP9LK5{NjRxdfbU~i{=>}BSqqUBC&^g*$c zi#g^T%$!XeO`Oggvrc)3Q-@QhGJrir>Zkl zGgdQNGh8!XGhj1fGiEbrGiozzav0{^=HTY!=J4c6$itB*LkPz!_Y^H#OX!@8Cm>! zzdsc*00?(KXN}=zahR+pcNxEsF;HI@`)}cWP@QiQ)5V1GT=>!W*nDyPweDXB_cQnT zkZzDSe0q;>@bcAuMCaq-`Cm*Nfc|*)gltH+vJU*uXUaVU**MZKq1^}zoQ&oRN0R7y zdfc8vM;VmRV8OvVp?b}m(zmG2vu}7O?`rChQmP6_a-3LC1QVm9JYd0^LJ}@kpX` zqcwvfn~oKsIH%IP3Nc+=vbi_m6>LMMVXGugP)kr5?tPjOw+Dkz@Vr{XKd(*kt_9_x zrBoDX*)g104YFDMeVGy=u_v$U2X{pD#GW%s|IuU~wuP#cD&*F%1?>77gd`Yvj|j}s znVkjnPalE8E#h6{+qH4sZbikdJKAz;uAQ?&Ihv{T2$gI!ki;*QGtDp_^JkU8M;#x% zfp`ZBz8)+r70*~q5s~?dqzLX- zQ&dux34$IsYBv`R|f{Or;5KUSM zr14POk|w1~|C}l|_F_H@z3^ER)L9o-~M~t zdm3a6TJdy{uy7=j04t4J!1H7SwW2na8=?#hv56BVXVckjGNQnKM6^;|3Pqt>aTryU zN!qmuo_1S=2FEW-mP;=luRC-sL0|iq=&turJh&O3yqQ%fN-a>Kc+%C7^JkKrTDH zce}-qDvEEoIJqx|)F&-KFRyWZOh5y=dr~O01~`pt+mKL{rOOf$VHh{#ajIA=RK_QH@@j&4O}>qw z)y6LO>I%{9=L>_`^!>$WdBVVV zyjav5pPQ_(StwvdX}aAHN@FT6odCH|pja_j>E|(GNYt+g0cGN@=7d!p{uhKIN)ilz z^J{x>X5$w-uVF{dFM6IaZ(=sfAM*qQuQef*>kn$l?T>z8jcV`ykJ)TxPtyHLYnxgY zAIq+}OTxXCKGR~4^z@=a{@6+c)rSq{hT;T4&Kza{J-VMS+Ud)bj=1TJF=3);8-JDH zea#Mpt}8~LO~F5zAEuC-)7ql41Htmv(Uz0#*N@Bbd({0J=?pHMim*&BCrv9&9}AE* zWx1yq1vcDq{;tuD|xUk~r|{GNW5 zb1Ag}oCF_*PMgvHxau6+iN4Kwf7JgN2(L4G?r?oa^hgMiwdq5DeqZFuKZP!527Lu} zodpJ22Awu}6?Asj=XcF;=rnBU!jO_6^#^rH(JB~MlG77VyCVJ}HCGfXlq*V3@M;lc z&k;?ttgQJfQIAohwiQp28Avr3qz*-*869Ez6+QNij3oB>dn4(~nmtkOBoPeq2@2{* z74f37TlCmt@$%V%XSZVO^1~LtbB;}Z7W*eUGjW(FuNusA3c@C~uY1^LJtg_{of=Gh zlAXes#dBbsO4Ea=aEd*hdJN5ay%%dsS%GML0*PGo>BQA%Hy8urLfRK<+ty{xx^Q!NUpkvI&;Cem;E`pepi9$5ZslYP zkl0nfj|gB*ky(&#RAygVnV53!XH5^H_E__Y9U{g-utXm(9(!7(wv9;p)1KfJsoz;B zX7*P)q61e1OW`V@n>4T%tOypT@r39N(;Uy4j9@p$s$`KhDS#Jcl2T)NnG_`%s0$HJ zksf(jBqUbAWy%-7?j;yRvv6WsB@FVQjf311+W0D+FC$F@@J`T{{4V zFIw^ot1JtMa(j}I2WAGIM`_@VJW{ogE|=DFVV?;oGX_rs+KMceEmTD zsIJC8zqD_g>-!B|oOa-Y}>ez@6T;tnydlq9! zC~#Z`v(Z5lw_e(}$2Awsw|pOse+Y+nMKsNXQY9rB3A5dIqqn?U4op6VHnJ(g4r>?u zg)IE51cxB#Zd3yoeh8#^8KO$pA}KpEs^Hkbc)}q>{8$m0nVg?$=r(I z8TQclkpwo%*LWfVkL8K=%P`gC?W&}tMdbmG>n9*+RtE1Eg!u#pI)pk?bg{7@m5%vT zbgUL%vvL9HhR2XqsRgWM?M1Ic3YSUrz$U_ET+&cNlSwu6mpB_K-e*0`OhePFD}pWe zz%Ryz#|8TuF~f!}9`v<|#$fQ>h&Sb2qDL&dZrBt~15^Q{Zv$%E3{4F@Om+tQ$qetK zTWe2E@E**(i6cc1W%*=vSN#MKgb6n%&o*pViTxQN5e*LexJ@W_E-s zO2)>*=RXT@4@6#&)Rt_VmG`TMm&j)1%*@R{P}Hnh6Ep^WP5YCJA(N%k<7yF0?6CRf8<`Z~W`!bS5gR4XQJ+;GUpwfhA1Ei(S6@j?r> zDK2TTLT(v*(jSCqENM|p-TXD~n@_k?EYEW_LdK!6Iu*Bk{y7!w$7m82K5F>pa8L}f zgsGk$poO#{q@X5UlO6zY|KcfCGEf|4y!MKzSL@W9+TtO0b9Os^Z^MxNcUH$AuZ@uP zVWI_#6z$TzGs)-N<%^yz+;pFh*>{>jxnoF2q_%3C8b2~b8@@X^Ju6U9<$_abnA=;F zx(n(hh=8ZyWp-s7cgx^DU3!))dr{Z2^SrX1HrkuW{Evbw&I6{j|@2pLoQaW*^lATOmZ zudsOm&*0o%U=vj0I!TCCwMbIwoJ`r@v8cMTp)`wLMMTBPf@!ZxkVuC5mzwjw>!QQ!dA_K31(Y{kBF8t7H0sM(OJjbTGNot@!A+0QojdK+y}RB)EGc>7|}m#$ux7m04^|^gz2An z$Bal}djdl?6bziA;N|ZTyxwTyZTQn?Xu&Quj*vh@(@w?9{oZ0BpEL+UF`qRb5c!M- zh7jkn#y*!8H1=E(c`s70fRY{mi4?b<1FK3L`gKvT) zdwb<-yAQTIZ}spD;nOH(Ktb80;9g%adueS|-YFCe`4`HNtS$Qy=ClQ4n+6pSbWS!k z#?Su7UOfl0d@S;3`KB@P$pSx}cS;7Q`%YWJ-6fNo+q)vp`y$8;MxNQ{@ay2<^GtB) z_$4i?r?88Nc(ET<)x#B}!P0%gdi+Sy)kzv9kzz(NIpMvbF%|*eOuTp$s#Z-E{}~BZ zp#-BWCOs25L(h0lseMpU<*>F{eN&L#>nCp^1uvA$-L_xA`SzSz1b<62r4a2rdb~yE z+`sWG{^)!=e=Lj@O8?_zyGf5SMIpmRjARB~|aLOsa3HGCd7;I-J`K$k}1as@rH4q9smfg*%&?ZE-1 za}(p*6`NX;AmQKl!te)S|EGe3K9AWlAIvxZjAY|Ejdh&*x~scq>|dpC=WH%J-|Is1 zRpoKQDarimWAh8HDrg&y~hQkcWsiz1pGZHM<7X|k|bQ8I$4U`UA0%m*pH!vdJ z^&J}Gc#WxTwQd>J)Jz=$sjc~R$Dhkh{O)D=USZ@(g)>5*YtMlR3bApXXDFZY>LyS` zS>XP|o1QN=$7&;a6wD`EyI^}n@1OJh`FnSdUNf&I0NShvSmv}yGoy7^(W$8}LJOdc zXe0%?g#b`+&`0FVJzQtNzuMgPkCQ`Nw)jPizNQpMR8T~>d2e62@)56fwnlf}W;Pc6 zN4*opwqw+9R*$Kt{#j_Uz4iOVPZUT6k``DH*GMAAa%gryhDEuEU6Jh|w=IESL)N^K zd6ygu3!*r-QCl)#4F*0Twyi%ym3c|75>&m_a~3Iy9cHl&Fm0JRV$kjJoj6$0V#W+8 z;{(yj!plTd0+S2sgmmu0((j7e-uwo5SSW@bfTF0i5>$hb8`p*0Y4fVR^?*-+cG#ELl0b6bR_k5%D07 zl3fq%h*KIrrb`jH4jcP^2gX0k#+jEIu3P(}O<{_?=d^gXee8W(xTzU5K;_4XH`V^o zhOj9Wi;`jd7===*ijH9heWpssw13Cv^i0gsT+WkhY|3-od3oJpC`Gp)Vg9 zhad+TOkI(wBT$xH`1h@F2Ms!)M{lcFZEdWB% zogg;93a+PAab!7#;)JYGK&GZ*#hEQMX0bt-Eg_jtJksP-St?{SAiGyO`Yq7awYS?! zVrw*Lo8R_c<^kgIrS6b3DEbr_0QRP$xoJpPxpKgTGqoi0bZ#^d!rG2@doPZI|nCokCcAQO0cgpow zWL5KEbILBa@<5eLicv!)E|3;!=B>By%U`wS#f1%#DD=!i_s~%k!FIWX0wYCc5pdd@ z)1R;S1zO=sf^_1*zXKw-HnriR*O2gBH@MR11a_O|hg80i`Vd!M*)nEx6O{Ee46+$g zC5o{%uqVDJU<*3tyeiT8Qe5rHwoGKW?O)^EZ`0|u4DoW+?ND3GRh^`NxM89d|J`(T3soObOb1rPbeHfY47(= zfVtc2%dBFVxlB#nq0>udv+N~2)H`w0O=)m(x<@}}fZ#L@3M15|rJfv@po`h?*T>d%DzZ9i&X`uz@bDoTth-OFpAKr?uaGka_LILBsOTH zwuV+?2be{Cvh$#T1*^cCF)3z*vCi8>;o59kvutSInWkYpQCb6?Fj+qeyLi~87Bx<;Z=3+=p?Dy~a>wHF#)-Y?T3*09qzOR}Y3i1d zd-irNPhS}Ak(%_56w_A7F(lj*2iwNP81?9En}6GXq~Fg*(2!;DS6h~vf@Ki^>XOMOBO>`a|i*bbS!zyA~D zQQ(87dm6Zro~LjR|9P{PoC0ygfw&0Q%er@(m)gbnH51D!0Ie}<0Iqp00|_SeVZ6*> zJu)*x9r<9y-OOn(TsI0dV`j*V8A%EQU}@<4g9aJF=7+oVXZgdZXN3RU_HR;Dbm}AI zc>PO9VJeT?pwHEtAW>rky(FumNT;SXrEv|0_7uRrOIIHg?ubEhF`^pM z?y4kvJyg+_%mwNXbi#Y|j7cq1lgm4%HBe9wMGomXqs^t@@6xECa3ItbWrVLMbt2#; zb=WJwt|;(Y?ta)Pzq#JTt-#{#Cd!o3NdrK<@rm)jWXJX0ldXd~lg@QG5%R=?u9s1~ z-+bf0GZVqJp0iD~CFV36i%uz~LshFh=A)=oXE-R76)QcDO5AU~-%qFPcih(TbjBkx zxy=NBw3g=QSNRlb?j~5ZYQmTy&rW3C4v5xPC;;dEW{YR-g!Z>`BjrLMj@9nTl8ATKASoecoXM1; zhX<4RS9C21 zwXj7(Ur7dq-Py7OioFn~)-jpuqQT@F5Mn;~@a+-Qf=Z>5c`x2Ez!Nr(5#VsVu_5BA zzIKjpS-v3bD=z;5PY%xvjyI+voKiiI*}GPCU-vpF9G#C4yW`|NQ11bFJmUR*zv_5U z=J|N)+w$!V^I}MzwqQM^Q|;i8rByl~fI6vf1-OVd9XNk4YL*}>dYk)k{^YOfli{+e zF2avYa1Bwxy;0?0>1$lYOph zy$IT2J$gs0SB!a;J$$#=eFUm-rxb7lOHEBPLPMk(J*LK)GbEsf`CM9WmmysF1L*9a z(4Aa6tR;sbJrQ;aj3Nd9tS{r#c5GQ`c5G*f-P65HGJcy@8>) zl^X0N-|oBQ9;;q$Z33SH;Scms_RE1Yebh_=`p4X_6@cJ|_o>f~&iNni)42(G&t6!6 zhZT+el0giFJn9(F*fr8~&NG%9XIvuqB6NoA@{&!a6sAP3VA*vwGJNH7?1z$eBG>si zg*UtN@i6xud?4?Z=Yd*hbY?&^v%T@SqcEF<9j}Z^60J??_?867<84gyh$e9F9Xmp8 zI`=|O^0jtRY97?v;z_)l$W4m?S7OmV1DPUF|A{qJblC{zt?Jy{}XC$4E)!{jDa*u=LrG{RMVT#lltF`V$yxa0lsEJCIOE*v4$l5Uf{+ktWzS zuVeLV~>781!Yx&_l)gfl=4aK3mq7+QOkl?Ja>-rHT~1X7euS zWMt8xQK-lujS(7O2d&Ml6KSoBP?_i4j!671vF7k2 z@A%5%S@hY0CthwK8l+e6mB=Gse^<+yqgcJuxn5WwaCJ_2xlowMTeiFRT#B^8 z3D&^QmM-^SNJEwBPkcRb@r}B~Rc<-2jfgy8%geNICh#J&L_tE~&-z=K@%P2HtZ+A@ zJ|6F{8G7fm-SQReGg$u4D+KpH>oSZ~e#_}=tE{Ey3JCK{@}|qliNg$NKRg9JGdv(o z83D(RQ$sKc4A|PA(JT3Bh>$uA!lUcVE@l)bya;8l-1Gv z36FrsCxo)nddqKn8Vg#XBSTk;>`)8)_rSIK;nJ3oriepGc&5N3#!gd49FUoa2&6@W zFcuR4SW8Wt{Ztj^mh8&cYAmFemv7RR8?7(5PW8;)khiz_U%nh~ddz2dU)}vqw>Wud zcyJEyJ?635j~l#9hoee(#B5h6VF``N+9I@JNJzwuaE1@h7;ZrM(9!dV_Ti-l@$p5> z(ID6T`H*Nv81$4?B=F%{(76` zM$sBNsmO#%8dplD(d++6foW?R&s9vyxI8=@Q$`Z@B*~>OUZ!%l*t95C6{ez6dG+M% zkd!;GUlgbc(;HKtA(hGep)Orl>I|SPnHC!{C|L$u(XsSVltWLkjB#PLo?94L?mxpQ zO;nsefkHJdkTr$L?P2W;m@%T3c@mqJD;pe}layq!HNohdGO5%lRmhmK;DU#j@rZt@LuO*J+&u{n7YtAIrlN2sm3JMLX zcI2^tGKj z5c<0j9eDGhgOv_;!oTdicCnXICl`D8jxP6X?QQa(4R${(tUi4A7j}s|qn9MvVo`kT zF~(ql57juqygm?dM1~Jpim=(g_1FpWW&Pfbtba&ta3c@QL6q{B)z0_={r$E-pQl<5 zSe*78Q?A^jl2A)n#C|T!+3j~Q_;1SL~}Q|Aj#pSFE$!U=n?d4&0euD4domlGEj0+gUYTS%apDHOlE~wB>nt zTaOmvrWB7GwIR3`G^7cgig*hM+lyx(3UHtEa85#*m>JBCZ@W6 z1toHsZr<`o;8$VIu~P4DmbK>s8SfcU^nw?U6Ugj^&-=-#PaoE6^09*|oBE*)97n|k zxCzI)>I*YRp5WV~R~Q(yRN%05i>XzFFsuV6(*pU2p0PU2iEks6ewdEYhS zMvp!aY>PjTi{e2mAZI@!0bnge>Zk>HC3#-Mo9g7tqfvvzJvHzDrK>5`nJ^~-oUg(O2fFZp|Z4T3)}h%HdHFaY6OZ8wV9KP?%g@`3BLuz3sQ|lwiuMI zAi@?U9O=PK@$rPhF)!OGT5s_5b1sQQ_Lnv&PR_vnw>+|_o7tI-9wM>h2{6W+z<)0* zJqs&X1#L2nCU6UKLHlLq4vMHrp+{7BU2fAnoIbJ-v+E#}Brd1E9$3Xvda_o_N4;+S zkkiK_A!TE+tTkUw04gN{qC^mlLL#K$hySLJL)5G1C;lgf-j{8%a{h|sSwYGq>uG}d%G!*>Kfo!EfCk9H`E<7ir|4URU$V`pg;k5*Lr8j z#w+jDLu}S3^sfa;dz1r-x2LGmJ~^$fIR6>$dEINTa2_X<>zDLF`u(bU&;94q6fBCB zke8scvUL^QX=5lMRd@VgclS7_hh5xkZpdO|6+mYKswSXQsX4$=h?)iH9H%Uq+ay~6 zsrSRU`dZ9~lThY1yLE{beZXh>9esZbzmM1s?}zLwgX2Mzr!D{TV;Ze5Y%c>#xZgBl z66t_rP!ARsE&iwqXGaX)m>Zr0)HvuqXf+9t1kpFN8F3F=SIxAUecL*`j1&p}2EWr9 z&NZ8Oc#rZ!l|OL)3`+ffD|+nzVVC{?sj2@%{$*_d02l}iBLfA)0|o;JfXD}U`(KCt z4_({;wVtxE{m*i$q%EOri1QoAZO0YQjElv!-FpSMxn5rc9aPFOJ_)6ph`2QG+tq$J z!*x1E$xG8{;N~JDI`n=ZJXK+c4pRa|O%qX4UI2}+>R94Cho(EwAIXr~ivO)?Qx1F#7J^LU4bTT7ZMB;_7W#6CkI zz5H(P|2gwsnBAT$}V8L7=dWTO)&-x!VrX1kEs$|CqU>Tvfsxq?xO?G zbs>z%NCLM!Pq(^5M#nW24kU=U(xKyhrNsk*ZMin_6xPv>04GRx5M0A@RZtinU1bAt zb3jxN4vM(~&&mH(q|87@pcep`7cCmP&GG~$3>4$+gHf3&PGbae6xA=vi1v8Es)w3xRs*)eA9I5 zlVB$f%3>#FWT#JR#OKEqLXlJxnEL3`@m3P$;-h5h6jpqx<7Fe{O2+3;9I9W~<9Y!0 z|MlGehtl$Yzfz3<Z;vRQ&Z!9<@&lAsj*pi>6Uz(O+tRU<9zZv`#!4!h=vdV z2@=F8onEt0HqO$JSal>-tX1}ijqY&R-WOnyRm>QN=&*peWh`Xp1Av81vxSf2U=GT~ zBG>$y&Rx`JkWoOe3aZ*$^L`*@!O??n0v**%cZIDn81it80@XxQMo!UzKu7#{p` zII~+KABMA!v4STOaFJPkKa?Mv&)2z9nbrwnGx>Z+Sbka6xY(sSMbc6#r7eqW8Woi{|c5!dwn z=~pinOsr!3WB-yF$QvxyThM@I2l56F8!|Je*Z{UdXovL#4IAFCki6k=!Y0!Sr?cvUADOOr2bn9&e$PYmS3j-Ac zRf*4FTVi?oEu|>33PK0-1$hg#QzcV7)2nnE#86*dtvZ|xL+cR*Qhz8tl(E6F2f9j; zo>i6a^Y{R`khv^+qtva|6z65qduwiYFJD{QIK7gj0FGRrS6P(D!Ht($UoHY7BSEt@#WQbdHyVSY2AT#9p<(;(55~_hwj- z40kw{rF)C5ngm7V8>k^X>!dk)5oiI4%k%*TrPs;NsV(2<#F1r-TzY$t8eGlb*7v@z zT`Y>dLcE5A0vkYF-P1U+>@xA4--sdMTF$7@lO`S8?0k~3W3FdUav-@)R5`#Y>Ch_(8xuU@4@kg zkqcYo=j73F9<01HYRzDFW;GF0F5BGR>d(vU^9O_S7m6Ao7@wweKr!Lk6GnA``2Q;V z%AibwWLw2xU#)SFm0dVnV7Kf1)3vU9!T!peuXnX;$1AU$ zmD|>GK_nq|q|(H|xE%~xt3ZUSegVISUfumRkMfOSuan69CKU4EE2xf6rLXtGXB!Xa zfkj2&pDR)@Pa_pH>O%|~yeYJ}&>aQ9rJ^)(wEfOmZ@Vsn9xD%fil`;MSX#_!0F?wZ z@vRExKj*&`l=5hHZ5pH58eninR>=Xk)p|0Nu@7cyhqy>9ICx`LI2f4;@{uiAl~7b3 z(QH$yqw?ZKl#}VRo0A-T-%Vwmd)qs$q9%ZpRQO&5T*)H}|HfSWsZQ5~l89!CHB=s1 zciOW!E{qG;#^z&%*V87d7gQj4e1Yyv6bV zHs=Yc+xuiH^Tl;C$8o$mqi)vA`Z8mdkpS1nff#Wp7rVutFR?QlA@B%fGD6eR+^v?G z8V}4M)lXV(Ut$9(;XLgsq9|fvcC6MXTlks&VeDAcCm5E#bjfr42Jf#D92ypCR>W+J zsvFBSDT1jI3dWAubIOOP06R->FqQRfS0w1W&L1v>G%+~4vd~$YbKp0po|Hw zgC2*@h{~yMM?RmQZq|H~As@)+fkDdQDilLUU%J|?#NeLoi=3=th8=J~KZJL)`tdXE zhNl_=lm#MNbJ!sYO~CPFRgu4b4*mB>>Bsyd*G{`^jsw~bj>RES8v9|RbS6X+Ylgk_ zmM&dU>9h_vonKp{AHGS8brM&6rB?}67G-V5u1g}u*?3y74&;#0vEmq$n?+B7Wzkcu zAEaCntBUYAlEmKBt!w;)nHwgDYi!h?-?Dl=jvsq|c1Mre=34_p`I)q>=hQQl@&{Tq zEe|Qv?Ak%h5ukFuiIlVrIM;SjWyMVeF;P)8flkjB`FdSxk9hkW zXXWB`6m{xsoSyP>_iy@&r&lhX?Z8dRhozP3FgS{auY@#9Xye}K6>61vz*(g*{b7KB* z4jLFYcI!U=N21e@T;*QG_4jPUWK|tkS5c!^5XPPk={tQ+`mCX%hCivdGhhCw+&>CZ zh*nGP?PNL#T?sgD-cU#BB-VTvE0P-u@&AP z{0INY657{m{k^&agigD?2Trv^C*rnP1#+e}=wYK@Sk61VF5e&NqG5i<$@>X9QoGgXp1o`+;nW1ylc>rakuWFv@vbJ~MKD9Njhr|zfgjJb!p2$REYQ8?r^G-UN@ z-Rm*M#&L98kn|v~SeHa}Evw8-SI-d8AC)};G^d6x=w8z~uyrlryPuKTcF4&QaD%|G%(WKAaxs(GuwOKtgqcLUQ=mu@{Xec^3fKj|* z$c;rPmGLTazLdv7<%!|2@#kM6mZ2v?PZhxA#t9oNIHvr04bmKs*_V*zop-0Ijvr6O zwOp5HaUzWIM|u8a2vfPaqnvKAMT*1~PsJ$Ke1%n5b57qwCE;Taxiqy~q0}!O&Bn)ZQAs?MM~|p( zk7c5!Gb9g!2v-r{#@d2{tjqpvwns6#sV^m`KvKSXF)+e~J?e5FF(D`S9HiN01cBNI z#q0R%FjP#^G5uo6x}9Qw-PvOLNe`*sl(C_%r>SJ1t)?e4MC=C;-v1&uVL0f>`?ZWU zFj$gdBxJDY1$hqTB)F(-0NbwL^|2A0*q-evz>sp~4Wzo9+2Y zT&@=lCdffh7J+*7*ekH_fSVMD{sJ*{LE62};6V&eG7LoT1F{mwX+7O`TSR#)%w1nS zeRM$3vmj(fGJ!U3n({XFbX}9URrk5o=QIe>9b%R`!(&gwwd-w&!A6y7{RaPTz4VC2 zP&B$;gSgK6%O`8ewvZ~Hl|0NoVZ_QUHR;kfKf&DTj564cETtM0iQ>wy9hLeN2PZI} zdaPqXSy=6y-iq2{oBP@74%oBgeGwP7vB^tt+4^SBE&GLj{kYZLmfBr@TCrYW8~3qE zD2b1ih=n;u#aspn4|Z*$uouiU6D9psu;|mQy4h7Uo~kpVnr@v)Z|Y=E&#Dm2QCP_P zLs`ZPX=54*mc9^UQ)k5cX-QLU2_ZQ@PaI$t`^H;Y+g#b0`~rIUf_i~^kd~V1nN*a> zb(8a;GJen_PuktCtqwY7zWMT_h$Bal{1B;Dheq3GkzQBir1f{QCeH4tLYIdH z)yYgH*KwoEJi1S$$<=)}@2bSm$i@`yQ|)D&ED_=j@uq}}sw0Fy#8B=d@mOsbu1-4u z@rTNRE$TuM*lzOxnXn@Y-)U7or#I{;FHSqFKDAlAJMoO1(`PjPLm+TG-*41q)bci*HscT3CmB3)h$;mTABt>B2Ai!PF z(FXZQ;!xngSOUaZw24DyTI??#jk+#)e6s~x%i7m-|19x&3RrM~cC8C^U7YY-yg6CS zy%jO zWD6NJZ5njKX=d$;W&Gcpg3SOtX*N}^G zSe8x^!laVl%xDz~^cvPCA9*vMxkEv-BIioqhSy&tlOoDtCi47|%eapsD^+jgek299Xnt)&A-VshZXTc8}VU@b6If+elpXd@ykZ@^;MW@|4!! zzc~?6D!rjKpP98~P-nXpy$45$5DUhm-hmZ*>%Lsuq!U514B8fr|kZq#uP;Lc1gaMX} zpc1DMN7ptHvml5OV3rKV2?!BIL$Juspv$657)U6AA16A2S(g~>u1&UNF<5^93))kSUhbee%EPJgfX|4X zLCAV^#^97|kQgEyjEm$#d8=9FD)$=R_7Gii>Nb$9(6FfXHm9~B^E0wOtnP;ztm(2o zHfYM6y+7TMvODe{7#~GM!eQQ!Z9Eqo3Wf5sSWOt2I)Q18kl)3R)^p_Q`1=Tjn(A8^}tJz=&8?$P0IF6s;)!qTA zAkZC|0v5#@{q5$)VeU~Pg;(&iw%>izD%WR#*nDB(_z^MnviC6Bu&pZ7Ov}V)7kLL~ zJWIP|lKkNquH^fr9GysMVgoNph)H*wM?bspFo{4Z>D*R)ELV|krFgj4_HWnD@3HF% z>Z~ei-Ox?CpxqhQqJF*YQf}M31W`gS>HXbZ-YafGI+n*m)DdTrJn$4(Dp{2x&ztOc zerk$8&p%|D)=e#^>JuVk5O~ioloi0h;c-ih3}J#!=y&O6>N^;U^Y4|HaxH^w!vd9s zY;YsBuw6s99!>hSj&H7Tk!+gi&vyoW?7ry1^>TbTpu}yF{e1jla-&!lao~K~)6E^P zc<2Cy&$X}zDIEjn+$W)LScn`YKdw$nE}k}h=%xhTB3bwMmqePDhNf9777%|9#hxRm zk}RaLs(8q4-mf>J6T!~2&gQ&|X*}t>c6kGy%z_n54@T2jwZpFQ~oI zzE@*jMjFKFCF1-^juf-4We(@aOrw#SjD1CczbabtYz2N=ltLlbUDg2j+kEKT=Z(Cb z{9_0FS|~P;E3|v|&d-Fl)_$1wBb|0U38iDF`*v!jl^Ln|Ay#Z>Bj7uQ8~Z zgt1v1PAQ}!M|tbx^rA(OVvBZcX!siqM^y+i_1^ox7k@EBwNE{F0Q6npz>)e>dK3}U#q<1{?hptR}tQ~;@O&wi1(WpN^axn{<&)NlEV3vM`0E&vTT;S zFXtceOi!-hQ%s&uGpzUnS!ve-KdKnp{#Pol&T~uwH&dq)sn9&@w&R&(R}5$Th;hI_ zlJWe$F6ojJF3Q_lqV6-n_SiUT?WEa9-Ijvg?!{NM_XGH&6vE*r z4^>hAJ(gULmZwW@bQd^bArf;YhYSsLN^K3pY|9K6w>yX4H-)}?j(t7iB>IBenl+ih z6&P*)1 zbK7y2D8l=+*~}vXM&x8$a`!0Iuxt4^xA&rvOZRpf9gcF)g03=64M@1SAKr6**#d*w zAW9nu1P`1#c7#huDb!4Pc_qjGYEPiB=z_s?hMGTS3Nsd8AvWRLHn&}r+hrE5Zp)|dI|2iYI75Xc4`~8irQB*=8rHD~V4NcL{ z`nW28CQXl87QPmM04#mq9wC@e6PS0;#8Fd@07|Rw(Vp6F6LZF z@`ZOiVP5x!Am4PPcpw`QO=4wKl`4ly|Hr#gfN<0gEotxe#kkXH2Vg0 zb>b^5DR{t8T8(_5(c&|VYQW!zb!qIZ2SF_Qw^dTaPEu_P_y@S!%>CFz@U}!EdKVYc z=HCh#EB%W?1uV0h;*zF)O#XqNFk5L+WBmZ8(ojmBwxNP~oPF)P=@wdh$BVDy-#ven zMokxKHG+QnFfO*Cwkjz=HnU(+@!11Q)**WwKwR6d1A1wfzVBilWtr%G?d?g6)L21j zEr3@`-+<@B0Z(sUBm8oAoqcRq>!C6U-!@YFZPKmv5Nz#&_cx0e0*%c>Mr8K=BK)m~ z5yt-Kfdn=t?&;Lkp485+p-zkdu62V!9BZ?4m)(!Ox>ne7o*f$N9b1y<>)DLxYrddW zhpN^N+pG4_!O10G#77C8m?79BcbKbp>^u2b#{cMP{ac{rf8)j({!lmkk-j@{-5&}I zg02B}`5!uG;o$y1>;$R+M>8fxV`~*xJ0=AZ77iXJ2`gt8*Dr~c`AhttxMMlkIsY4Z zL5r@93&vRDdv9N1pB_v&|HFirE%#3lqu;v04WRh7RENQgc=e?9Ve!L%9{RRiDjSc0 zr>PbwUoHs8(vp@|29?1QhbCPGTaHWbSAjcqAB&uPRG^j5QTK&zIbrJ^V^NXo0G@k0 zBStjJas-BZ2xHLCsNSg1;X+p$>7&Fm=UOr!4dooDt!QLR$S9%TcjlvcXnY!T2l5mF zMuM_O@~5^SG*@#Bg9)(wVq=Vs*!bW$DW|O5((a{qxrhd1Cb7HqFmXy0PHPzT60kYQ z=}Wwfv;`w>-akiLLaCbDo#PI;w=4@Vbt!~zOdIpy#6UBie@W<>g&`CLh)-P@A9}ty z!3NzDWtT6C$_iyArm6`B5n(83Q*98!8qmupfVt(a# z7IQM1_5sf#GHw`HNn{7Aa~d#6(2>T>Dgm@3nv;xiSd!nr4XPE;xu(OY1c~01)<@M0 zmfe7Uo;L=xR*<7aknvr^#AtuGB+rSOXFiyaKKIZJy5%f}UJe!AMfqH1Ss! z!B_;rSC}Z>c4%Lkdd>}|S=m<#497CDSM_0T67qTlhzNmPF?R$Z0>yPhC6*tVh&WOj z`x8|(n+IeWjzx~{em1jLTQc)O8C!JX50Iv=Wi*>B=r&{I-zX56?r`ql1| zeVFj7GRyE+qkQ+-*JirZgt~=&B^sewxBFplrE+NlS|9??6r^Na@yq6Jf+0Gw@rMKo zh#wym*;&UNryM67cb(65SG`$1y85+(2HiUPgIBnZGy0zoRy==S_Q5}O>1XS-hqrU~ zmR>M<8IOiRVW)_4^Xh6Dc?y;Nt^>%IAsBClEl^n7xWmcPPa}UYG0OP*KW=n2=L7 zFJwhe$>65VV5iC87BlXo%&0dftuRewO-jxvo+3A+q+!!q%2u1!%A0-l`F(`h#&~uI zSj>)G^+p9)D#+WSAMV$l6lW$yy*ukU2%0EPwzII#u?H)AN}-F)USRNKaouNjDebiu zQ01!wyAn9or~9Mex;((dL-kZw{&h-G!^_*m>Cx`t?eXdfLp>nb%2ZWYQ;X$dRaLk| z4YQS}QZlb*HA%s(l3U5w0NO0t%va4fm>h2B{K?Ytm?oHjl3pht`XJ}pT(Kd!!ISD% z>HR~!<>%k~9)D%}2v0rTKpiF<7nmzBA_8u%69k2JCF!(7HXLtT|zT~Kle z-msC__pRI9>?vhPE^FAnTrhQX_~vL+VuiDzq7|jISF!AQx=^mEvgzMgpn1m&eWwLl zIIwEt_y|~ZZ9EsSBFa=~&5~AY)dFTpzUwr2E2@WmFmw&QXT@2wXRbUKZ|R84v)4H- zrYX@eCaGt?#~&169>rkVpgiJ*1Vio21zj7?&xza!CWT@3v{7BK6#(YG^ONU3QW1p@ z?}fG3ijjHN7tu8=(BX-R{O!S!Y}NVu2>Ep#{+l-3jRw?LH6FL~=^_nCJbU#S<{)l3&T4mU=|Z zjL6z);i-_iS>5MC03wCl-$`RiPncAHG``XgQNk~)k`bNsBCsBW5m_yjh}q>ri+R=g z5T)I+B@%K?9S-L~PG-{IH!>&c2UJyNQJ&mv_(+x)1uatve?K^{Hr}vT?y;AcScE~P z-#V6@k&;z&C}^@<1u}`^YeTpa3Xv+U)DNkx`Uo05<9`K8gpYTcV&N8W#%7 zx%z8<9nGrf54eR+Qq8Q`HB;iF-EF^`9ieoZNWrfz&O7tbVnqL;!^8a2(YYu+QEO+& zE{>dV79C^NS+b+VK%tHKE@QtIlwtnO?d|sIyZtaj=c=s>@ z<1(32f5+m4pxDMAXIMVuHh;iqkDqAvD0;cQDPKJ`Z_?RqT`pfWw2V;OwQ=ZMHB9%a z-t$!XK<1Pk9p%g)kI{U(MXUMo{1!}q_i5mLf3pWTU0oz5zRuq6-rBltW;noqCjFI9 zJofT&Zs~q{?n6yiTHRKH4*vO-uYzpy;nWBFK2mn@GUP$P??Cyse{QXm^5)~#nf>n7 z;dAqHy0^;X`r!j`bM|s}17ow6o>ipsXUyBO}QA{UiFF zX9XzYNL=AS<5GRk@L=-kj1Y?QY=Z$xXyINTa^b{Qft>o?M63!_&@`V&#Q=fJIF`+4 zf`PA~T~>*+--WcNga zAb@5&Iur5pBnUA(edUvOfe`~YyT&3e^+f4-8I9nf6@ty+aS&fN7a>2ifxQe&LQ!Ew zQnWPziV?n6HOD8IAzToXVMa!grFaVD2uJe6L6ivV`m`TY!_@by7F2s7g@McJh$`ks z1{b>2qG`GOIkcrVUcW&Ju?afnd$n1TO!`hmE!WR(iqIwsreH=S-<2w|i50sUwA)&t zUoh*A=rzLqJH7x<1(R2+XWVQ?x!%tzD)&h_pfgF(xMb5NiJe1ZmEL%Xp+!0G z;R0>l@)i!7M!6-bp+O%$WPr=`+0fGTwvqatxECd=!o6S3+YUv^mK!JN2q#T0#av`9 zCBD^y`e(R-p?)&X6zScz8i`oJ3Bj|RdwtegQWYOovJZ<3e>)VUtET(nRN7yag0+?k z3U4<&YB|V*aAZeaBHP;*>#zV)MME{u*Ut69X_Vi0!<5L~H~QA$1$YHgV9Y2s9e9ck z2y$k~D)%BCL2PnF<6MPMmsl%&AV#ag*s@zE4e@9Vq{slOu*hMTP!w@ytX`giA+_Lb zo(3;3co1}=^U9sd+>KM?eJ$?i4iG|bZ9qUOIs;SVvJz8i>D7kY9zi0#7!d$HUv8TQ zRNRnUHdi#zR``LFgebqHpCK?7ex|8^1hd_=IJ5-m>XdDUwXi<#l%tzlpWg?(%?<~G zFtQmS3?fd}0JQU+%i!F0LlvzG72~GTz|R$)YDjp%GS)-3ObfE>fz57}KpaVk(ZmKt zk#=zJ<%k3?--*(zi1TJ2en5ml`vBt0B3f`3a$a-ahZlo!f*RBt(sGmyh$4c}I--im z6U#B6{g5vV7RCV+A)D?YA%~KR%q2wwl(+}%iQOq~bKl&58)Iuifgt&|9QbSE4UDTF zhC&WEvL1BdXE)@-$S)JG2!ncaH|)6*j8c&Vf=+9TXp1RQl=am~`az&_aj6L7Vp^%P z6B)7mNxs4M9~Th4JktyH$RA^ zybA167@P;1j?co&Nio|6M=?hz!e8>xOpy$%!?To?BevR_wpZ=ifp*@MQGs7cq$KUe zlgLJAQ$Ei!Ie8(c4RElpAsn~rdEkpAX_-d5qLWmpP#qGjdy@veRh2`!e7BPbRVC^b z3&|inNE_hBu*6XeE*&04W**CrMljYRoIPlTMg!H zk(E1`{9Vyvk+2kAAgYg!2rBye%DzE3BcT~M^uNeT znQKg;pa3D6J(B_>*%-ibG_A9rkS+ScRw46g^3(lPR`6vI#O}mJzIIbU7 zPaMOaP*vSktyax`_ExF^7slRZ@Xa5O_noz_dVL=D;v8~)@6KN)m-48N#;EcbYk0gm z-mYKv#vzFT56cHjx3gtOR~l}jdqb-SOCttPM7gyeJ>5dyPEMWO+d4i0e`$PeN>wM>HPr%FN?m7DDrF%%K+u9x%|0s|5LhSRUy~DX6o44mn>|$dC z+he0|2nxG5WUt?uvv9}LN%+BPxX@a9_~*;@;WgpTj^Mo7ARR*)O z%wFTZrT75c@YyQ|;=Z>J@!3Q-$vAal#Var_yEtcPE@%9We#_Fpq_)5$7=n*h(bGU5 z&vB(~5+2ZIN??-1_t|z74?}dQ`UvQL^W?VzPZ~1M8-swfGKb#Jqbdgd%ekdyyEDRH z$?M-KCoqgrc-v5e`@K~aOPgB7Or;DKmgHm{p_u^KOalZ#X%VqrmjwCsGM(pqNe4fVPb;X_mOsZV}DcyFR9qAO{=+CQAVKr}_d*jeijC>|Oh>2rtMt>J>@O5#>U057tU9uw`O!?0k?nG_qeunb$caW-3e)UHlm|q){^7} zWTx=Q%q2S{f72LdpOHna21$;DS&7R!0~(5$1>UA1zneUnk2Q@wwXyg0L=R0}jVy4D z_3>}WNMBY?SRO^T)-ZPJsNr(TW#)LSOPkd48NQW~pZ4`{ziZU7j)u0^^jUf!GQNT% z*eAaYxMS6>XZ%gfiQa45`h2sF%AlO&3zTbz%J9Vh^~+Tc&%L!51z9^|=S*mF$CRah z|GMS|h?Qq%GH%dZ!SZd2@c0)9?@7Es%ndBk<~%c5MB(2cftW3Q!q4jkyonpeq3+z` zH4#PDwl$}xzoCHKL4n;UH+)e%;n|DGMHC=6E|Dr9pJ-qFpl^v~-R%W5-i2P6JR#Vx` zoJm?thu@Tqjm4bHn3;=!NC>oA3=U) zCTV+f2NKqQiYiuKW+W`E+?-4rIxHk?B&>S>4`i5?o8`alOXgSw$bA)?8oRm6_8x&8 zLG%!Z#CXzE0v&VG&~;pP0>u^^@dZcKP~AWkN5L5J72WV4Y{R8ulmARtNK!~DJz-C3 z_HSM=ou^zdO?=$Ex_Zb{^aISeYim-;InLek0$L@$>5g9SsGLn%}X{5V|IwQ3}aJKCl|CW2l@Xl=uIPav zfIfDwEpKoR!KZ!MEw=3L8vv{{^GWcyRl)QO{gyo2cC(H6$sbN9FJZxvcF!g(SvezY z!3pYtO;f>)a)$Ma$=}&z#(WBUpND(7JCCouCa>WE6F@XG26_07x95d5f0vmZi);R1 z-&qs2@|xR?leVoq#cq?j%bNy#q2Pf}+k?}MSZ#;X*u!g5VB3JP!QG*|<<*VDcO2Oi08ZLTh=Ag??~PGn(p}JT+gvL%9iH&;^{psX=;Sw^mo(#$C+(@fGav)-t!? z62T<1Jm?O($)`ulxOl}AbKhrM~|JcbJSM^fhsyO2K8Gi)eEc0Y5Tnv>R zQZYF_pe{nkOYTw=*nPA+=+5GJH9MF%5yXzcrbnVrD^{HeazrRnBv54uag8jM{ZQl- zqFYv*FSpDq+hxzT|ClJKm3&H@V_JKws+uZh4dREl*dxe}%F8f#zLAlpdInfiSLs6b6u!2!GpCi_Kk5P#=E}% zO-Qm`L4bIMBZ%4xk@1Ie&dgpye@zFth{=S1J*UEhm1{szU?a=V`IEr(hnLcQWMl_1TXTP3qK&@xD;)!=md_?>`krZLJ%0!?V zklr0`2va&W<33{ckycPmlx+Tb-%1gL7CF&>y`gfO3;0{gsR6roa77aeYf2yK-T;kf z%!+-k@*0DNyv{qn?`qaSA@JD(iT1EIX4lKqMwxJD#FpW)XqIe7(sS3Zl}@J`_N!}9I8WX#ZQ zyGs0F;?JN}^_=>{lV8KLN7xtmzi<(<8EwdRF!mGzMh72NPPtldJpCG zEJ@`WeQ{OmCvH1T+T2z^H%6L~fo&keNrsf4RIEtOf#fqz-nNQQ*sPL^#N7^s^@p6X z0_TXOZP@hcTKWc_Qde**cDvGZ%sc(}1!)b7Npnrnw$7c0GkiKgAB zYcX1_1(s2}!~_W4I3St9TEK>l`1SkoHDjKxX-*^O;5H(vx44lx6q_Hd5vK+rXmiH( z>iHgrH&>9Mx4*xl{|aVCO)I*@?kwbRaZTf%ql^#7*UQKmodn$GM>)xo!T-^U$rtES?#gP_k5B8PAU%?nQcUQ$L zYYp9vyyexZ?!M}QNKP?8JFOXMODt!MWxt?3)UOAqJ^TB0kt0pL@V5lvY)iR!o#}_*%Pj(Asz;+daUFIzx(A-MTZoJhH$?@!yGO>JG4l5C zeIoMMVio9Jn3P5oe!S0P8%O7<(e&-GLvc&+y-J^k!fW7#J5!96dir()neL3(;m(1RHuTTyER1O(x0q?m+SgB*jA@~_{<``W143^L2XOFy zLK6oMSZ@te2NOR&+9vTuntTf;C9Bn$U57uA9e|Y*|F`?@;%emV>gjA|4#&pI&CSXR LM?oR3C;|6h;N=%d literal 0 HcmV?d00001 diff --git a/main.tex b/main.tex new file mode 100644 index 0000000..aefa2aa --- /dev/null +++ b/main.tex @@ -0,0 +1,248 @@ +\documentclass[a4paper,11pt,numbers=noenddot]{scrbook} + +\usepackage[top=2cm,lmargin=1in,rmargin=1in,bottom=3cm,hmarginratio=1:1]{geometry} +\usepackage[ngerman, english]{babel} +\babeltags{german=ngerman} +% \usepackage{mathabx} +% \usepackage{amssymb} +\usepackage[dvipsnames]{xcolor} % Coloured text etc. +\usepackage{amsthm} +\usepackage{thmtools} +\usepackage{fancyvrb} +\usepackage{anyfontsize} +% \usepackage{mathtools} +% \usepackage{amsmath} +\usepackage{mathpartir} +% packages for draft version +\usepackage{lineno} +\usepackage[colorinlistoftodos,prependcaption,textsize=tiny]{todonotes} +\usepackage{unicode-math} + +% mathpartir uses \atop, amsmath overrides it to throw a warning tho, so we override it back to the original! +\makeatletter +\let\atop\@@atop % chktex 1 +\makeatother + +\usepackage{tikz} +\usetikzlibrary{cd, babel, quotes} +\usepackage{quiver} +% \usepackage{stmaryrd} % for \llbracket and \rrbracket +\usepackage{ifthen} +\usepackage{xspace} +\usepackage{makeidx} +\usepackage{graphicx} +\usepackage{fvextra} +\usepackage[style=ieee, sorting=ynt, language=british]{biblatex} % advanced citations, british to make dates DD-MM-YYYY +\usepackage[english=british]{csquotes} % biblatex recommended to load this +\usepackage{etoolbox,xpatch} + +\makeatletter +\AtBeginEnvironment{minted}{\dontdofcolorbox}\def\dontdofcolorbox{\renewcommand\fcolorbox[4][]{##4}}\xpatchcmd{\inputminted}{\minted@fvset}{\minted@fvset\dontdofcolorbox}{}{}\xpatchcmd{\mintinline}{\minted@fvset}{\minted@fvset\dontdofcolorbox}{}{} % see https://tex.stackexchange.com/a/401250/ +\makeatother +\usepackage{scrhack} + +\usepackage{multicol} +\usepackage[final]{hyperref} + + +\addbibresource{bib.bib} +%\usepackage[right]{showlabels} +%\usepackage[justific=raggedright,totoc]{idxlayout} +\usepackage[type=CC, modifier=by-sa,version=4.0]{doclicense} + +% Listings package supporting unicode and agda highlighting +\usepackage{minted} +\setminted[agda]{ + linenos=true, + breaklines=true, + encoding=utf8, + fontsize=\small, + frame=lines, + autogobble +} +% autoref for minted listings +\providecommand*{\listingautorefname}{Listing} + + +\addto\extrasenglish{ + \renewcommand{\chapterautorefname}{Chapter} + \renewcommand{\sectionautorefname}{Section} + \renewcommand{\subsectionautorefname}{Subsection} +} + +\newcommand\chap[1]{% + \chapter*{#1}% + \chaptermark{#1}% + \addcontentsline{toc}{chapter}{#1}} + +\declaretheorem[name=Definition,style=definition,numberwithin=chapter]{definition} +\declaretheorem[name=Example,style=definition,sibling=definition]{example} +\declaretheorem[style=definition,numbered=no]{exercise} +\declaretheorem[name=Remark,style=definition,sibling=definition]{remark} +\declaretheorem[name=Assumption,style=definition,sibling=definition]{assumption} +\declaretheorem[name=Observation,style=definition,sibling=definition]{observation} +\declaretheorem[name=Theorem,sibling=definition]{theorem} +\declaretheorem[sibling=definition]{corollary} +\declaretheorem[name=Fact,sibling=definition]{fact} +\declaretheorem[sibling=definition]{lemma} +\declaretheorem[sibling=lemma]{proposition} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% % +% Spacing settings % +% % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\setlength{\parindent}{0pt} +\setlength{\parskip}{6pt} +% \setlength\parskip{\baselineskip} +\setlength{\marginparsep}{0cm} +\AtBeginEnvironment{minted}{\setlength{\parskip}{0pt}} + +\title{Implementing Categorical Notions of Partiality and Delay in Agda} + +\author{Leon Vatthauer} + +\makeatletter +\hypersetup{ + pdfauthor={\@author}, + pdftitle={\@title}, + % kill those ugly red rectangles around links + hidelinks, +} +\newcommand*{\theauthor}{\@author} +\makeatother + + +\usepackage[scale=.85]{noto-mono} + +\usepackage{mathrsfs} +\usepackage{xargs} +\usepackage{xstring} + +\newcommand*{\dbtilde}[1]{\tilde{\raisebox{0pt}[0.85\height]{\(\tilde{#1}\)}}} + +% https://unicodeplus.com/U+3016 +\newcommand*{\lbparen}{〖} +\newcommand*{\rbparen}{〗} + +% category C +\newcommand*{\C}{\ensuremath{\mathscr{C}}} +\newcommand*{\D}{\ensuremath{\mathscr{D}}} +% objects of category +\newcommand*{\obj}[1]{\ensuremath{\vert #1 \vert}} +% category of elgot algebras on #1 +\newcommand*{\elgotalgs}[1]{\ensuremath{\mathit{ElgotAlgs}(#1)}} +% category of monads on #1 +\newcommand*{\coalgs}[1]{\ensuremath{\mathit{Coalgs}(#1)}} +\newcommand*{\monads}[1]{\ensuremath{\mathit{Monads}(#1)}} +\newcommand*{\strongmonads}[1]{\ensuremath{\mathit{StrongMonads}(#1)}} +% category of pre-Elgot monads on #1 +\newcommand*{\preelgot}[1]{\ensuremath{\mathit{PreElgot}(#1)}} +\newcommand*{\strongpreelgot}[1]{\ensuremath{\mathit{StrongPreElgot}(#1)}} +\newcommand*{\setoids}{\ensuremath{\mathit{Setoids}}} +% free objects +\newcommand*{\freee}[1]{\ensuremath{#1^\star}} +\newcommand*{\free}[1]{ + \ensuremath{ + \IfSubStr{#1}{\circ} + {{\freee{(#1)}}} + {\IfSubStr{#1}{\;} + {\freee{(#1)}} + {\freee{#1}} + } + } +} +% right stability +\newcommand*{\rss}[1]{\ensuremath{#1^\blacktriangleright}} +\newcommand*{\rs}[1]{ + \ensuremath{ + \IfSubStr{#1}{\circ}{{\rss{(#1)}}}{\rss{#1}} + } +} +% left stability +\newcommand*{\lss}[1]{\ensuremath{#1^\blacktriangleleft}} +\newcommand*{\ls}[1]{ + \ensuremath{ + \IfSubStr{#1}{\circ}{{\lss{(#1)}}}{\lss{#1}} + } +} +% terminal coalgebra +\newcommand*{\coalg}[1]{\ensuremath{\lbparen#1\rbparen}} + +% discretized setoids +\newcommand*{\disc}[1]{\ensuremath{\vert #1 \vert}} + +% Defines the `mycase` environment, copied from https://tex.stackexchange.com/questions/251053/how-to-use-case-1-case-2-in-a-proof-ieee-confs +\newcounter{cases} +\newcounter{subcases}[cases] +\newenvironment{mycase} +{ + \setcounter{cases}{0} + \setcounter{subcases}{0} + \newcommand{\case} + { + \par\indent\stepcounter{cases}\textbf{Case \thecases.} + } + \newcommand{\subcase} + { + \par\indent\stepcounter{subcases}\textit{Subcase (\thesubcases):} + } +} +{ + \par +} +\renewcommand*\thecases{\arabic{cases}} +\renewcommand*\thesubcases{\roman{subcases}} + +\begin{document} +\pagestyle{plain} +\input{src/titlepage}% +\chapter*{Disclaimer} + {\begin{german} + Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. + Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. + + \vspace{5em} + Erlangen, \foreignlanguage[date]{ngerman}{\today{}} \rule{7cm}{1pt}\\ + \phantom{Erlangen, \today{}} \theauthor{} + \end{german}} + +% \chapter*{Licensing} +% \doclicenseThis{} + +\include{src/00_abstract} + +\tableofcontents + +% \listoftodos\ + +\newcommandx{\unsure}[2][1=]{\todo[inline,linecolor=red,backgroundcolor=red!25,bordercolor=red,#1]{#2}} +\newcommandx{\change}[2][1=]{\todo[linecolor=blue,backgroundcolor=blue!25,bordercolor=blue,#1]{#2}} +\newcommandx{\info}[2][1=]{\todo[inline,linecolor=OliveGreen,backgroundcolor=OliveGreen!25,bordercolor=OliveGreen,#1]{#2}} +\newcommandx{\improvement}[2][1=]{\todo[inline,linecolor=Plum,backgroundcolor=Plum!25,bordercolor=Plum,#1]{#2}} + + +% for creating custom labels like (Fixpoint) +\makeatletter +\newcommand{\customlabel}[2]{% + \protected@write \@auxout {}{\string \newlabel {#1}{{#2}{\thepage}{#2}{#1}{}} }% chktex 1 + \hypertarget{#1}{#2}% +} +\makeatother + +\include{src/01_introduction} +\include{src/02_preliminaries} +\include{src/03_agda-categories} +\include{src/04_partiality-monads} +\include{src/05_iteration} +\include{src/06_setoids} +\include{src/07_conclusion} + +\appendix + +\medskip + +\emergencystretch=1em +\printbibliography[heading=bibintoc]{} + +\end{document} diff --git a/quiver.sty b/quiver.sty new file mode 100644 index 0000000..b0b4e06 --- /dev/null +++ b/quiver.sty @@ -0,0 +1,40 @@ +% *** quiver *** +% A package for drawing commutative diagrams exported from https://q.uiver.app. +% +% This package is currently a wrapper around the `tikz-cd` package, importing necessary TikZ +% libraries, and defining a new TikZ style for curves of a fixed height. +% +% Version: 1.4.2 +% Authors: +% - varkor (https://github.com/varkor) +% - AndréC (https://tex.stackexchange.com/users/138900/andr%C3%A9c) + +\NeedsTeXFormat{LaTeX2e} +\ProvidesPackage{quiver}[2021/01/11 quiver] + +% `tikz-cd` is necessary to draw commutative diagrams. +\RequirePackage{tikz-cd} +% `amssymb` is necessary for `\lrcorner` and `\ulcorner`. +% \RequirePackage{amssymb} +% `calc` is necessary to draw curved arrows. +\usetikzlibrary{calc} +% `pathmorphing` is necessary to draw squiggly arrows. +\usetikzlibrary{decorations.pathmorphing} + +% A TikZ style for curved arrows of a fixed height, due to AndréC. +\tikzset{curve/.style={settings={#1},to path={(\tikztostart) + .. controls ($(\tikztostart)!\pv{pos}!(\tikztotarget)!\pv{height}!270:(\tikztotarget)$) + and ($(\tikztostart)!1-\pv{pos}!(\tikztotarget)!\pv{height}!270:(\tikztotarget)$) + .. (\tikztotarget)\tikztonodes}}, + settings/.code={\tikzset{quiver/.cd,#1} + \def\pv##1{\pgfkeysvalueof{/tikz/quiver/##1}}}, + quiver/.cd,pos/.initial=0.35,height/.initial=0} + +% TikZ arrowhead/tail styles. +\tikzset{tail reversed/.code={\pgfsetarrowsstart{tikzcd to}}} +\tikzset{2tail/.code={\pgfsetarrowsstart{Implies[reversed]}}} +\tikzset{2tail reversed/.code={\pgfsetarrowsstart{Implies}}} +% TikZ arrow styles. +\tikzset{no body/.style={/tikz/dash pattern=on 0 off 1mm}} + +\endinput diff --git a/src/00_abstract.tex b/src/00_abstract.tex new file mode 100644 index 0000000..27ff3d2 --- /dev/null +++ b/src/00_abstract.tex @@ -0,0 +1,10 @@ +\chapter*{Abstract} +Moggi famously showed how to use category theory (specifically monads) to model the semantics of effectful computations. + +In this thesis we will examine how to model possibly non-terminating computations, which requires a monad supporting some form of partiality. +For that we will consider categorical properties that a monad that models partiality should satisfy and then compare concrete monads in view of these properties. + +Capretta's delay monad is a typical example for a partiality monad, but it comes with a too intensional notion of built-in equality. +Since fixing this seems to be impossible without additional axioms, we will examine a novel approach of defining a partiality monad that works in a general setting by making use of previous research on iteration theories and drawing on the inherent connection between partiality and iteration. + +Finally, we will show that in the category of setoids this partiality monad instantiates to a quotient of the delay monad, yielding a concrete description of the partiality monad in this category. diff --git a/src/01_introduction.tex b/src/01_introduction.tex new file mode 100644 index 0000000..a8d2f0e --- /dev/null +++ b/src/01_introduction.tex @@ -0,0 +1,35 @@ +\chapter{Introduction} + +Haskell is considered a purely functional programming language, though the notion of purity referenced is an informal one, not to be confused with the standard notion of pure function, which describes functions that do not have any side effects. +Indeed, as a programming language that offers general recursion, Haskell does at least have to include partiality as a side effect. To illustrate this, consider the following standard list reversal function +\begin{minted}{haskell} +reverse :: [a] -> [a] +reverse l = revAcc l [] + where + revAcc [] a = a + revAcc (x:xs) a = revAcc xs (x:a) +\end{minted} +and regard the following definition of an infinite list +\begin{minted}{haskell} +ones :: [Int] +ones = 1 : ones +\end{minted} + +Of course evaluation of the term \texttt{reverse ones} will never terminate, hence it is clear that \texttt{reverse} is a partial function. +Thus, in order to reason about Haskell programs, or generally programs of any programming language offering general recursion, one needs to be able to model partiality as a side effect. + +Generally for modelling programming languages there are three prevailing methods. First is the operational approach studied by Plotkin~\cite{plotkin1975call}, where partial functions are used that map programs to their resulting values, +secondly there is the denotational approach by Scott~\cite{scott1993type}, where programming languages are interpreted mathematically, by functions that capture the ``meaning'' of programs. +For this thesis we will consider the third, categorical approach that has been introduced by Moggi~\cite{moggi}. +In the categorical approach programs are interpreted in categories, where objects represent types and monads are used to model side effects. +The goal for this thesis is thus to study monads which are suitable for modeling partiality. + +We use the dependently typed programming language Agda~\cite{agda} as a safe and type-checked environment for reasoning in category theory, therefore in \autoref{chp:agda-cat} we start out by quickly showcasing the Agda programming language as well as the category theory library that we will be working with. +In \autoref{chp:partiality} we will then consider various properties that partiality monads should satisfy and inspect Capretta's delay monad~\cite{delay}, which has been introduced in type theory as a coinductive data type and then studied as a monad in the category of setoids. +We will examine the delay monad in a general categorical setting, where we prove strength and commutativity of this monad. However, it is not a minimal partiality monad, i.e.\ one that captures no other side effect besides some form of non-termination, since the monad comes with a too intensional notion of equality. In order to achieve minimality one can consider the quotient of the delay monad where a less intensional notion of equality is used. However, it is believed to be impossible to show that the monadic structure is preserved under such a quotient. In~\cite{quotienting} the axiom of countable choice has been identified as a sufficient assumption under which the monad structure is preserved. + +In order to define a partiality monad using no such assumptions, we will draw on the inherent connection between iteration and recursion in \autoref{chp:iteration} to define a suitable partiality monad, by relating to previous research on iteration theories. +This monad has first been introduced and studied in~\cite{uniformelgot} under weaker assumptions than we use, concretely by weakening the notion of Elgot algebra to the notion of uniform iteration algebra, which uses fewer axioms. +During mechanization of the results concerning this monad it turned out that under the weaker assumptions, desirable properties like commutativity seem not to be provable, resulting in our adaptation of this monad. +Lastly, in \autoref{chp:setoids} we will study this partiality monad in the category of setoids, where notably the axiom of countable choice is provable. +In this category, the partiality monad turns out to be equivalent to a certain quotient of the delay monad. \ No newline at end of file diff --git a/src/02_preliminaries.tex b/src/02_preliminaries.tex new file mode 100644 index 0000000..ba62d37 --- /dev/null +++ b/src/02_preliminaries.tex @@ -0,0 +1,528 @@ +\chapter{Preliminaries} + +We assume familiarity with basic categorical notions, in particular: categories, functors, functor algebras and natural transformations, as well as special objects like (co)products, terminal and initial objects and special classes of morphisms like isomorphisms (isos), epimorphisms (epis) and monomorphisms (monos). % chktex 36 +In this chapter we will introduce notation that will be used throughout the thesis and also introduce some notions that are crucial to this thesis in more detail. +We write \(\obj{\C}\) for the objects of a category \( \C \), \(id_X\) for the identity morphism on \(X\), \((-) \circ (-)\) for the composition of morphisms and \(\C(X,Y)\) for the set of morphisms between \(X\) and \(Y\). +We will also sometimes omit indices of the identity and of natural transformations in favor of readability. + +\section{Distributive and Cartesian Closed Categories} +Let us first introduce notation for binary (co)products by giving their usual diagrams: % chktex 36 + +% https://q.uiver.app/#q=WzAsOCxbMiwwLCJBIFxcdGltZXMgQiJdLFswLDAsIkEiXSxbNCwwLCJCIl0sWzIsMiwiQyJdLFs4LDAsIkEgKyBCIl0sWzYsMCwiQSJdLFsxMCwwLCJCIl0sWzgsMiwiQyJdLFswLDEsIlxccGlfMSIsMl0sWzAsMiwiXFxwaV8yIl0sWzMsMiwiZyIsMl0sWzMsMSwiZiJdLFszLDAsIlxcZXhpc3RzISBcXGxhbmdsZSBmICwgZyBcXHJhbmdsZSIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs1LDQsImlfMSJdLFs2LDQsImlfMiIsMl0sWzUsNywiZiIsMl0sWzYsNywiZyJdLFs0LDcsIlxcZXhpc3RzICEgW2YgLCBnXSIsMV1d +\[ + \begin{tikzcd} + A && {A \times B} && B && A && {A + B} && B \\ + \\ + && C &&&&&& C + \arrow["{\pi_1}"', from=1-3, to=1-1] + \arrow["{\pi_2}", from=1-3, to=1-5] + \arrow["g"', from=3-3, to=1-5] + \arrow["f", from=3-3, to=1-1] + \arrow["{\exists! \langle f , g \rangle}"', dashed, from=3-3, to=1-3] + \arrow["{i_1}", from=1-7, to=1-9] + \arrow["{i_2}"', from=1-11, to=1-9] + \arrow["f"', from=1-7, to=3-9] + \arrow["g", from=1-11, to=3-9] + \arrow["{\exists ! [f , g]}", dashed, from=1-9, to=3-9] + \end{tikzcd} +\] + +We will furthermore overload this notation and write \(f \times g := \langle f \circ \pi_1 , g \circ \pi_2 \rangle \) and \(f + g := \lbrack i_1 \circ f , i_2 \circ g \rbrack \) on morphisms. To avoid parentheses we will use the convention that products bind stronger than coproducts. + +We write \(1\) for the terminal object together with the unique morphism \(! : A \rightarrow 1\) and \(0\) for the initial object with the unique morphism \(¡ : A \rightarrow 0\). + +Categories with finite products (i.e.\ binary products and a terminal object) are also called Cartesian and categories with finite coproducts (i.e.\ binary coproducts and an initial object) are called coCartesian. + +\begin{definition}[Distributive Category]~\label{def:distributive} + A Cartesian and coCartesian category \(\C \) is called distributive if the canonical (left) distributivity morphism \(dstl^{-1}\) is an isomorphism: + % https://q.uiver.app/#q=WzAsMixbMCwwLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzMsMCwiWCBcXHRpbWVzIChZICsgWikiXSxbMCwxLCJkc3RsXnstMX0gOj0ge1xcbGJyYWNrIGlkIFxcdGltZXMgaV8xICwgaWQgXFx0aW1lcyBpXzIgXFxyYnJhY2t9IiwwLHsiY3VydmUiOi0zfV0sWzEsMCwiZHN0bCIsMCx7ImN1cnZlIjotM31dXQ== + \[ + \begin{tikzcd} + {X \times Y + X \times Z} &&& {X \times (Y + Z)} + \arrow["{dstl^{-1} := {\lbrack id \times i_1 , id \times i_2 \rbrack}}", curve={height=-18pt}, from=1-1, to=1-4] + \arrow["dstl", curve={height=-18pt}, from=1-4, to=1-1] + \end{tikzcd} + \] + +\end{definition} + +\begin{remark} + Definition~\ref{def:distributive} can equivalently be expressed by requiring that the canonical right distributivity morphism is an iso, giving these inverse morphisms: + % https://q.uiver.app/#q=WzAsMixbMCwwLCJZIFxcdGltZXMgWCArIFpcXHRpbWVzIFgiXSxbMywwLCIoWSArIFopIFxcdGltZXMgWCJdLFswLDEsImRzdHJeey0xfSA6PSBbIGlfMSBcXHRpbWVzIGlkICwgaV8yIFxcdGltZXMgaWQgXSIsMCx7ImN1cnZlIjotM31dLFsxLDAsImRzdHIiLDAseyJjdXJ2ZSI6LTN9XV0= + \[ + \begin{tikzcd} + {Y \times X + Z\times X} &&& {(Y + Z) \times X} + \arrow["{dstr^{-1} := [ i_1 \times id , i_2 \times id ]}", curve={height=-18pt}, from=1-1, to=1-4] + \arrow["dstr", curve={height=-18pt}, from=1-4, to=1-1] + \end{tikzcd} + \] + + These two can be derived from each other by taking either + \[dstr := (swap + swap) \circ dstl \circ swap \] + or + \[dstl := (swap + swap) \circ dstr \circ swap \] + where \(swap := \langle \pi_2 , \pi_1 \rangle : A \times B \rightarrow B \times A\). +\end{remark} + +\begin{proposition} + The distribution morphisms can be viewed as natural transformations i.e.\ they satisfy the following diagrams: + % https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIFxcdGltZXMgKFkgK1opIl0sWzIsMCwiQSBcXHRpbWVzIChCICsgQykiXSxbMCwxLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzIsMSwiQSBcXHRpbWVzIEIgKyBBIFxcdGltZXMgQyJdLFszLDAsIihZICsgWikgXFx0aW1lcyBYIl0sWzUsMCwiKEIgKyBDKSBcXHRpbWVzIEEiXSxbMywxLCJZIFxcdGltZXMgWCArIFogXFx0aW1lcyBYIl0sWzUsMSwiQiBcXHRpbWVzIEEgKyBDIFxcdGltZXMgQSJdLFswLDEsImYgXFx0aW1lcyAoZyArIGgpIl0sWzIsMywiZiBcXHRpbWVzIGcgKyBmIFxcdGltZXMgaCJdLFswLDIsImRzdGwiXSxbMSwzLCJkc3RsIl0sWzQsNSwiKGcgKyBoKSBcXHRpbWVzIGYiXSxbNCw2LCJkc3RyIiwyXSxbNSw3LCJkc3RyIl0sWzYsNywiZyBcXHRpbWVzIGYgKyBoIFxcdGltZXMgZiJdXQ== + \[ + \begin{tikzcd}[column sep=4ex] + {X \times (Y +Z)} && {A \times (B + C)} & {(Y + Z) \times X} && {(B + C) \times A} \\ + {X \times Y + X \times Z} && {A \times B + A \times C} & {Y \times X + Z \times X} && {B \times A + C \times A} + \arrow["{f \times (g + h)}", from=1-1, to=1-3] + \arrow["{f \times g + f \times h}", from=2-1, to=2-3] + \arrow["dstl", from=1-1, to=2-1] + \arrow["dstl", from=1-3, to=2-3] + \arrow["{(g + h) \times f}", from=1-4, to=1-6] + \arrow["dstr"', from=1-4, to=2-4] + \arrow["dstr", from=1-6, to=2-6] + \arrow["{g \times f + h \times f}", from=2-4, to=2-6] + \end{tikzcd} + \] +\end{proposition} +\begin{proof} + We will prove naturality of \(dstl\), naturality for \(dstr\) is symmetric. We use the fact that \(dstl^{-1}\) is an iso and therefore also an epi. + + \begin{alignat*}{1} + & dstl \circ (f \times (g + h)) \circ dstl^{-1} \\ + =\; & dstl \circ (f \times (g + h)) \circ \lbrack id \times i_1 , id \times i_2 \rbrack \\ + =\; & dstl \circ \lbrack f \times ((g + h) \circ i_1) , f \times ((g + h) \circ i_2) \rbrack \\ + =\; & dstl \circ \lbrack f \times (i_1 \circ g) , f \times (i_2 \circ h) \rbrack \\ + =\; & dstl \circ \lbrack id \times i_1 , id \times i_2 \rbrack \circ (f \times g + f \times h) \\ + =\; & dstl \circ dstl^{-1} \circ (f \times g + f \times h) \\ + =\; & (f \times g + f \times h) \\ + =\; & (f \times g + f \times h) \circ dstl \circ dstl^{-1}\tag*{\qedhere} + \end{alignat*} +\end{proof} + +\begin{proposition} + The distribution morphisms satisfy the following properties: + + \begin{enumerate} + \item \(dstl \circ (id \times i_1) = i_1\) + \item \(dstl \circ (id \times i_2) = i_2\) + \item \([ \pi_1 , \pi_1 ] \circ dstl = \pi_1\) + \item \(( \pi_2 + \pi_2 ) \circ dstl = \pi_2\) + \item \(dstl \circ swap = (swap + swap) \circ dstr\) + \item \(dstr \circ (i_1 \times id) = i_1\) + \item \(dstr \circ (i_2 \times id) = i_2\) + \item \((\pi_1 + \pi_1) \circ dstr = \pi_1\) + \item \([ \pi_2 , \pi_2 ] \circ dstr = \pi_2\) + \item \(dstr \circ swap = (swap + swap) \circ dstl\) + \end{enumerate} +\end{proposition} +\begin{proof} + Let us verify the five properties concerning \(dstl\), the ones concerning \(dstr\) follow symmetrically: + + \begin{enumerate} + \item + \begin{alignat*}{1} + & dstl \circ (id \times i_1) + \\=\;&dstl \circ [ id \times i_1 , id \times i_2 ] \circ i_1 + \\=\;&dstl \circ dstl^{-1} \circ i_1 + \\=\;&i_1 + \end{alignat*} + \item + \begin{alignat*}{1} + & dstl \circ (id \times i_2) + \\=\;&dstl \circ [ id \times i_1 , id \times i_2 ] \circ i_2 + \\=\;&dstl \circ dstl^{-1} \circ i_2 + \\=\;&i_2 + \end{alignat*} + \item + \begin{alignat*}{1} + & \pi_1 + \\=\;&\pi_1 \circ dstl^{-1} \circ dstl + \\=\;&[ \pi_1 \circ (id \times i_1) , \pi_1 \circ (id \times i_2) ] \circ dstl + \\=\;&[ \pi_1 , \pi_1 ] \circ dstl + \end{alignat*} + \item + \begin{alignat*}{1} + & \pi_2 + \\=\;&\pi_2 \circ dstl^{-1} \circ dstl + \\=\;&[ \pi_2 \circ (id \times i_1) , \pi_2 \circ (id \times i_2) ] \circ dstl + \\=\;&(\pi_2 + \pi_2) \circ dstl + \end{alignat*} + \item + \begin{alignat*}{1} + & dstl \circ swap + \\=\;&dstl \circ swap \circ dstr^{-1} \circ dstr + \\=\;&dstl \circ [ swap \circ (i_1 \times id) , swap \circ (i_2 \times id) ] \circ dstr + \\=\;&dstl \circ [ (id \times i_1) \circ swap , (id \times i_2) \circ swap ] \circ dstr + \\=\;&dstl \circ [ id \times i_1 , id \times i_2 ] \circ (swap + swap) \circ dstr + \\=\;&dstl \circ dstl^{-1} \circ (swap + swap) \circ dstr + \\=\;&(swap + swap) \circ dstr\tag*{\qedhere} + \end{alignat*} + \end{enumerate} +\end{proof} + +\begin{definition}[Exponential Object] + Let \(\C \) be a Cartesian category and \(X , Y \in \vert \C \vert \). + An object \(X^Y\) is called an exponential object (of \(X\) and \(Y\)) if there exists an evaluation morphism \(eval : X^Y \times Y \rightarrow X\) and for any \(f : X \times Y \rightarrow Z\) there exists a morphism \(curry\; f : X \rightarrow Z^Y\) that is unique with respect to the following diagram: + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJaIFxcdGltZXMgWSJdLFsyLDAsIlheWSBcXHRpbWVzIFkiXSxbMiwyLCJYIl0sWzEsMiwiZXZhbCJdLFswLDEsImN1cnJ5XFw7ZiBcXHRpbWVzIGlkIl0sWzAsMiwiZiIsMl1d + \[ + \begin{tikzcd} + {Z \times Y} && {X^Y \times Y} \\ + \\ + && X + \arrow["eval", from=1-3, to=3-3] + \arrow["{curry\;f \times id}", from=1-1, to=1-3] + \arrow["f"', from=1-1, to=3-3] + \end{tikzcd} + \] +\end{definition} + +\begin{proposition} + Every exponential object \(X^Y\) satisfies the following properties: + + \begin{enumerate} + \item The mapping \(curry : \C(X \times Y , Z) \rightarrow \C(X \rightarrow Z^Y)\) is injective, + \item \(curry(eval \circ (f \times id)) = f\) for any \(f : X \times Y \rightarrow Z\), + \item \(curry\;f \circ g = curry(f \circ (g \times id))\) for any \(f : X \times Y \rightarrow Z, g : A \rightarrow X\). + \end{enumerate} +\end{proposition} +\begin{proof} + \begin{enumerate} + \item Let \(f, g : X \times Y \rightarrow Z\) and \(curry\;f = curry\;g\), then indeed + \[f = eval \circ (curry\; f \times id) = eval \circ (curry\;g \times id) = g. \] + + \item \(curry(eval \circ (f \times id)) = f\) follows instantly by uniqueness of \(curry(eval \circ (f \times id))\). + \item Note that \(eval \circ (curry\;f \circ g \times id) = eval \circ (curry\;f \times id) \circ (g \times id) = f \circ (g \times id)\), thus we are done by uniqueness of \(curry(f \circ (g \times id))\). + \qedhere + \end{enumerate} +\end{proof} + +A Cartesian closed category is a Cartesian category \(\C \) that also has an exponential object \(X^Y\) for any \(X, Y \in \obj{\C} \). +The internal logic of Cartesian closed categories is the simply typed \(\lambda \)-calculus, which makes them a suitable environment for interpreting programming languages. +For the rest of this thesis we will work in an ambient distributive category \(\C\), that however need not be Cartesian closed as to be more general. + +\section{F-Coalgebras} +Let \(F : \C \rightarrow \C \) be an endofunctor. Recall that F-algebras are tuples \((X, \alpha : FX \rightarrow X)\) consisting of an object of \(\C \) and a morphism out of the functor. Initial F-algebras have been studied extensively as a means of modeling inductive data types together with induction and recursion principles~\cite{inductive}. For this thesis we will be more interested in the dual concept namely terminal coalgebras; let us formally introduce them now. + +\begin{definition}[F-Coalgebra] + A tuple \((X \in \obj{\C}, \alpha : X \rightarrow FX)\) is called an \emph{F-coalgebra} (hereafter referred to as just \emph{coalgebra}). +\end{definition} + +\begin{definition}[Coalgebra Morphisms]\label{def:coalgmorph} + Let \((X, \alpha : X \rightarrow FX)\) and \((Y, \beta : Y \rightarrow FY)\) be two coalgebras. A morphism between these coalgebras is a morphism \(f : X \rightarrow Y\) such that the following diagram commutes: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzAsMiwiWSJdLFsyLDAsIkZYIl0sWzIsMiwiRlkiXSxbMSwzLCJcXGJldGEiXSxbMCwyLCJcXGFscGhhIl0sWzAsMSwiZiIsMl0sWzIsMywiRmYiXV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \&\& FX \\ + \\ + Y \&\& FY + \arrow["\beta", from=3-1, to=3-3] + \arrow["\alpha", from=1-1, to=1-3] + \arrow["f"', from=1-1, to=3-1] + \arrow["Ff", from=1-3, to=3-3] + \end{tikzcd} + \] + +\end{definition} + +Coalgebras on a given functor together with their morphisms form a category that we call \(\coalgs{F}\). + +\begin{proposition} + \(\coalgs{F}\) is a category. +\end{proposition} +\begin{proof} + Let \((X , \alpha : X \rightarrow FX)\) be a coalgebra. The identity morphism on \((X , \alpha)\) is the identity morphism of \(\C\) that trivially satisfies \(\alpha \circ id = Fid \circ \alpha \). + + Let \((X , \alpha : X \rightarrow FX), (Y, \beta : Y \rightarrow FY)\) and \((Z , \gamma : Z \rightarrow FZ)\) be coalgebras. + Composition of \(f : (X, \alpha) \rightarrow (Y, \beta)\) and \(g : (Y, \beta) \rightarrow (Z, \gamma)\) is composition of the underlying morphisms in \(\C \) where: + \begin{alignat*}{1} + & \gamma \circ g \circ f \\ + =\; & Fg \circ \beta \circ f \\ + =\; & Fg \circ Ff \circ \alpha \\ + =\; & F(g \circ f) \circ \alpha\tag*{\qedhere} + \end{alignat*} +\end{proof} + +The terminal object of \(\coalgs{F}\) is sometimes called \textit{final coalgebra}, we will however call it the \textit{terminal coalgebra} for consistency with initial F-algebras. +Similarly to initial F-algebras, the final coalgebra can be used for modeling the semantics of coinductive data types where terminality of the coalgebra yields corecursion as a definitional principle and coinduction as a proof principle. +Let us make the universal property of terminal coalgebras concrete. + +\begin{definition}[Terminal Coalgebra] + A coalgebra \((T, t : T \rightarrow FT)\) is called a terminal coalgebra if for any other coalgebra \((X, \alpha : X \rightarrow FX)\) there exists a unique morphism \(\coalg{\alpha} : X \rightarrow T\) satisfying: + + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzIsMCwiRlgiXSxbMCwyLCJUIl0sWzIsMiwiRlQiXSxbMCwxLCJcXGFscGhhIl0sWzIsMywidCJdLFswLDIsIlxcbGxicmFja2V0IFxcYWxwaGEgXFxycmJyYWNrZXQiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwzLCJGXFxsbGJyYWNrZXQgXFxhbHBoYSBcXHJyYnJhY2tldCJdXQ== + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \&\& FX \\ + \\ + T \&\& FT + \arrow["\alpha", from=1-1, to=1-3] + \arrow["t", from=3-1, to=3-3] + \arrow["{\coalg{\alpha}}"', dashed, from=1-1, to=3-1] + \arrow["{F\coalg{\alpha}}", from=1-3, to=3-3] + \end{tikzcd} + \] + We use the common notation \(\nu F\) to denote the terminal coalgebra for \(F\) (if it exists). +\end{definition} + +We will discuss the concrete form that induction and coinduction take in a type theory in \autoref{chp:agda-cat}. Let us now reiterate a famous Lemma concerning terminal F-coalgebras. + +\begin{lemma}[Lambek's Lemma~\cite{lambek}]\label{lem:lambek} + Let \((T, t : T \rightarrow FT)\) be a terminal coalgebra. Then \(t\) is an isomorphism. +\end{lemma} +% \begin{proof} +% First note that \((FT, Ft : FT \rightarrow FFT)\) is also an F-coalgebra. This yields the unique morphism \(\coalg{Ft} : FT \rightarrow T\) satisfying: +% % https://q.uiver.app/#q=WzAsNCxbMCwwLCJGVCJdLFsyLDAsIkZGVCJdLFswLDIsIlQiXSxbMiwyLCJGVCJdLFswLDEsIkZ0Il0sWzIsMywidCJdLFswLDIsIlxcbGxicmFja2V0IEZ0IFxccnJicmFja2V0IiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzEsMywiRlxcbGxicmFja2V0IEZ0IFxccnJicmFja2V0Il1d +% \[ +% \begin{tikzcd}[ampersand replacement=\&] +% FT \&\& FFT \\ +% \\ +% T \&\& FT +% \arrow["Ft", from=1-1, to=1-3] +% \arrow["t", from=3-1, to=3-3] +% \arrow["{\coalg{Ft}}"', dashed, from=1-1, to=3-1] +% \arrow["{F\coalg{Ft}}", from=1-3, to=3-3] +% \end{tikzcd} +% \] + +% \(\coalg{Ft}\) is inverse to \(t\): + +% \begin{enumerate} +% \item \(\coalg{Ft} \circ t : (T, t) \rightarrow (T, t)\) is a morphism between F-coalgebras since +% \begin{alignat*}{1} +% & F(\coalg{Ft} \circ t) \circ t \\ +% =\; & F \coalg{Ft} \circ t \circ t \\ +% =\; & F \coalg{Ft} \circ Ft \circ t \\ +% =\; & t \circ \coalg{Ft} \circ t +% \end{alignat*} +% By uniqueness of the identity on \((T, t)\) we follow that \(\coalg{Ft} \circ t = id\). + +% \item \(t \circ \coalg{Ft} = id : (FT, Ft) \rightarrow (FT, Ft)\) follows by: +% \begin{alignat*}{1} +% & t \circ \coalg{Ft} \\ +% =\; & F\coalg{Ft} \circ Ft \\ +% =\; & F(\coalg{Ft} \circ t) \\ +% =\; & F(id) \\ +% =\; & id +% \end{alignat*} +% \end{enumerate} +% \end{proof} + +\section{Monads} +Monads are widely known in functional programming as a means for modeling effects in ``pure'' languages and are also central to this thesis. Let us recall the basic definitions\cite{Lane1971}\cite{moggi}. + +\begin{definition}[Monad] + A monad \(\mathbf{T}\) on a category \(\C \) is a triple \((T, \eta, \mu)\), where \(T : \C \rightarrow \C \) is an endofunctor and \(\eta : Id \rightarrow T, \mu : TT \rightarrow T\) are natural transformations, satisfying the following laws: + \begin{alignat*}{2} + & \mu_X \circ \mu_{TX} & & = \mu_X \circ T\mu_X \tag*{(M1)}\label{M1} \\ + & \mu_X \circ \eta_{TX} & & = id_{TX} \tag*{(M2)}\label{M2} \\ + & \mu_X \circ T\eta_X & & = id_{TX} \tag*{(M3)}\label{M3} + \end{alignat*} + + These laws are expressed by the following diagrams: + % with indices: % https://q.uiver.app/#q=WzAsOCxbMCwwLCJUVFRYIl0sWzIsMCwiVFRYIl0sWzAsMiwiVFRYIl0sWzIsMiwiVFgiXSxbNCwwLCJUWCJdLFs2LDAsIlRUWCJdLFs4LDAsIlRYIl0sWzYsMiwiVFgiXSxbMCwxLCJcXG11X3tUWH0iXSxbMCwyLCJUXFxtdV9YIiwyXSxbMSwzLCJcXG11X1giXSxbNSw3LCJcXG11X1giXSxbNCw1LCJcXGV0YV97VFh9Il0sWzYsNSwiVFxcZXRhX1giXSxbNCw3LCJpZF97VFh9IiwyXSxbNiw3LCJpZF97VFh9IiwyXSxbMiwzLCJcXG11X1giLDJdXQ== + % https://q.uiver.app/#q=WzAsOCxbMCwwLCJUVFRYIl0sWzIsMCwiVFRYIl0sWzAsMiwiVFRYIl0sWzIsMiwiVFgiXSxbNCwwLCJUWCJdLFs2LDAsIlRUWCJdLFs4LDAsIlRYIl0sWzYsMiwiVFgiXSxbMCwxLCJcXG11Il0sWzAsMiwiVFxcbXUiLDJdLFsxLDMsIlxcbXUiXSxbNSw3LCJcXG11Il0sWzQsNSwiXFxldGEiXSxbNiw1LCJUIl0sWzQsNywiaWQiLDJdLFs2LDcsImlkIiwyXSxbMiwzLCJcXG11IiwyXV0= + \[ + \begin{tikzcd} + TTTX && TTX && TX && TTX && TX \\ + \\ + TTX && TX &&&& TX + \arrow["\mu", from=1-1, to=1-3] + \arrow["T\mu"', from=1-1, to=3-1] + \arrow["\mu", from=1-3, to=3-3] + \arrow["\mu", from=1-7, to=3-7] + \arrow["\eta", from=1-5, to=1-7] + \arrow["T", from=1-9, to=1-7] + \arrow["id"', from=1-5, to=3-7] + \arrow["id"', from=1-9, to=3-7] + \arrow["\mu"', from=3-1, to=3-3] + \end{tikzcd} + \] +\end{definition} + +\begin{definition}[Monad Morphism]\label{def:monadmorphism} + A morphism between monads \((S : \C \rightarrow \C, \eta^S, \mu^S)\) and \((T : \C \rightarrow \C, \eta^T, \mu^T)\) is a natural transformation \(\alpha : S \rightarrow T\) between the underlying functors such that the following diagrams commute. + % https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIl0sWzIsMCwiU1giXSxbMiwxLCJUWCJdLFszLDAsIlNTWCJdLFs1LDAsIlNUWCJdLFszLDEsIlNYIl0sWzcsMCwiVFRYIl0sWzcsMSwiVFgiXSxbMCwxLCJcXGV0YV5TIl0sWzEsMiwiXFxhbHBoYSJdLFswLDIsIlxcZXRhXlQiLDJdLFszLDQsIlNcXGFscGhhIl0sWzMsNSwiXFxtdV5TIiwyXSxbNCw2LCJcXGFscGhhIl0sWzUsNywiXFxhbHBoYSIsMl0sWzYsNywiXFxtdV5UIl1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \&\& SX \& SSX \&\& STX \&\& TTX \\ + \&\& TX \& SX \&\&\&\& TX + \arrow["{\eta^S}", from=1-1, to=1-3] + \arrow["\alpha", from=1-3, to=2-3] + \arrow["{\eta^T}"', from=1-1, to=2-3] + \arrow["S\alpha", from=1-4, to=1-6] + \arrow["{\mu^S}"', from=1-4, to=2-4] + \arrow["\alpha", from=1-6, to=1-8] + \arrow["\alpha"', from=2-4, to=2-8] + \arrow["{\mu^T}", from=1-8, to=2-8] + \end{tikzcd} + \] +\end{definition} + +This yields a category of monads on a given category \(\C\) that we call \(\monads{\C}\). + +\begin{proposition}\label{prop:monadscat} + \(\monads{\C}\) is a category. +\end{proposition} +\begin{proof} + The identity morphism of \(\monads{\C}\) is the identity natural transformation \(Id : F \rightarrow F\), which trivially respects the monad unit and multiplication. Composition of monad morphisms is composition of the underlying natural transformation, the diagrams then also follow easily. +\end{proof} + +Monads can also be specified in a second equivalent way that is better suited to describe computation. + +\begin{definition}[Kleisli Triple] + A Kleisli triple on a category \(\C \) is a triple \((F, \eta, {(-)}^*)\), where \(F : \obj{C} \rightarrow \obj{C}\) is a mapping on objects, \({(\eta_X : X \rightarrow FX)}_{X\in\obj{C}}\) is a family of morphisms and for every morphism \(f : X \rightarrow FY\) there exists a morphism \(f^* : FX \rightarrow FY\) called the Kleisli lifting, where the following laws hold: + \begin{alignat*}{3} + & \eta_X^* & & = id_{FX} \tag*{(K1)}\label{K1} \\ + & f^* \circ \eta_X & & = f & & \text{ for any } f : X \rightarrow FY \tag*{(K2)}\label{K2} \\ + & f^* \circ g* & & = {(f^* \circ g)}^* & & \text{ for any } f : Y \rightarrow FZ, g : X \rightarrow FY \tag*{(K3)}\label{K3} + \end{alignat*} +\end{definition} + +Let \(f : X \rightarrow TY, g : Y \rightarrow TZ\) be two programs, where \(T\) is a Kleisli triple. These programs can be composed by taking: \(f^* \circ g : X \rightarrow TZ\), which is called Kleisli composition. Haskell's do-notation is a useful tool for writing Kleisli composition in a legible way. We will sometimes express \((f^* \circ g) x\) equivalently as +\begin{minted}{haskell} + do y <- g x + f y +\end{minted} + +This yields the category of programs for a Kleisli triple that is called the Kleisli category. + +\begin{definition}[Kleisli Category] + Given a monad \(T\) on a category \(\C \), the Kleisli category \(\C^T\) is defined as: + \begin{itemize} + \item \(\vert \C^T \vert = \obj{C}\) + \item \(\C^T(X, Y) = \C(X, TY)\) + \item Composition of programs is Kleisli composition. + \item The identity morphisms are the unit morphisms of \(T\), \(id_X = \eta_X : X \rightarrow TX\) + \end{itemize} + The laws of categories then follow from the Kleisli triple laws. +\end{definition} + +\begin{proposition}[\cite{manes}] The notions of Kleisli triple and monad are equivalent. +\end{proposition} +\begin{proof} + The crux of this proof is defining the triples, the proofs of the corresponding laws (functoriality, naturality, monad and Kleisli triple laws) are left out. + + ``\(\Rightarrow \)'': + Given a Kleisli triple \((F, \eta, {(-)}^*)\), + we obtain a monad \((F, \eta, \mu)\) where \(F\) is the object mapping of the Kleisli triple together with the functor action \(F(f : X \rightarrow Y) = {(\eta_Y \circ f)}^*\), + \(\eta \) is the morphism family of the Kleisli triple where naturality is easy to show and \(\mu \) is a natural transformation defined as \(\mu_X = id_{FX}^*\) + + + ``\(\Leftarrow \)'': \\ + Given a monad \((F, \eta, \mu)\), + we obtain a Kleisli triple \((F, \eta, {(-)}^*)\) by restricting the functor \(F\) on objects, + taking the underlying mapping of \(\eta \) and defining \(f^* = \mu_Y \circ Ff\) for any \(f : X \rightarrow FY\). +\end{proof} + +For the rest of this thesis we will use both equivalent notions interchangeably to make definitions easier. + +\section{Strong and Commutative Monads} +Consider the following program in do-notation +\begin{minted}{haskell} + do y <- g x + f (x , y) +\end{minted} +where \(g : X \rightarrow TY\) and \(f : X \times Y \rightarrow TZ\) are programs and \(\mathbf{T}\) is a monad. Kleisli composition does not suffice for interpreting this program, we will get stuck at +\[X \overset{\langle id , g \rangle}{\longrightarrow} X \times TY \overset{?}{\longrightarrow} T(X \times Y) \overset{f^*}{\longrightarrow} TZ. \] + +Instead, one needs the following stronger notion of monad. +\begin{definition}[Strong Monad] A monad \((T, \eta, \mu)\) on a Cartesian category \(\C \) is called strong if there exists a natural transformation \(\tau_{X,Y} : X \times TY \rightarrow T(X \times Y)\) that satisfies the following conditions: + \begin{alignat*}{2} + & T\pi_2 \circ \tau_{1,X} & & = \pi_2 \tag*{(S1)}\label{S1} \\ + & \tau_{X,Y} \circ (id_X \times \eta_Y) & & = \eta_{X\times Y} \tag*{(S2)}\label{S2} \\ + & \tau_{X,Y} \circ (id_X \times \mu_Y) & & = \mu_{X\times Y} \circ T\tau_{X,Y} \circ \tau_{X,TY} \tag*{(S3)}\label{S3} \\ + & M \alpha_{X,Y,Z} \circ \tau_{X \times Y, Z} & & = \tau_{X, Y\times Z} \circ (id_X \times \tau_{Y, Z}) \circ \alpha_{X,Y,TZ} \tag*{(S4)}\label{S4} + \end{alignat*} + where \(\alpha_{X,Y,Z} = \langle \langle \pi_1 , \pi_1 \circ \pi_2 \rangle , \pi_2 \circ \pi_2 \rangle : X \times (Y \times Z) \rightarrow (X \times Y) \times Z\) is the associativity morphism on products. +\end{definition} + +\begin{definition}[Strong Monad Morphism]\label{def:strongmonadmorphism} + A morphism between two strong monads \((S : \C \rightarrow \C, \eta^S, \mu^S, \tau^S)\) and \((T : \C \rightarrow \C, \eta^T, \mu^T, \tau^T)\) is a morphism between monads as in \autoref{def:monadmorphism} where additionally the following diagram commutes. + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgU1kiXSxbMCwyLCJTKFggXFx0aW1lcyBZKSJdLFsyLDIsIlQoWCBcXHRpbWVzIFkpIl0sWzIsMCwiWCBcXHRpbWVzIFRZIl0sWzAsMSwiXFx0YXVeUyJdLFsxLDIsIlxcYWxwaGEiXSxbMCwzLCJpZCBcXHRpbWVzIFxcYWxwaGEiXSxbMywyLCJcXHRhdV5UIiwyXV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times SY} \&\& {X \times TY} \\ + \\ + {S(X \times Y)} \&\& {T(X \times Y)} + \arrow["{\tau^S}", from=1-1, to=3-1] + \arrow["\alpha", from=3-1, to=3-3] + \arrow["{id \times \alpha}", from=1-1, to=1-3] + \arrow["{\tau^T}"', from=1-3, to=3-3] + \end{tikzcd} + \] +\end{definition} + +As with monads this yields a category of strong monads on \(\C\) that we call \(\strongmonads{\C}\). + +Let us now consider the following two programs +\begin{multicols}{2} + \begin{minted}{haskell} + do x <- p + y <- q + return (x, y) + \end{minted} + + \begin{minted}{haskell} + do y <- q + x <- p + return (x, y) + \end{minted} +\end{multicols} +Where \(p : TX\) and \(q : TY\) are computations of some monad \(T\). A monad where these programs are equal, is called commutative. + +\begin{definition}[Commutative Monad] + A strong monad \(\mathbf{T}\) is called commutative if the (right) strength \(\tau \) commutes with the induced left strength + \[\sigma_{X,Y} = Tswap \circ \tau_{Y,X} \circ swap : TX \times Y \rightarrow T(X \times Y)\] + that satisfies symmetrical conditions to the ones \(\tau \) satisfies. + Concretely, \(\mathbf{T}\) is called commutative if the following diagram commutes: + % https://q.uiver.app/#q=WzAsNCxbMCwyLCJUKFggXFx0aW1lcyBUWSkiXSxbMiwwLCJUKFRYIFxcdGltZXMgWSkiXSxbMiwyLCJUKFggXFx0aW1lcyBZKSJdLFswLDAsIlRYIFxcdGltZXMgVFkiXSxbMywxLCJcXHRhdSJdLFszLDAsIlxcc2lnbWEiLDJdLFswLDIsIlxcdGF1XioiLDJdLFsxLDIsIlxcc2lnbWFeKiJdXQ== + \[ + \begin{tikzcd} + {TX \times TY} && {T(TX \times Y)} \\ + \\ + {T(X \times TY)} && {T(X \times Y)} + \arrow["\tau", from=1-1, to=1-3] + \arrow["\sigma"', from=1-1, to=3-1] + \arrow["{\tau^*}"', from=3-1, to=3-3] + \arrow["{\sigma^*}", from=1-3, to=3-3] + \end{tikzcd} + \] +\end{definition} + +\section{Free Objects} +Free objects, roughly speaking, are constructions for instantiating structure declarations in a minimal way. +We will rely on free structures in \autoref{chp:iteration} to define a monad in a general setting. We recall the definition +to establish some notation and then describe how to obtain a monad via existence of free objects. + +\begin{definition}[Free Object]\label{def:free} + Let \(\C, \D \) be categories and \(U : \C \rightarrow \D \) be a forgetful functor (whose construction usually is obvious). A free object on some object \(X \in \obj{\D}\) is an object \(FX \in \obj{\C}\) together with a morphism \(\eta : X \rightarrow UFX\) such that for any \(Y \in \obj{\C}\) and \(f : X \rightarrow UY\) there exists a unique morphism \(\free{f} : FX \rightarrow Y\) satisfying: + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJYIl0sWzEsMCwiVVkiXSxbMCwxLCJVRlgiXSxbMCwxLCJmIl0sWzAsMiwiXFxldGEiLDJdLFsyLDEsIlVcXGZyZWV7Zn0iLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \& UY \\ + UFX + \arrow["f", from=1-1, to=1-2] + \arrow["\eta"', from=1-1, to=2-1] + \arrow["{U\free{f}}"', dashed, from=2-1, to=1-2] + \end{tikzcd} + \] +\end{definition} + +\begin{proposition}\label{thm:freemonad} + Let \(U : \C \rightarrow \D \) be a forgetful functor. + If for every \(X \in \obj{\D}\) a free object \(FX \in \obj{C}\) exists then \((X \mapsto UFX, \eta : X \rightarrow UFX, \free{(f : X \rightarrow UFY)} : UFX \rightarrow UFY)\) is a Kleisli triple on \(\D \). +\end{proposition} +\begin{proof} + We are left to check the laws of Kleisli triples. + + \begin{itemize} + \item[\ref{K1}] \(\free{\eta} = id\) + + By uniqueness of \(\free{\eta}\) it suffices to show that \(id \circ \eta = \eta \) which holds trivially. + \item[\ref{K2}] \(\free{f} \circ \eta = f\) for any \(f : X \rightarrow UFY\) + + This is the universal property concerning \(\free{f}\). + \item[\ref{K3}] \(\free{f} \circ \free{g} = \free{\freee{f} \circ g}\) for any \(f : Y \rightarrow UFZ, g : X \rightarrow UFY\) + + By uniqueness of \(\free{\freee{f} \circ g}\) we are left to show \(\free{f} \circ \free{g} \circ \eta = \free{f} \circ g\) which again follows directly by the universal property of \(\free{g}\). + \qedhere + \end{itemize} +\end{proof} \ No newline at end of file diff --git a/src/03_agda-categories.tex b/src/03_agda-categories.tex new file mode 100644 index 0000000..7f08185 --- /dev/null +++ b/src/03_agda-categories.tex @@ -0,0 +1,143 @@ +\chapter{Implementing Category Theory in Agda}\label{chp:agda-cat} + +There are many formalizations of category theory in proof assistants like Coq or Agda. The benefits of such a formalization are clear: having a usable formalization allows one to reason about categorical notions in a type checked environment that makes errors less likely. +Ideally such a development will bring researchers together and enable them to work in a unified setting that enables efficient communication of ideas and concepts. +In this thesis we will work with the dependently typed programming language Agda~\cite{agda} and the agda-categories~\cite{agda-categories} library that serves as an extensive foundation of categorical definitions. +This chapter shall serve as a quick introduction to the relevant parts of Agda's type theory, the agda-categories library, and the formalization of this thesis. + +\section{The Underlying Type Theory}\label{sec:typetheory} +Agda implements a Martin-Löf style dependent type theory with \emph{inductive} and \emph{coinductive types} as well as an infinite hierarchy of universes \texttt{Set₀, Set₁, \ldots}, where usually \texttt{Set₀} is abbreviated as \texttt{Set}. +Recall that inductive types usually come with a principle for defining functions from inductive types, called \emph{recursion} and a principle for proving facts about the inhabitants of inductive types, called \emph{induction}. +These are standard notions and need no further introduction. +Coinductive types come with dual principles that are however lesser known. +Dually to inductive types that are defined by their \emph{constructors}, coinductive types are defined by their \emph{destructors} or their observational behavior. +Take the type of streams over a type \texttt{A}, for example. In Agda one would define this type as a coinductive record like so: +\begin{minted}{agda} + record Stream (A : Set) : Set where + coinductive + field + head : A + tail : Stream A +\end{minted} +i.e.\ the type of streams over \texttt{A} is defined by the two destructors \texttt{head : Stream A → A} and \texttt{tail : Stream A → Stream A} that return the head and the tail of the stream respectively. % chktex 26 +Now, \emph{corecursion} is a principle for defining functions into coinductive types by specifying how results of the function may be observed. Take for example the following function which defines an infinite stream repeating the same argument and is defined by use of Agda's \emph{copatterns}. +\begin{minted}{agda} + repeat : {A : Set} (a : A) → Stream A + head (repeat a) = a + tail (repeat a) = repeat a +\end{minted} +Let us introduce the usual notion of stream bisimilarity. Given two streams, they are bisimilar if their heads are equal and their tails are bisimilar. +\begin{minted}{agda} + record _≈_ {A} (s : Stream A) (t : Stream A) : Set where + coinductive + field + head : head s ≡ head t + tail : tail s ≈ tail t +\end{minted} +In this definition \texttt{\_≡\_} is the built-in propositional equality in Agda with the single constructor \texttt{refl}. We can now use coinduction as a proof principle to proof a fact about streams. +\begin{minted}{agda} + repeat-eq : ∀ {A} (a : A) → repeat a ≈ tail (repeat a) + head (repeat-eq {A} a) = refl + tail (repeat-eq {A} a) = repeat-eq a +\end{minted} +Where in the coinductive step we were able to assume that \texttt{repeat a ≈ tail(repeat a)} already holds and showed that thus \texttt{tail(repeat a) ≈ tail(tail(repeat a))} holds. % chktex 36 + +Streams are always infinite and thus this representation of coinductive types as coinductive records is well suited for them. However, consider the type of \emph{possibly} infinite lists, that we will call \texttt{coList}. In pseudo notation this type can be defined as +\begin{minted}{agda} + codata coList (A : Set) : Set where + nil : coList A + _∷_ : A → coList A → coList A +\end{minted} +That is, the coinductive type \texttt{coList} is defined by the constructors \texttt{nil} and \texttt{\_∷\_}. +Agda does implement a second way of defining coinductive types that allows exactly such definitions, however the use of these sometimes called \emph{positive coinductive types} is discouraged, since it is known to break subject reduction~\cite{agda-man}\cite{coq-man}. Instead, sticking to coinductive records, we can define \texttt{coList} as two mutual types, one inductive and the other coinductive: +\begin{minted}{agda} +mutual + data coList (A : Set) : Set where + nil : coList A + _∷_ : A → coList′ A → coList A + record coList′ (A : Set) : Set where + coinductive + field force : coList A +\end{minted} +Unfortunately, this does add the overhead of having to define functions on \texttt{coList} as mutual recursive functions, e.g.\ the \texttt{repeat} function from before can be defined as +\begin{minted}{agda} + mutual + repeat : {A : Set} (a : A) → coList A + repeat′ : {A : Set} (a : A) → coList′ A + repeat a = a ∷ repeat′ a + force (repeat′ a) = repeat a +\end{minted} +or more succinctly using a \(\lambda\)-function +\begin{minted}{agda} + repeat : {A : Set} (a : A) → coList A + repeat a = a ∷ λ { .force → repeat a } +\end{minted} +In \autoref{chp:setoids} we will work with such a coinductive type that is defined by constructors, hence to avoid the overhead of defining every data type twice and using mutual function definitions in the thesis, we will work in a type theory that does offer coinductive types with constructors and their respective corecursion and coinduction principles. +However, in the formalization we stick to using coinductive records as to implement best practices. +The translation between the two styles is straightforward, as illustrated by the previous example. + +\section{Setoid Enriched Categories} +Let us now consider how to implement category theory in Agda. The usual textbook definition of a category glosses over some design decisions that have to be made when implementing it in type theory. One would usually see something like this: +\begin{definition}[Category] + A category consists of + \begin{itemize} + \item A collection of objects + \item A collection of morphisms between objects + \item For every two morphisms \(f : X \rightarrow Y, g : Y \rightarrow Z\) another morphism \(g \circ f : X \rightarrow Z\) called the composition + \item For every object \(X\) a morphism \(id_X : X \rightarrow X\) called the identity + \end{itemize} + where the composition is associative, and the identity morphisms are identities with respect to the composition. +\end{definition} + +Here \emph{collection} refers to something that behaves set-like, which is not a set and is needed to prevent size issues (there is no set of all sets, otherwise we would obtain Russel's paradox, but there is a collection of all sets), it is not immediately clear how to translate this to type theory. +Furthermore, in mathematical textbooks equality between morphisms is usually taken for granted, i.e.\ there is some global notion of equality that is clear to everyone. +In type theory we need to be more thorough as there is no global notion of equality, eligible for all purposes, e.g.\ the standard notion of propositional equality has issues when dealing with functions in that it requires extra axioms like functional extensionality. + +The definition of category that we will work with can be seen in \autoref{lst:category} (unnecessary information has been stripped). +The key differences to the definition above are firstly that instead of talking about collections, Agda's infinite \texttt{Set} hierarchy is utilized to prevent size issues. +This notion of category is thus parametrized by 3 universe levels, one for objects, one for morphisms and one for equalities. +A consequence is that the category does not contain a type of all morphisms, instead it contains a type of morphisms for any pair of objects. +Furthermore, the types of morphisms are equipped with an equivalence relation \texttt{\_≈\_}, making them setoids. +This addresses the aforementioned issue of how to implement equality between morphisms: the notion of equality is just added to the definition of a category. This version of the notion of category is also called a \emph{setoid-enriched category}. + +As a consequence of using a custom equality relation, proofs like \texttt{∘-resp-≈} are needed throughout the library to make sure that operations on morphisms respect the equivalence relation. In the thesis we will omit such proofs, but they are contained in our formalization. +Lastly, the designers of agda-categories also include symmetric proofs like \texttt{sym-assoc} to definitions, in this case to guarantee that the opposite category of the opposite category is equal to the original category, and a similar reason for requiring \texttt{identity²}, we won't address the need for these proofs and just accept the requirement as given for the rest of the thesis. + +\begin{listing}[H] + \begin{minted}{agda} +record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where + field + Obj : Set o + _⇒_ : Obj → Obj → Set ℓ + _≈_ : ∀ {A B : Obj } → (A ⇒ B) → (A ⇒ B) → Set e + + id : ∀ {A : Obj} → (A ⇒ A) + _∘_ : ∀ {A B C : Obj} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) + + assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} + → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) + sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} + → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f + identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f + identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f + identity² : ∀ {A} → id ∘ id {A} ≈ id {A} + equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) + ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} + → f ≈ h + → g ≈ i + → f ∘ g ≈ h ∘ i + \end{minted} + \caption{Definition of Category~\cite{agda-categories}} + \label{lst:category} +\end{listing} + +From this it should be clear how other basic notions like functors or natural transformations look in the library. + +\section{The formalization} +Every result and used fact (except for \autoref{prop:liftingkleisli}) in this thesis has been proven either in our own formalization\footnote{\href{https://git8.cs.fau.de/theses/bsc-leon-vatthauer}{https://git8.cs.fau.de/theses/bsc-leon-vatthauer}} or in the agda-categories library~\cite{agda-categories}. +The formalization is meant to be used as a reference alongside this thesis, where concrete details of proofs can be looked up and verified. +The preferred format for viewing the formalization is as automatically generated clickable HTML code\footnote{\href{https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/}{https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/}}, +where multiple annotations explaining the structure have been added in Markdown, however concrete explanations of the proofs and their main ideas are mostly just contained in this thesis. + +In the future this formalization may be adapted into a separate library that uses the agda-categories library as a basis but is more focussed on the study of partiality monads and iteration theories. +As such the formalization has been structured similar to the agda-categories library, where key concepts such as monads correspond to separate top-level folders, which contain the core definitions as well as folders for sub-concepts and their properties. diff --git a/src/04_partiality-monads.tex b/src/04_partiality-monads.tex new file mode 100644 index 0000000..ae1ce6e --- /dev/null +++ b/src/04_partiality-monads.tex @@ -0,0 +1,572 @@ +\chapter{Partiality Monads}\label{chp:partiality} +Moggi's categorical semantics~\cite{moggi} describe a way to interpret an effectful programming language in a category. For this one needs a (strong) monad \(T\) capturing the desired effects, then we can take the elements of \(TA\) as denotations for programs of type \(A\). The Kleisli category of \(T\) can be viewed as the category of programs, which gives us a way of composing programs (Kleisli composition). + +For this thesis we will restrict ourselves to monads for modeling partiality, the goal of this chapter is to capture what it means to be a partiality monad and look at two common examples. + +\section{Properties of Partiality Monads} +We will now look at how to express the following non-controversial properties of a minimal partiality monad categorically: + + +\begin{enumerate} + \item Irrelevance of execution order + \item Partiality of programs + \item No other effect besides some form of non-termination +\end{enumerate} + +The first property of course holds for any commutative monad, the other two are more interesting. + +To ensure that programs are partial, we recall the following notion by Cockett and Lack~\cite{restriction}, that axiomatizes the notion of partiality in a category: + +\newcommand{\tdom}{\text{dom}\;} +\begin{definition}[Restriction Structure] + A restriction structure on a category \(\C\) is a mapping \(dom : \C(X, Y) \rightarrow \C(X , X)\) with the following properties: + \begin{alignat*}{1} + f \circ (\tdom f) & = f \\ + (\tdom f) \circ (\tdom g) & = (\tdom g) \circ (\tdom f) \\ + \tdom(g \circ (\tdom f)) & = (\tdom g) \circ (\tdom f) \\ + (\tdom h) \circ f & = f \circ \tdom (h \circ f) + \end{alignat*} + for any \(X, Y, Z \in \obj{\C}, f : X \rightarrow Y, g : X \rightarrow Z, h: Y \rightarrow Z\). +\end{definition} + +The morphism \(\tdom f : X \rightarrow X\) represents the domain of definiteness of \(f : X \rightarrow Y\). In the category of partial functions this takes the following form: + +\[ + (\tdom f)(x) = \begin{cases} + x & \text{if } f(x) \text{ is defined} \\ + \text{undefined} & \text{else} + \end{cases} +\] + +That is, \(\tdom f\) is only defined on values where \(f\) is defined and for those values it behaves like the identity function. + +\begin{definition}[Restriction Category] + Every category has a trivial restriction structure by taking \(dom (f : X \rightarrow Y) = id_X\). + We call categories with a non-trivial restriction structure \textit{restriction categories}. +\end{definition} + +For a suitable defined partiality monad \(T\) the Kleisli category \(\C^T\) should be a restriction category. + +Lastly, we also recall the following notion by Bucalo et al.~\cite{eqlm} which captures what it means for a monad to have no other side effect besides some sort of non-termination: + +\begin{definition}[Equational Lifting Monad]\label{def:eqlm} + A commutative monad \(T\) is called an \textit{equational lifting monad} if the following diagram commutes: + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJUWCJdLFsyLDAsIlRYIFxcdGltZXMgVFgiXSxbMiwyLCJUKFRYIFxcdGltZXMgWCkiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiXFx0YXUiXSxbMCwyLCJUIFxcbGFuZ2xlIFxcZXRhICwgaWQgXFxyYW5nbGUiLDJdXQ== + \[ + \begin{tikzcd} + TX && {TX \times TX} \\ + \\ + && {T(TX \times X)} + \arrow["\Delta", from=1-1, to=1-3] + \arrow["\tau", from=1-3, to=3-3] + \arrow["{T \langle \eta , id \rangle}"', from=1-1, to=3-3] + \end{tikzcd} + \] + where \(\Delta_X : X \rightarrow X \times X\) is the diagonal morphism. +\end{definition} + +To make the equational lifting property more comprehensible we can alternatively state it using do-notation. The equational lifting property states that the following programs must be equal: + +\begin{multicols}{2} + \begin{minted}{haskell} + do x <- p + return (x , p) + \end{minted} + + \begin{minted}{haskell} + do x <- p + return (x , return x) + \end{minted} +\end{multicols} + +That is, if some computation \(p : TX\) terminates with the result \(x : X\), then \(p = return\;x\) must hold afterwards. This of course implies that running \(p\) multiple times yields the same result as running \(p\) once. + +\begin{proposition}[\cite{eqlm}]\label{prop:liftingkleisli} + If \(T\) is an equational lifting monad the Kleisli category \(\C^T\) is a restriction category. +\end{proposition} + +Definition~\ref{def:eqlm} combines all three properties stated at the beginning of the section, so when studying partiality monads in this thesis, we ideally expect them to be equational lifting monads. +For the rest of this chapter we will use these definitions to compare two monads that are commonly used to model partiality. + +\section{The Maybe Monad} +The endofunctor \(MX = X + 1\) extends to a monad by taking \(\eta_X = i_1 : X \rightarrow X + 1\) and \(\mu_X = [ id , i_2 ] : (X + 1) + 1 \rightarrow X + 1\). +The monad laws follow easily. +This is generally known as the maybe monad and can be viewed as the canonical example of an equational lifting monad. + +\begin{theorem} M is an equational lifting monad. +\end{theorem} +\begin{proof} + We define strength as + \[ \tau_{X,Y} := X \times (Y + 1) \overset{dstl}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+!}{\longrightarrow} (X \times Y) + 1. \] + + Naturality of \(\tau \) follows by naturality of \(dstl\) + + \begin{alignat*}{1} + & (id + !) \circ dstl \circ (id \times (f + id)) \\ + = \; & (id + !) \circ ((id \times f) + (id \times id)) \circ dstl \\ + = \; & ((id \times f) + !) \circ dstl \\ + = \; & ((id \times f) + id) \circ (id + !) \circ dstl. + \end{alignat*} + + The other strength laws and commutativity can be proven by using simple properties of distributive categories, we added these proofs to the formalization for completeness. + + We are thus left to check the equational lifting law: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYKzEiXSxbMywwLCIoWCsxKVxcdGltZXMoWCsxKSJdLFszLDIsIigoWCsxKVxcdGltZXMgWCkgKygoWCsxKVxcdGltZXMgMSkiXSxbMyw0LCIoKFgrMSlcXHRpbWVzIFgpKzEiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiZHN0bCJdLFsyLDMsImlkK1xcOyEiXSxbMCwzLCJcXGxhbmdsZSBpXzEsaWRcXHJhbmdsZSArIFxcOyEiLDJdXQ== + \[ + \begin{tikzcd} + {X+1} &&& {(X+1)\times(X+1)} \\ + \\ + &&& {((X+1)\times X) +((X+1)\times 1)} \\ + \\ + &&& {((X+1)\times X)+1} + \arrow["\Delta", from=1-1, to=1-4] + \arrow["dstl", from=1-4, to=3-4] + \arrow["{id+\;!}", from=3-4, to=5-4] + \arrow["{\langle i_1,id\rangle + \;!}"', from=1-1, to=5-4] + \end{tikzcd} + \] + + This is easily proven by pre-composing with \(i_1\) and \(i_2\), indeed + \begin{alignat*}{1} + & (id\;+\;!) \circ dstl \circ \langle i_1 , i_1 \rangle + \\=\;&(id\;+\;!) \circ dstl \circ (id \times i_1) \circ \langle i_1 , id \rangle + \\=\;&(id\;+\;!) \circ i_1 \circ \langle i_1 , id \rangle + \\=\;&i_1 \circ \langle i_1 , id \rangle, + \end{alignat*} + and + \begin{alignat*}{1} + & (id\;+\;!) \circ dstl \circ \langle i_2 , i_2 \rangle + \\=\;&(id\;+\;!) \circ dstl \circ (id \times i_2) \circ \langle i_2 , id \rangle + \\=\;&(id\;+\;!) \circ i_2 \circ \langle i_2 , id \rangle + \\=\;&i_2 \;\circ \; ! \circ \langle i_2 , id \rangle + \\=\;&i_2 \;\circ \; !.\tag*{\qedhere} + \end{alignat*} +\end{proof} + +In the setting of classical mathematics this monad is therefore sufficient for modeling partiality, but in general it will not be useful for modeling non-termination as a side effect, since one would need to know beforehand whether a program terminates or not. For the purpose of modeling possibly non-terminating computations another monad has been introduced by Capretta~\cite{delay}. + +\section{The Delay Monad} +Capretta's delay monad~\cite{delay} is a coinductive datatype whose inhabitants can be viewed as suspended computations. +This datatype is usually defined by the two coinductive constructors \(now : X \rightarrow DX\) and \(later : DX \rightarrow DX\), where \(now\) lifts a value inside a computation and \(later\) intuitively delays a computation by one time unit. +See \autoref{chp:setoids} for a type theoretical study of this monad. +Categorically we obtain the delay monad by the terminal coalgebras \(DX = \nu A. X + A\), which we assume to exist. +In this section we will show that these terminal coalgebras indeed yield a monad that is strong and commutative. + +Since \(DX\) is defined as a terminal coalgebra, we can define morphisms via corecursion and prove theorems by coinduction. By \autoref{lem:lambek} the coalgebra structure \(out : DX \rightarrow X + DX\) is an isomorphism, whose inverse can be decomposed into the two constructors mentioned before: \(out^{-1} = [ now , later ] : X + DX \rightarrow DX\). + +\begin{lemma}~\label{lem:delay} + The following conditions hold: + \begin{itemize} + \item \(now : X \rightarrow DX\) and \(later : DX \rightarrow DX\) satisfy: + \begin{equation*} + out \circ now = i_1 \qquad\qquad\qquad out \circ later = i_2 \tag*{(D1)}\label{D1} + \end{equation*} + \item For any \(f : X \rightarrow DY\) there exists a unique morphism \(f^* : DX \rightarrow DY\) such that the following commutes. + \begin{equation*} + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJEWCJdLFszLDAsIlggKyBEWCJdLFswLDEsIkRZIl0sWzMsMSwiWSArIERZIl0sWzAsMSwib3V0Il0sWzAsMiwiZl4qIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMywib3V0Il0sWzEsMywiWyBvdXQgXFxjaXJjIGYgLCBpXzIgXFxjaXJjIGZeKiBdIl1d + \begin{tikzcd} + DX &&& {X + DX} \\ + DY &&& {Y + DY} + \arrow["out", from=1-1, to=1-4] + \arrow["{f^*}", dashed, from=1-1, to=2-1] + \arrow["out", from=2-1, to=2-4] + \arrow["{[ out \circ f , i_2 \circ f^* ]}", from=1-4, to=2-4] + \end{tikzcd} + \tag*{(D2)}\label{D2} + \end{equation*} + \item There exists a unique morphism \(\tau : X \times DY \rightarrow D(X \times Y)\) such that: + \begin{equation*} + % https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIFxcdGltZXMgRFkiXSxbMCwxLCJEKFggXFx0aW1lcyBZKSJdLFsyLDAsIlggXFx0aW1lcyAoWSArIERZKSJdLFs0LDAsIlggXFx0aW1lcyBZICsgWCBcXHRpbWVzIERZIl0sWzQsMSwiWCBcXHRpbWVzIFkgKyBEKFggXFx0aW1lcyBZKSJdLFswLDEsIlxcdGF1IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzAsMiwiaWQgXFx0aW1lcyBvdXQiXSxbMiwzLCJkc3RsIl0sWzMsNCwiaWQgK1xcdGF1IiwyXSxbMSw0LCJvdXQiXV0= + \begin{tikzcd}[ampersand replacement=\&] + {X \times DY} \&\& {X \times (Y + DY)} \&\& {X \times Y + X \times DY} \\ + {D(X \times Y)} \&\&\&\& {X \times Y + D(X \times Y)} + \arrow["\tau", dashed, from=1-1, to=2-1] + \arrow["{id \times out}", from=1-1, to=1-3] + \arrow["dstl", from=1-3, to=1-5] + \arrow["{id +\tau}"', from=1-5, to=2-5] + \arrow["out", from=2-1, to=2-5] + \end{tikzcd} + \tag*{(D3)}\label{D3} + \end{equation*} + \end{itemize} +\end{lemma} +\begin{proof} + We will make use of the fact that every \(DX\) is a terminal coalgebra: + \begin{itemize} + \item[\ref{D1}] These follow by definition of \(now\) and \(later\): + \begin{alignat*}{3} + & out \circ now & & = out \circ out^{-1} \circ i_1 & = i_1 + \\&out \circ later &&= out \circ out^{-1} \circ i_2 &= i_2 + \end{alignat*} + \item[\ref{D2}] We define \(f^* = \;\coalg{\alpha} \circ i_1\), where \(\coalg{\alpha}\) is the unique coalgebra morphism in this diagram: + + % https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzcsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbNywyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIDo9IFsgWyBbIGlfMSAsIGlfMiBcXGNpcmMgaV8yIF0gXFxjaXJjIChvdXQgXFxjaXJjIGYpICwgaV8yIFxcY2lyYyBpXzEgXSBcXGNpcmMgb3V0ICwgKGlkICsgaV8yKSBcXGNpcmMgb3V0IF0iXSxbMiwwLCJpXzEiXSxbMCwzLCJcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzMsNCwib3V0Il0sWzEsNCwiaWQgKyBcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + DX \\ + {DX + DY} \&\&\&\&\&\&\& {Y + (DX + DY)} \\ + DY \&\&\&\&\&\&\& {Y + DY} + \arrow["{\alpha := [ [ [ i_1 , i_2 \circ i_2 ] \circ (out \circ f) , i_2 \circ i_1 ] \circ out , (id + i_2) \circ out ]}", from=2-1, to=2-8] + \arrow["{i_1}", from=1-1, to=2-1] + \arrow["{\coalg{\alpha}}", dashed, from=2-1, to=3-1] + \arrow["out", from=3-1, to=3-8] + \arrow["{id + \coalg{\alpha}}", dashed, from=2-8, to=3-8] + \end{tikzcd} + \] + + Note that \(\coalg{\alpha} \circ i_2 = id : (DY, out) \rightarrow (DY, out)\), by uniqueness of the identity morphism and the fact that \(\coalg{\alpha} \circ i_2\) is a coalgebra morphism, since + \begin{alignat*}{1} + & out \circ \coalg{\alpha} \circ i_2 + \\=\;&(id+\coalg{\alpha}) \circ \alpha \circ i_2 + \\=\;&(id + \coalg{\alpha}) \circ (id + i_2) \circ out + \\=\;&(id + \coalg{\alpha} \circ i_2) \circ out + \end{alignat*} + Let us verify that \(f^*\) indeed satisfies the requisite property: + \begin{alignat*}{1} + & out \circ \coalg{\alpha} \circ i_1 + \\=\;&(id + \coalg{\alpha}) \circ \alpha \circ i_1 + \\=\;&(id + \coalg{\alpha}) \circ [ [ i_1 , i_2 \circ i_2 ] \circ out \circ f , i_2 \circ i_1 ] \circ out + \\=\;&[ [ (id + \coalg{\alpha}) \circ i_1 , (id + \coalg{\alpha}) \circ i_2 \circ i_2 ] \circ out \circ f , (id + \coalg{\alpha}) \circ i_2 \circ i_1 ] \circ out + \\=\;&[ [ i_1 , i_2 \circ \coalg{\alpha} \circ i_2 ] \circ out \circ f , i_2 \circ \coalg{\alpha} \circ i_1 ] \circ out + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ out. + \end{alignat*} + + We are left to check uniqueness of \(f^*\). Let \(g : DX \rightarrow DY\) and \(out \circ g = [ out \circ f , i_2 \circ g ] \circ out\). + Note that \([ g , id ] : DX + DY \rightarrow DY\) is a coalgebra morphism, since + \begin{alignat*}{1} + & out \circ [ g , id ] + \\=\;&[ out \circ g , out ] + \\=\;&[ [ out \circ f , i_2 \circ g ] \circ out , out] + \\=\;&[ [ [ i_1 , i_2 ] \circ out \circ f , i_2 \circ g ] \circ out , (id + id) \circ out ] + \\=\;&[ [ [ i_1 , i_2 \circ [g , id] \circ i_2 ] \circ out \circ f , i_2 \circ [g , id] \circ i_1 ] \circ out , (id + [g , id] \circ i_2) \circ out ] + \\=\;&[ [ [ (id + [g , id]) \circ i_1 , (id + [g , id]) \circ i_2 \circ i_2 ] \circ out \circ f , (id + [g , id]) \circ i_2 \circ i_1 ] \circ out + \\ \;&, (id + [g , id]) \circ (id + i_2) \circ out ] + \\=\;&(id + [g , id]) \circ [ [ [ i_1 , i_2 \circ i_2 ] \circ out \circ f , i_2 \circ i_1 ] \circ out , (id + i_2) \circ out ]. + \end{alignat*} + + Thus, \([ g , id ] = \coalg{\alpha}\) by uniqueness of \(\coalg{\alpha}\). + It follows that indeed \[g = [ g , id ] \circ i_1 =\;\coalg{\alpha} \circ i_1 = f^*.\] + \item[\ref{D3}] Take \(\tau := \coalg{dstl \circ (id \times out)} : X \times DY \rightarrow D(X \times Y)\), the requisite property then follows by definition. + \qedhere + \end{itemize} +\end{proof} + +\begin{lemma} + The following properties of \(\mathbf{D}\) hold: + \begin{enumerate} + \item \(out \circ Df = (f + Df) \circ out\) + \item \(f^* = [ f , {(later \circ f)}^* ] \circ out\) + \item \(later \circ f^* = {(later \circ f)}^* = f^* \circ later\) + \end{enumerate} +\end{lemma} +\begin{proof} These identities follow by use of \autoref{lem:delay}: + \begin{itemize} + \item[1.] Note that definitionally: \(Df = {(now \circ f)}^*\) for any \(f : X \rightarrow TY\). The statement is then simply a consequence of~\ref{D1} and~\ref{D2}: + \begin{alignat*}{1} + & out \circ Df + \\=\;&out \circ {(now \circ f)}^* + \\=\;&[ out \circ now \circ f , i_2 \circ {(now \circ f)}^* ] \circ out\tag*{\ref{D2}} + \\=\;&(f + Df) \circ out.\tag*{\ref{D1}} + \end{alignat*} + \item[2.] By uniqueness of \(f^*\) it suffices to show: + \begin{alignat*}{1} + & out \circ [ f , {(later \circ f)}^* ] \circ out + \\=\;&[ out \circ f , out \circ {(later \circ f)}^* ] \circ out + \\=\;&[out \circ f , [ out \circ later \circ f , i_2 \circ {(later \circ f)}^* ] \circ out ] \circ out\tag*{\ref{D2}} + \\=\;&[out \circ f , i_2 \circ [ f , {(later \circ f)}^* ] \circ out ] \circ out.\tag*{\ref{D1}} + \end{alignat*} + \item[3.] + This equational chain follows by monicity of \(out\): + \begin{alignat*}{1} + & out \circ {(later \circ f)}^* + \\=\;&[ out \circ later \circ f , i_2 \circ {(later \circ f)}^*] \circ out\tag*{\ref{D2}} + \\=\;&i_2 \circ [ f , {(later \circ f)}^*] \circ out\tag*{\ref{D1}} + \\=\;&i_2 \circ f^* + \\=\;&out \circ later \circ f^*\tag*{\ref{D1}} + \\=\;&i_2 \circ f^*\tag*{\ref{D1}} + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ i_2 + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ out \circ later\tag*{\ref{D1}} + \\=\;&out \circ f^* \circ later. \tag*{\ref{D2}} + \end{alignat*} + \end{itemize} + Thus, the postulated properties have been proven. +\end{proof} + +\begin{lemma} + \(\mathbf{D} := (D, now, {(-)}^*)\) is a Kleisli triple. +\end{lemma} +\begin{proof} + We will now use the properties proven in \autoref{lem:delay} to prove the Kleisli triple laws: + \begin{itemize} + \item[\ref{K1}] + By uniqueness of \(now^*\) it suffices to show that \(out \circ id = [ out \circ now , i_2 \circ id ] \circ out\) which instantly follows by~\ref{D1}. + \item[\ref{K2}] Let \(f : X \rightarrow DY\). We proceed by monicity of \(out\): + \begin{alignat*}{1} + & out \circ f^* \circ now + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ out \circ now\tag*{\ref{D2}} + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ i_1\tag*{\ref{D1}} + \\=\;&out \circ f. + \end{alignat*} + \item[\ref{K3}] Let \(f : Y \rightarrow Z, g : X \rightarrow Z\) to show \(f^* \circ g^* = {(f^* \circ g)}^*\) by uniqueness of \({(f^* \circ g)}^*\) it suffices to show: + \begin{alignat*}{1} + & out \circ f^* \circ g^* + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ out \circ g^*\tag*{\ref{D2}} + \\=\;&[ out \circ f , i_2 \circ f^* ] \circ [ out \circ g , i_2 \circ g^* ] \circ out\tag*{\ref{D2}} + \\=\;&[ [ out \circ f , i_2 \circ f^* ] \circ out \circ g , i_2 \circ f^* \circ g^* ] \circ out + \\=\;&[ out \circ f^* \circ g , i_2 \circ f^* \circ g^* ] \circ out.\tag*{\ref{D2}} + \end{alignat*} + \end{itemize} + This concludes the proof. +\end{proof} + +Terminality of the coalgebras \({(DX, out : DX \rightarrow X + DX)}_{X \in \obj{\C}}\) yields the following proof principle. +\begin{remark}[Proof by coinduction]~\label{rem:coinduction} + Given two morphisms \(f, g : X \rightarrow DY\). To show that \(f = g\) it suffices to show that there exists a coalgebra structure \(\alpha : X \rightarrow Y + X\) such that the following diagrams commute: + % https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIl0sWzAsMSwiRFkiXSxbMiwxLCJZICsgRFkiXSxbMiwwLCJZICsgWCJdLFs0LDAsIlgiXSxbNCwxLCJEWSJdLFs2LDAsIlkgKyBYIl0sWzYsMSwiWSArIERZIl0sWzEsMiwib3V0Il0sWzAsMywiXFxhbHBoYSJdLFswLDEsImYiXSxbMywyLCJpZCArIGYiXSxbNCw2LCJcXGFscGhhIl0sWzQsNSwiZyJdLFs2LDcsImlkICsgZyJdLFs1LDcsIm91dCJdXQ== + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \&\& {Y + X} \&\& X \&\& {Y + X} \\ + DY \&\& {Y + DY} \&\& DY \&\& {Y + DY} + \arrow["out", from=2-1, to=2-3] + \arrow["\alpha", from=1-1, to=1-3] + \arrow["f", from=1-1, to=2-1] + \arrow["{id + f}", from=1-3, to=2-3] + \arrow["\alpha", from=1-5, to=1-7] + \arrow["g", from=1-5, to=2-5] + \arrow["{id + g}", from=1-7, to=2-7] + \arrow["out", from=2-5, to=2-7] + \end{tikzcd} + \] + Uniqueness of the coalgebra morphism \(\coalg{\alpha} : (X, \alpha) \rightarrow (DY, out)\) then results in \(f = g\). +\end{remark} + +\begin{lemma} + \(\mathbf{D}\) is a strong monad. +\end{lemma} +\begin{proof} + Most of the following proofs are done via coinduction (Remark~\ref{rem:coinduction}). We will only give the requisite coalgebra structure. The proofs that the diagrams commute can be looked up in the Agda formalization. + + First we need to show naturality of \(\tau \), i.e.\ we need to show that + \[\tau \circ (f \times {(now \circ g)}^*) = {(now \circ (f \times g))}^* \circ \tau \] + The coalgebra for coinduction is: + % https://q.uiver.app/#q=WzAsNixbMCwwLCJYIFxcdGltZXMgRFkiXSxbMCwyLCJEKEFcXHRpbWVzIEIpIl0sWzQsMiwiQVxcdGltZXMgQiArIEQoQSBcXHRpbWVzIEIpIl0sWzEsMCwiWCBcXHRpbWVzIChZICsgRFkpIl0sWzIsMCwiWCBcXHRpbWVzIFkgKyBYIFxcdGltZXMgRFkiXSxbNCwwLCJBIFxcdGltZXMgQiArIFggXFx0aW1lcyBEWSJdLFsxLDIsIm91dCJdLFswLDMsImlkIFxcdGltZXMgb3V0Il0sWzMsNCwiZHN0bCJdLFswLDEsIlxcY29hbGd7LX0iLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNCw1LCJmIFxcdGltZXMgZyArIGlkIl0sWzUsMiwiaWQgKyBcXGNvYWxney19IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times DY} \& {X \times (Y + DY)} \& {X \times Y + X \times DY} \&\& {A \times B + X \times DY} \\ + \\ + {D(A\times B)} \&\&\&\& {A\times B + D(A \times B)} + \arrow["out", from=3-1, to=3-5] + \arrow["{id \times out}", from=1-1, to=1-2] + \arrow["dstl", from=1-2, to=1-3] + \arrow["{\coalg{\text{-}}}", dashed, from=1-1, to=3-1] + \arrow["{f \times g + id}", from=1-3, to=1-5] + \arrow["{id + \coalg{\text{-}}}", dashed, from=1-5, to=3-5] + \end{tikzcd} + \] + We write \(\coalg{\text{-}}\) to abbreviate the used coalgebra, i.e.\ in the previous diagram + \[\coalg{\text{-}} = \coalg{(f\times g + id) \circ dstl \circ (id \times out)}.\] + + Next we check the strength laws: + \begin{itemize} + \item[\ref{S1}] To show that \({(now \circ \pi_2)}^* \circ \tau = \pi_2\) we do coinduction using the following coalgebra: + % https://q.uiver.app/#q=WzAsNixbMCwwLCIxIFxcdGltZXMgRFgiXSxbMCwxLCJEWCJdLFszLDAsIlggKyAxIFxcdGltZXMgRFgiXSxbMywxLCJYICsgRFgiXSxbMSwwLCIxIFxcdGltZXMgWCArIERYIl0sWzIsMCwiMSBcXHRpbWVzIFggKyAxIFxcdGltZXMgRFgiXSxbMSwzLCJvdXQiXSxbMCwxLCJcXGNvYWxney19IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMywiaWQgKyBcXGNvYWxney19Il0sWzAsNCwiaWQgXFx0aW1lcyBvdXQiXSxbNCw1LCJkc3RsIl0sWzUsMiwiXFxwaV8yICsgaWQiXV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + {1 \times DX} \& {1 \times X + DX} \& {1 \times X + 1 \times DX} \& {X + 1 \times DX} \\ + DX \&\&\& {X + DX} + \arrow["out", from=2-1, to=2-4] + \arrow["{\coalg{\text{-}}}", dashed, from=1-1, to=2-1] + \arrow["{id + \coalg{\text{-}}}", from=1-4, to=2-4] + \arrow["{id \times out}", from=1-1, to=1-2] + \arrow["dstl", from=1-2, to=1-3] + \arrow["{\pi_2 + id}", from=1-3, to=1-4] + \end{tikzcd} + \] + \item[\ref{S2}] We don't need coinduction to show \(\tau \circ (id \times now) = now\), but we will first need to establish + \begin{equation*} + \tau \circ (id \times out^{-1}) = out^{-1} \circ (id + \tau) \circ dstl, \tag*{(\(\ast \))}\label{helper} + \end{equation*} + which is a direct consequence of~\ref{D3}. + With this we are done by + \begin{alignat*}{1} + & \tau \circ (id \times now) \\ + =\; & \tau \circ (id \times out^{-1}) \circ (id \times i_1) \\ + =\; & out^{-1} \circ (id + \tau) \circ dstl \circ (id \times i_1)\tag*{\ref*{helper}} \\ + =\; & now. + \end{alignat*} + \item[\ref{S3}] We need to check \(\tau^* \circ \tau = \tau \circ (id \times id^*)\), the coalgebra for coinduction is: + % https://q.uiver.app/#q=WzAsNixbMCwwLCJYIFxcdGltZXMgRERZIl0sWzAsMiwiRChYXFx0aW1lcyBZKSJdLFsxLDAsIlggXFx0aW1lcyAoRFkgKyBERFkpIl0sWzIsMCwiWCBcXHRpbWVzIERZICsgWCBcXHRpbWVzIEREWSJdLFsyLDIsIlggXFx0aW1lcyBZICsgRChYIFxcdGltZXMgWSkiXSxbMiwxLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBERFkiXSxbMCwxLCJcXGNvYWxney19IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzAsMiwiaWQgXFx0aW1lcyBvdXQiXSxbMiwzLCJkc3RsIl0sWzEsNCwib3V0Il0sWzUsNCwiaWQgKyBcXGNvYWxney19IiwyXSxbMyw1LCJbIChpZCArIChpZCBcXHRpbWVzIG5vdykpIFxcY2lyYyBkc3RsIFxcY2lyYyAoaWQgXFx0aW1lcyBvdXQpICwgaV8yIF0iLDJdXQ== + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times DDY} \& {X \times (DY + DDY)} \& {X \times DY + X \times DDY} \\ + \&\& {X \times Y + X \times DDY} \\ + {D(X\times Y)} \&\& {X \times Y + D(X \times Y)} + \arrow["{\coalg{\text{-}}}", dashed, from=1-1, to=3-1] + \arrow["{id \times out}", from=1-1, to=1-2] + \arrow["dstl", from=1-2, to=1-3] + \arrow["out", from=3-1, to=3-3] + \arrow["{id + \coalg{\text{-}}}"', from=2-3, to=3-3] + \arrow["{[ (id + (id \times now)) \circ dstl \circ (id \times out) , i_2 ]}"', from=1-3, to=2-3] + \end{tikzcd} + \] + \item[\ref{S4}] To show \(D\alpha \circ \tau = \tau \circ (id \times \tau) \circ \alpha \) by coinduction we take the coalgebra: + % https://q.uiver.app/#q=WzAsNixbMCwwLCIoWCBcXHRpbWVzIFkpIFxcdGltZXMgRFoiXSxbMCwyLCJEKFggXFx0aW1lcyBZIFxcdGltZXMgWikiXSxbMiwyLCJYIFxcdGltZXMgWSBcXHRpbWVzIFogKyBEKFggXFx0aW1lcyBZIFxcdGltZXMgWikiXSxbMiwxLCJYIFxcdGltZXMgWSAgXFx0aW1lcyBaICsgKFggXFx0aW1lcyBZKSBcXHRpbWVzIERaIl0sWzEsMCwiKFggXFx0aW1lcyBZKSBcXHRpbWVzIChaKyBEWikiXSxbMiwwLCIoWFxcdGltZXMgWSkgXFx0aW1lcyBaICsgKFggXFx0aW1lcyBZKSBcXHRpbWVzIERaIl0sWzAsMSwiXFxjb2FsZ3stfSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDIsIm91dCJdLFszLDIsImlkICtcXGNvYWxney19IiwyXSxbMCw0LCJpZCBcXHRpbWVzIG91dCJdLFs0LDUsImRzdGwiXSxbNSwzLCJcXGxhbmdsZSBcXHBpXzEgXFxjaXJjIFxccGlfMSAsIFxcbGFuZ2xlIFxccGlfMiBcXGNpcmMgXFxwaV8xICwgXFxwaV8yIFxccmFuZ2xlIFxccmFuZ2xlICsgaWQiLDJdXQ== + \[ + \begin{tikzcd}[ampersand replacement=\&] + {(X \times Y) \times DZ} \& {(X \times Y) \times (Z+ DZ)} \& {(X\times Y) \times Z + (X \times Y) \times DZ} \\ + \&\& {X \times Y \times Z + (X \times Y) \times DZ} \\ + {D(X \times Y \times Z)} \&\& {X \times Y \times Z + D(X \times Y \times Z)} + \arrow["{\coalg{\text{-}}}", dashed, from=1-1, to=3-1] + \arrow["out", from=3-1, to=3-3] + \arrow["{id +\coalg{\text{-}}}"', from=2-3, to=3-3] + \arrow["{id \times out}", from=1-1, to=1-2] + \arrow["dstl", from=1-2, to=1-3] + \arrow["{\langle \pi_1 \circ \pi_1 , \langle \pi_2 \circ \pi_1 , \pi_2 \rangle \rangle + id}"', from=1-3, to=2-3] + \end{tikzcd} + \] + \end{itemize} + Thus, it has been shown that \(\mathbf{D}\) is a strong monad. +\end{proof} + +To prove that \(\mathbf{D}\) is commutative we will use another proof principle previously called the \textit{Solution Theorem}~\cite{sol-thm} or \textit{Parametric Corecursion}~\cite{param-corec}. In our setting this takes the following form. + +\begin{definition} + We call a morphism \(g : X \rightarrow D (Y + X)\) \textit{guarded} if there exists a morphism \(h : X \rightarrow Y + D(Y+X)\) such that the following diagram commutes: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzMsMCwiRCAoWSArWCkiXSxbMywxLCIoWSArIFgpICsgRChZICsgWCkiXSxbMCwxLCJZICsgRChZK1gpIl0sWzAsMSwiZyJdLFsxLDIsIm91dCJdLFszLDIsImlfMSArIGlkIiwyXSxbMCwzLCJoIiwyXV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + X \&\&\& {D (Y +X)} \\ + {Y + D(Y+X)} \&\&\& {(Y + X) + D(Y + X)} + \arrow["g", from=1-1, to=1-4] + \arrow["out", from=1-4, to=2-4] + \arrow["{i_1 + id}"', from=2-1, to=2-4] + \arrow["h"', from=1-1, to=2-1] + \end{tikzcd} + \] +\end{definition} + +\begin{corollary}[Solution Theorem]\label{cor:solution} + Let \(g : X \rightarrow D(Y + X)\) be guarded.\ \textit{Solutions} of g are unique, i.e.\ given two morphisms \(f, i : X \rightarrow DY\) then + \(f = {[ now , f ]}^* \circ g\) and \(i = {[ now , i ]}^* \circ g\) already implies \(f = i\). +\end{corollary} +\begin{proof} + Let \(g : X \rightarrow D(Y + X)\) be guarded by \(h : X \rightarrow Y + D(Y+X)\) and \(f, i : X \rightarrow DY\) be solutions of g. + It suffices to show \({[ now , f ]}^* = {[ now , i ]}^*\), because then follows that + \[f = {[ now , f ]}^* \circ g = {[ now , i ]}^* \circ g = i.\] + This is proven by coinduction using + % https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWSJdLFszLDEsIlkgKyBEWSJdLFswLDAsIkQoWSArIFgpIl0sWzEsMCwiKFkgKyBYKSArIEQoWStYKSJdLFszLDAsIlkgKyBEKFkrWCkiXSxbMCwxLCJvdXQiXSxbMiwzLCJvdXQiXSxbMyw0LCJbIFsgaV8xICwgaCBdICwgaV8yIF0iXSxbNCwxLCJpZCArIFxcY29hbGd7LX0iXSxbMiwwLCJcXGNvYWxney19IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + {D(Y + X)} \& {(Y + X) + D(Y+X)} \&\& {Y + D(Y+X)} \\ + DY \&\&\& {Y + DY} + \arrow["out", from=2-1, to=2-4] + \arrow["out", from=1-1, to=1-2] + \arrow["{[ [ i_1 , h ] , i_2 ]}", from=1-2, to=1-4] + \arrow["{id + \coalg{\text{-}}}", from=1-4, to=2-4] + \arrow["{\coalg{\text{-}}}", dashed, from=1-1, to=2-1] + \end{tikzcd} + \] + which concludes the proof. +\end{proof} + +Let us record some facts that we will use to prove commutativity of \(\mathbf{D}\): + +\begin{corollary} + These properties of \(\tau \) and \(\sigma \) hold: + \begin{alignat*}{2} + & out \circ \tau & & = (id + \tau) \circ dstl \circ (id \times out)\tag*{(\(\tau_1\))}\label{tau1} + \\&out \circ \sigma &&= (id + \sigma) \circ dstr \circ (out \times id)\tag*{(\(\sigma_1\))}\label{sigma1} + \\&\tau \circ (id \times out^{-1}) &&= out^{-1} \circ (id + \tau) \circ dstl\tag*{(\(\tau_2\))}\label{tau2} + \\& \sigma \circ (out^{-1} \times id) &&= out^{-1} \circ (id + \sigma) \circ dstr\tag*{(\(\sigma_2\))}\label{sigma2} + \end{alignat*} +\end{corollary} + +\begin{proof} + \begin{itemize} + \item[\ref{tau1}] This is just~\ref{D3} restated. + \item[\ref{sigma1}] Indeed, by use of~\ref{tau1} + \begin{alignat*}{1} + & out \circ \sigma + \\=\;&out \circ Dswap \circ \tau \circ swap + \\=\;&(swap + Dswap) \circ out \circ \tau \circ swap + \\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ (id \times out) \circ swap \tag*{\ref{tau1}} + \\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ swap \circ (out \times id) + \\=\;&(swap + Dswap) \circ (id + \tau) \circ (swap + swap) \circ dstr \circ (out \times id) + \\=\;&(id + \sigma) \circ dstr \circ (out \times id). + \end{alignat*} + \item[\ref{tau2}] By monicity of \(out\): + \begin{alignat*}{1} + & out \circ \tau \circ (id \times out^{-1}) + \\=\;&(id + \tau) \circ dstl \circ (id \times out) \circ (id \times out^{-1})\tag*{\ref{tau1}} + \\=\;&(id + \tau) \circ dstl. + \end{alignat*} + \item[\ref{sigma2}] Again, by monicity of \(out\): + \begin{alignat*}{1} + & out \circ \sigma \circ (out^{-1} \times id) + \\=\;&(id + \sigma) \circ dstr \circ (out \times id) \circ (out^{-1} \times id)\tag*{\ref{sigma1}} + \\=\;&(id + \sigma) \circ dstr.\tag*{\qedhere} + \end{alignat*} + \end{itemize} +\end{proof} + +\begin{theorem} + \(\mathbf{D}\) is commutative. +\end{theorem} +\begin{proof} + Using \autoref{cor:solution} it suffices to show that both \(\tau^* \circ \sigma \) and \(\sigma^* \circ \tau \) are solutions of some guarded morphism \(g\). + + Let \(w := (dstr + dstr) \circ dstl \circ (out \times out)\) and take + \[g := out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w.\] + Note that \(g\) is trivially guarded by \([ id + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\). + It thus suffices to show that both \(\tau^* \circ \sigma \) and \(\sigma^* \circ \tau \) are solutions of \(g\). Consider + + \[\tau^* \circ \sigma = out^{-1} \circ [ id + \sigma , i_2 \circ [ \tau , later \circ \tau^* \circ \sigma ] ] \circ w = {[ now , \tau^* \circ \sigma]}^* \circ g, \] + and + \[\sigma^* \circ \tau = out^{-1} \circ [ id + \sigma , i_2 \circ [ \tau , later \circ \sigma^* \circ \tau ] ] \circ w = {[ now , \sigma^* \circ \tau]}^* \circ g. \] + + The last step in both equations can be proven generally for any \(f : DX \times DY \rightarrow D(X \times Y)\) using monicity of \(out\): + \begin{alignat*}{1} + & out \circ {[ now , f ]}^* \circ out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w + \\=\; & [ out \circ [ now , f ] , i_2 \circ {[ now , f ]}^* ] \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D2}} + \\=\; & [ id + \sigma , i_2 \circ {[ now , f]}^* \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D1}} + \\=\; & [ id + \sigma , i_2 \circ [ \tau , {[ now , f]}^* \circ later \circ now \circ i_2 ] ] \circ w + \\=\; & [ id + \sigma , i_2 \circ [ \tau , {[ later \circ now , later \circ f]}^* \circ now \circ i_2 ] ] \circ w + \\=\; & [ id + \sigma , i_2 \circ [ \tau , later \circ f ] ] \circ w. + \end{alignat*} + + Let us now check the first step in the equation for \(\sigma^* \circ \tau \), the same step for \(\tau^* \circ \sigma \) is then symmetric. Again, we proceed by monicity of \(out\), which yields + \begin{alignat*}{1} + & out \circ \sigma^* \circ \tau + \\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ out \circ \tau\tag*{\ref{D2}} + \\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ (id + \tau) \circ dstl \circ (id \times out)\tag*{\ref{D3}} + \\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ dstl \circ (id \times out)\tag*{\ref{sigma1}} + \\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ ((out^{-1} \times id) + (out^{-1} \times id)) \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ \tau \circ (out^{-1} \times id)] \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ D(out^{-1} \times id) \circ \tau] \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ {(\sigma \times (out^{-1} \times id))}^* \circ \tau] \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ {(out^{-1} \circ (id + \sigma) \circ dstr)}^* \circ \tau] \circ dstl \circ (out \times out)\tag*{\ref{sigma2}} + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ {(out^{-1} \circ (id + \sigma))}^* \circ Ddstr \circ \tau] \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ {(out^{-1} \circ (id + \sigma))}^* \circ [D i_1 \circ \tau , D i_2 \circ \tau] \circ dstr] \circ dstl \circ (out \times out)\tag*{\ref{Dcomm-helper}} + \\=\;&[ (id + \sigma), i_2 \circ {(out^{-1} \circ (id + \sigma))}^* \circ [D i_1 \circ \tau , D i_2 \circ \tau]] \circ (dstr + dstr) \circ dstl \circ (out \times out) + \\=\;&[ (id + \sigma), i_2 \circ [{(out^{-1} \circ i_1)}^* \circ \tau , {(out^{-1} \circ i_2 \circ \sigma)}^* \circ \tau]] \circ w + \\=\;&[ (id + \sigma), i_2 \circ [ \tau , {(later \circ \sigma)}^* \circ \tau]] \circ w \tag*{\ref{K1}} + \\=\;&[ (id + \sigma), i_2 \circ [ \tau , later \circ \sigma^* \circ \tau]] \circ w, + \end{alignat*} + where + \[Ddstr \circ \tau = [ Di_1 \circ \tau , Di_2 \circ \tau ] \circ dstr \tag*{(*)}\label{Dcomm-helper}\] + indeed follows by epicness of \(dstr^{-1}\): + \begin{alignat*}{1} + & Ddstr \circ \tau \circ dstr^{-1} + \\=\;&[ Ddstr \circ \tau \circ (i_1 \times id) , Ddstr \circ \tau \circ (i_2 \times id) ] + \\=\;&[ Ddstr \circ D(i_1 \times id) \circ \tau , Ddstr \circ D(i_2 \times id) \circ \tau ] + \\=\;&[ Di_1 \circ \tau , Di_2 \circ \tau ].\tag*{\qedhere} + \end{alignat*} +\end{proof} + +We have now seen that \(\mathbf{D}\) is strong and commutative, however it is not an equational lifting monad, since besides modeling non-termination, the delay monad also counts the execution time of a computation. +This is a result of the too intensional notion of equality that this monad comes with. + +In \autoref{chp:setoids} we will see a way to remedy this: taking the quotient of the delay monad where execution time is ignored. +This will then yield an equational lifting monad on the category of setoids. +However, in a general setting it is generally believed to be impossible to define a monad structure on this quotient. +Chapman et al.~\cite{quotienting} have identified the axiom of countable choice (which crucially holds in the category of setoids) as a sufficient requirement for defining a monad structure on the quotient of \(\mathbf{D}\). \ No newline at end of file diff --git a/src/05_iteration.tex b/src/05_iteration.tex new file mode 100644 index 0000000..e9af2fb --- /dev/null +++ b/src/05_iteration.tex @@ -0,0 +1,1040 @@ +\chapter{Iteration Algebras and Monads}~\label{chp:iteration} +In this chapter we will draw on the inherent connection between partiality and iteration to establish a partiality monad in a general setting without axioms by utilizing previous research on iteration theories. + +\section{Elgot Algebras} +Recall the following notion from~\cite{elgotalgebras}, previously called \emph{complete Elgot algebra}. +\begin{definition}[Guarded Elgot Algebra] + \ Given a functor \(H : \C \rightarrow \C\), a \emph{(H-)guarded Elgot algebra} consists of: % chktex 36 + \begin{itemize} + \item An object \(A \in \obj{\C}\), + \item a H-algebra structure \(a : H\;A \rightarrow A\), + \item and for every \(f : X \rightarrow A + HX\) an \emph{iteration} \(f^\sharp : X \rightarrow A\), satisfying the following axioms: + \begin{itemize} + \item \customlabel{law:guardedfixpoint}{\textbf{Fixpoint}}: \(f^\sharp = [ id , a \circ H(f^\sharp) ] \circ f\) + \\ for any \(f : X \rightarrow A + HX\), + \item \customlabel{law:guardeduniformity}{\textbf{Uniformity}}: \((id + Hh) \circ f = g \circ h\) implies \(f^\sharp = g^\sharp \circ h\) + \\ for any \(f : X \rightarrow A + HX, g : Y \rightarrow A + HY, h : X \rightarrow Y\), + \item \customlabel{law:guardedcompositionality}{\textbf{Compositionality}}: \({((f^\sharp + id) \circ h)}^\sharp = {([ (id + Hi_1) \circ f , i_2 \circ Hi_2 ] \circ [ i_1 , h ])}^\sharp \circ i_2\) + \\ for any \(f : X \rightarrow A + HX, h : Y \rightarrow X + HY\). + \end{itemize} + \end{itemize} +\end{definition} + +Consider an Elgot algebra over the identity functor \(Id : \C \rightarrow \C\) together with the trivial Id-algebra structure \(id : A \rightarrow A\). Morphisms of the form \(f : X \rightarrow A + X\) can then be viewed as modeling one iteration of a loop, where \(X \in \obj{\C}\) is the state space and \(A \in \obj{\C}\) the object of values. Intuitively, in such a setting the iteration operator \({(-)}^\sharp\) runs such a morphism in a loop until it terminates (or diverges), thus assigning it a solution. This is what the \ref{law:guardedfixpoint} axiom guarantees. On the other hand the \ref{law:uniformity} axiom states how to handle loop invariants and finally, the \ref{law:guardedcompositionality} axiom is the most sophisticated one, stating that compatible iterations can be combined into a single iteration with a merged state space. % chktex 2 + +The previous intuition gives rise to the following simpler definition that has been introduced in~\cite{uniformelgot}. + +\begin{definition}[Elgot Algebra] + A \emph{(unguarded) Elgot Algebra}~\cite{uniformelgot} consists of: + \begin{itemize} + \item An object \(A \in \obj{\C}\), + \item and for every \(f : X \rightarrow A + X\) an \emph{iteration} \(f^\sharp : X \rightarrow A\), satisfying the following axioms: + \begin{itemize} + \item \customlabel{law:fixpoint}{\textbf{Fixpoint}}: \(f^\sharp = [ id , f ^\sharp ] \circ f\) + \\ for any \(f : X \rightarrow A + X\), + \item \customlabel{law:uniformity}{\textbf{Uniformity}}: \((id + h) \circ f = g \circ h\) implies \(f ^\sharp = g^\sharp \circ h\) + \\ for any \(f : X \rightarrow A + X,\; g : Y \rightarrow A + Y,\; h : X \rightarrow Y\), + \item \customlabel{law:folding}{\textbf{Folding}}: \({((f^\sharp + id) \circ h)}^\sharp = {[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp \) + \\ for any \(f : X \rightarrow A + X,\; h : Y \rightarrow X + Y\). + \end{itemize} + \end{itemize} +\end{definition} + +Note that the \ref{law:uniformity} axiom requires an identity to be proven, before it can be applied. % chktex 2 +However, we will omit these proofs in most parts of the thesis, since they mostly follow by simple rewriting on (co)products, the full proofs can be looked up in the accompanying formalization. % chktex 36 + +Now, in this setting the simpler \ref{law:folding} axiom replaces the sophisticated \ref{law:guardedcompositionality} axiom. % chktex 2 +Indeed, for \(Id\)-guarded Elgot algebras with a trivial algebra structure, the \ref{law:folding} and \ref{law:guardedcompositionality} axioms are equivalent~\cite{uniformelgot}, which is partly illustrated by the following Lemma. % chktex 2 + +\begin{lemma} + Every Elgot algebra \((A , {(-)}^\sharp)\) satisfies the following additional axioms + + \begin{itemize} + \item \customlabel{law:compositionality}{\textbf{Compositionality}}: \({((f^\sharp + id) \circ h)}^\sharp = {([ (id + i_1) \circ f , i_2 \circ i_2 ] \circ [ i_1 , h ])}^\sharp \circ i_2\) + \\ for any \(f : X \rightarrow A + X, h : Y \rightarrow X + Y\), + \item \customlabel{law:stutter}{\textbf{Stutter}}: \({(([ h , h ] + id) \circ f)}^\sharp = {(i_1 \circ h , [ h + i_1 , i_2 \circ i_2 ] )}^\sharp \circ inr\) + \\ for any \(f : X \rightarrow (Y + Y) + X, h : Y \rightarrow A\), + \item \customlabel{law:diamond}{\textbf{Diamond}}: \({((id + \Delta) \circ f)}^\sharp = {([ i_1 , {((id + \Delta) \circ f)}^\sharp + id] \circ f)}^\sharp \) + \\ for any \(f : X \rightarrow A + (X + X)\). + \end{itemize} +\end{lemma} +\begin{proof} The proofs of the axioms build upon each other, we prove them one by one. + \begin{itemize} + \item \ref{law:compositionality}: First, note that \ref{law:folding} can equivalently be reformulated as % chktex 2 + \begin{equation*} + {((f^\sharp + id) \circ h)}^\sharp = {[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp \circ i_2, \tag{\textbf{Folding'}}\label{law:folding'} + \end{equation*} + since + \begin{alignat*}{1} + & {((f^\sharp + id) \circ h)}^\sharp + \\=\;&{(f^\sharp + h)}^\sharp \circ h\tag{\ref{law:uniformity}} + \\=\;&[f^\sharp , {(f^\sharp + h)}^\sharp \circ h ] \circ i_2 + \\=\;&[ id , {(f^\sharp + h)}^\sharp ] \circ (f^\sharp + h) \circ i_2 + \\=\;&{(f^\sharp + h)}^\sharp \circ i_2 \tag{\ref{law:fixpoint}} + \\=\;&{[ (id + i_1) \circ f , i_2 \circ h]}^\sharp \circ i_2. \tag{\ref{law:folding}} + \end{alignat*} + Using \ref{law:folding'}, it suffices to show that % chktex 2 + \[{[ (id + i_1) \circ f , i_2 \circ h]}^\sharp \circ i_2 = {([ (id + i_1) \circ f , i_2 \circ i_2 ] \circ [ i_1 , h ])}^\sharp \circ i_2.\] + Indeed, + \begin{alignat*}{1} + & {[ (id + i_1) \circ f , i_2 \circ h]}^\sharp \circ i_2 + \\=\;&[ id , {[ (id + i_1) \circ f , i_2 \circ h]}^\sharp ] \circ [ (id + i_1) \circ f , i_2 \circ h] \circ i_2 \tag{\ref{law:fixpoint}} + \\=\;&[ id , {[ (id + i_1) \circ f , i_2 \circ h]}^\sharp ] i_2 \circ h + \\=\;&{[ (id + i_1) \circ f , i_2 \circ h]}^\sharp \circ h + \\=\;&{[ (id + i_1) \circ f , i_2 \circ h]}^\sharp [ i_1 , h ] \circ i_2 + \\=\;&{([ (id + i_1) \circ f , i_2 \circ i_2 ] \circ [ i_1 , h ])}^\sharp \circ i_2.\tag{\ref{law:uniformity}} + \end{alignat*} + + \item \ref{law:stutter}: Let us first establish % chktex 2 + \begin{equation} + [ h , h ] = {(h + i_1)}^\sharp, \tag{*}\label{stutter-helper} + \end{equation} + which follows by + \begin{alignat*}{1} + & {(h + i_1)}^\sharp + \\=\;&[ id , {(h + i_1)}^\sharp ] \circ (h + i_1) \tag{\ref{law:fixpoint}} + \\=\;&[ h , {(h + i_1)}^\sharp \circ i_1 ] + \\=\;&[ h , [ id , {(h + i_1)}^\sharp ] \circ (h + i_1) \circ i_1 ] \tag{\ref{law:fixpoint}} + \\=\;&[ h , h ]. + \end{alignat*} + + Now we are done by + \begin{alignat*}{1} + & {([ h , h ] + id) \circ f}^\sharp + \\=\;&{({(h + i_1)}^\sharp + id) \circ f}^\sharp\tag{\ref{stutter-helper}} + \\=\;&{([(id + i_1) \circ (h + i_1) , i_2 \circ i_2] \circ [ i_1 , f])}^\sharp \circ i_2\tag{\ref{law:compositionality}} + \\=\;&{([h + i_1 \circ i_1 , i _2 \circ i_2] \circ [ i_1 , f])}^\sharp \circ (i_1 + id) \circ i_2 + \\=\;&{[ i_1 \circ h , [ h + i_1 , i_2 \circ i_2 ] \circ f ]}^\sharp \circ i_2. \tag{\ref{law:uniformity}} + \end{alignat*} + \item \ref{law:diamond}: Let \(h = [ i_1 \circ i_1 , i_2 + id ] \circ f\) and \(g = (id + \Delta) \circ f\). %chktex 2 + + First, note that + \begin{equation*} + [ id , g^\sharp ] = {[ i_1 , (id + i_2) \circ g ]}^\sharp, \tag{\(∗\)}\label{diamond-helper} + \end{equation*} + by \ref{law:fixpoint} and \ref{law:uniformity}: % chktex 2 + \begin{alignat*}{1} + & [ id , g^\sharp ] + \\=\;&[ id , [ id , g^\sharp ] \circ g ] \tag{\ref{law:fixpoint}} + \\=\;&[ id , [ id , {[ i_1 , (id + i_2) \circ g ]}^\sharp \circ i_2 ] \circ g ] \tag{\ref{law:uniformity}} + \\=\;&[ id , {[ i_1 , (id + i_2) \circ g ]}^\sharp ] \circ [ i_1 , (id + i_2) \circ g ] + \\=\;&{[ i_1 , (id + i_2) \circ g ]}^\sharp. \tag{\ref{law:fixpoint}} + \end{alignat*} + + It thus suffices to show that, + \begin{alignat*}{1} + & g^\sharp + \\=\;&{[ (id + i_1) \circ [ i_1 , (id + i_2) \circ g ] , i_2 \circ h ]}^\sharp \circ i_2 + \\=\;&{({[i_1 , (id + i_2) \circ g ]}^\sharp + h)}^\sharp \circ i_2\tag{\ref{law:folding}} + \\=\;&{([ i_1 , g^\sharp + id] \circ f)}^\sharp. + \end{alignat*} + Indeed, + \begin{alignat*}{1} + & g^\sharp + \\=\;&g^\sharp \circ [ id , id ] \circ i_2 + \\=\;&{[ (id + i_2) \circ g , f ]}^\sharp \circ i_2\tag{\ref{law:uniformity}} + \\=\;&{(([ id , id ] + id) \circ [ (i_1 + i_1) \circ g , (i_2 + id) \circ f ]) }^\sharp \circ i_2 + \\=\;&{[ i_1 , [ id + i_1 , i_2 \circ i_2 ] \circ [ (i_1 + i_1) \circ g , (i_2 + id) \circ f] ]}^\sharp \circ i_2 \circ i_2 \tag{\ref{law:stutter}} + \\=\;&{[ i_1 , [ [ i_1 , i_2 \circ i_2 \circ i_1 ] \circ g , [ i_2 \circ i_1 , i_2 \circ i_2 ] \circ f] ]}^\sharp \circ i_2 \circ i_2 + \\=\;&{[ i_1 , [ ( id + i_2 \circ i_1) \circ g , i_2 \circ \circ f] ]}^\sharp \circ i_2 \circ i_2 + \\=\;&{ [[ i_1 , (id + i_1 \circ i_2) \circ g ] , i_2 \circ h] }^\sharp \circ [ i_1 \circ i_1 , i_2 + id ] \circ i_2 \circ i_2\tag{\ref{law:uniformity}} + \\=\;&{ [[ i_1 , (id + i_1 \circ i_2) \circ g ] , i_2 \circ h ]}^\sharp \circ i_2 + \\=\;&{ [(id + i_1) \circ [ i_1 , (id + i_2) \circ g ] , i_2 \circ h ]}^\sharp \circ i_2 + \end{alignat*} + and + \begin{alignat*}{1} + & {([ i_1 , g^\sharp + id] \circ f)}^\sharp + \\=\;&{([i_1 \circ [id , g^\sharp] \circ i_1 , [ id , g^\sharp ] \circ i_2 + id ] \circ f)}^\sharp + \\=\;&{(([ id , g^\sharp ] + id) \circ h)}^\sharp + \\=\;&{(([[id , g^\sharp] , [id , g^\sharp] ] + id) \circ (i_2 + id) \circ h)}^\sharp + \\=\;&{[i_1 \circ [ id , g^\sharp ] , [ [id , g^\sharp] + i_1 , i_2 \circ i_2 ] \circ (i_2 + id) \circ h]}^\sharp \circ i_2 \tag{\ref{law:stutter}} + \\=\;&{([ id , g^\sharp ] + h)}^\sharp \circ i_2 + \\=\;&{({[ i_1 , (id + i_2) \circ g ]}^\sharp + h)}^\sharp \circ i_2,\tag{\ref{diamond-helper}} + \end{alignat*} + which concludes the proof. + \qedhere + \end{itemize} +\end{proof} + +Note that in~\cite{uniformelgot} it has been shown that the \ref{law:diamond} axiom implies \ref{law:compositionality}, yielding another definition of Elgot algebras only requiring the \ref{law:fixpoint}, \ref{law:uniformity} and \ref{law:diamond} axioms. % chktex 2 + +Let us now consider morphisms that are coherent with respect to the iteration operator. A special case being morphisms between Elgot algebras. + +\begin{definition}[Iteration Preserving Morphisms] + Let \((A, {(-)}^{\sharp_a}), (B, {(-)}^{\sharp_b})\) be two Elgot algebras. + + A morphism \(f : X \times A \rightarrow B\) is called \textit{right iteration preserving} if + \[f \circ (id \times h^{\sharp_a}) = {((f + id) \circ dstl \circ (id \times h))}^{\sharp_b}\] + for any \(h : Y \rightarrow A + Y\). + + Symmetrically a morphism \(g : A \times X \rightarrow B\) is called \textit{left iteration preserving} if + \[f \circ (h^{\sharp_a} \times id) = {((f + id) \circ dstr \circ (h \times id))}^{\sharp_b}\] + for any \(h : Y \rightarrow A + Y\). + + Let us also consider the special case where \(X = 1\). + A morphism \(f : A \rightarrow B\) is called \textit{iteration preserving} if + \[f \circ h^{\sharp_a} = {((f + id) \circ h)}^{\sharp_b}\] + for any \(h : Y \rightarrow A + Y\). +\end{definition} + +We will now study the category of Elgot algebras and iteration preserving morphisms that we call \(\elgotalgs{\C}\). Let us introduce notation for morphisms between Elgot algebras: we denote an Elgot algebra morphism \(f : (A , {(-)}^{\sharp_a}) \rightarrow (B,{(-)}^{\sharp_b})\) as \(f : A \hookrightarrow B\), where we omit stating the iteration operator. + +\begin{lemma}\label{lem:elgotalgscat} + \(\elgotalgs{\C}\) is a category. +\end{lemma} +\begin{proof} + It suffices to show that the identity morphism in \(\C \) is iteration preserving and the composite of two iteration preserving morphisms is also iteration preserving. + + Let \(A, B\) and \(C\) be Elgot algebras. + The identity trivially satisfies + \[id \circ f^{\sharp_a} = f^{\sharp_a} = {((id + id) \circ f)}^{\sharp_a}\] + for any \(f : X \rightarrow A + X\). + Given two iteration preserving morphisms \(f : B \hookrightarrow C, g : A \hookrightarrow B\), the composite is iteration preserving since + \begin{alignat*}{1} + & f \circ g \circ h^{\sharp_a} + \\=\;& f \circ {((g + id) \circ h)}^{\sharp_b} + \\=\;&{((f + id) \circ (g + id) \circ h)}^{\sharp_c} + \\=\;&{((f \circ g + id) \circ h)}^{\sharp_c} + \end{alignat*} + for any \(h : X \rightarrow A + X\). +\end{proof} + +Products and exponentials of Elgot algebras can be formed in a canonical way, which is illustrated by the following two Lemmas. + +\begin{lemma}\label{lem:elgotalgscart} + If \(\C\) is a Cartesian category, so is \(\elgotalgs{\C}\). +\end{lemma} +\begin{proof} + Let \(1\) be the terminal object of \(\C \). Given \(f : X \rightarrow 1 + X\) we define the iteration \(f^\sharp =\;! : X \rightarrow 1\) as the unique morphism into the terminal object. The Elgot algebra laws follow instantly by uniqueness of \(!\) and \((1 , !)\) is the terminal Elgot algebra since for every Elgot algebra \(A\) the morphism \(! : A \rightarrow 1\) extends to a morphism between Elgot algebras by uniqueness. % chktex 40 + + Let \(A, B \in \vert\elgotalgs{\C}\vert \) and \(A \times B\) be the product of \(A\) and \(B\) in \(\C \). Given \(f : X \rightarrow (A \times B) + X\) we define the iteration as: + \[f^\sharp = \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle : X \rightarrow A \times B\] + Now, we show that \(A \times B\) indeed constitutes an Elgot algebra: + \begin{itemize} + \item \textbf{Fixpoint}: Let \(f : X \rightarrow (A \times B) + X\). The requisite equation follows by the fixpoint identities of \({((\pi_1 + id) \circ f)}^{\sharp_a}\) and \({((\pi_2 + id) \circ f)}^{\sharp_b}\): + \begin{alignat*}{1} + & \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle + \\=\;&\langle [ id , {((\pi_1 + id) \circ f)}^{\sharp_a} ] \circ (\pi_1 + id) \circ f + \\ &, [ id , {((\pi_2 + id) \circ f)}^{\sharp_b} ] \circ (\pi_2 + id) \circ f \rangle \tag{\ref{law:fixpoint}} + \\=\;&\langle [ \pi_1 , {((\pi_1 + id) \circ f)}^{\sharp_a} ] \circ f , [ \pi_2 , {((\pi_2 + id) \circ f)}^{\sharp_b} ] \circ f \rangle + \\=\;&\langle [ \pi_1 , {((\pi_1 + id) \circ f)}^{\sharp_a} ] , [ \pi_2 , {((\pi_2 + id) \circ f)}^{\sharp_b} ] \rangle \circ f + \\=\;&[ \langle \pi_1 , \pi_2 \rangle , \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle ] \circ f + \\=\;&[ id , \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle ] \circ f + \end{alignat*} + \item \textbf{Uniformity}: Let \(f : X \rightarrow (A \times B) + X, g : Y \rightarrow (A \times B) + Y, h : X \rightarrow Y\) and \((id + h) \circ f = g \circ h\). + Note that this implies: + \begin{alignat*}{2} + & (id + h) \circ (\pi_1 + id) \circ f & & = (\pi_1 + id) \circ g \circ h + \\&(id + h) \circ (\pi_2 + id) \circ f &&= (\pi_2 + id) \circ g \circ h + \end{alignat*} + + Then,~\ref{law:uniformity} of \({(-)}^{\sharp_a}\) and \({(-)}^{\sharp_b}\) with the previous two equations yields: + \begin{alignat*}{2} + & \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_1 + id) \circ f)}^{\sharp_a} \rangle & & = {((\pi_1 + id) \circ g)}^{\sharp_a} \circ h + \\&\langle {((\pi_2 + id) \circ f)}^{\sharp_b} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle &&= {((\pi_2 + id) \circ g)}^{\sharp_b} \circ h + \end{alignat*} + + This concludes the proof of: + \[ \langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle = \langle {((\pi_1 + id) \circ g)}^{\sharp_a} , {((\pi_2 + id) \circ g)}^{\sharp_b} \rangle \circ h \] + \item \textbf{Folding}: Let \(f : X \rightarrow (A \times B) + X, h : Y \rightarrow X + Y\). We need to show: + \begin{alignat*}{1} + & \langle {((\pi_1 + id) \circ (\langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle + h))}^{\sharp_a} + \\&,{((\pi_2 + id) \circ (\langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle + h))}^{\sharp_b} \rangle + \\=\;&\langle (\pi_1 + id) \circ {[ (id + i_1) \circ f , i_2 \circ h ]}^{\sharp_a} , (\pi_2 + id) \circ {[ (id + i_1) \circ f , i_2 \circ h ]}^{\sharp_b} \rangle + \end{alignat*} + + Indeed, the folding laws for \({(-)}^{\sharp_a}\) and \({(-)}^{\sharp_b}\) imply + \begin{alignat*}{1} + & {((\pi_1 + id) \circ (\langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle + h))}^{\sharp_a} + \\=\;&{({((\pi_1 + id) \circ f)}^{\sharp_a} + h)}^{\sharp_a} + \\=\;&{[ (id + i_1) \circ (\pi_1 + id) \circ f , i_2 \circ h ]}^{\sharp_a}\tag{\ref{law:folding}} + \\=\;&(\pi_1 + id) \circ {[ (id + i_1) \circ f , i_2 \circ h ]}^{\sharp_a} + \end{alignat*} + and + \begin{alignat*}{1} + & {((\pi_2 + id) \circ (\langle {((\pi_1 + id) \circ f)}^{\sharp_a} , {((\pi_2 + id) \circ f)}^{\sharp_b} \rangle + h))}^{\sharp_b} + \\=\;&{({((\pi_2 + id) \circ f)}^{\sharp_b} + h)}^{\sharp_b} + \\=\;&{[ (id + i_1) \circ (\pi_2 + id) \circ f , i_2 \circ h ]}^{\sharp_b}\tag{\ref{law:folding}} + \\=\;&(\pi_2 + id) \circ {[ (id + i_1) \circ f , i_2 \circ h ]}^{\sharp_b} + \end{alignat*} + which concludes the proof of the folding law. + \end{itemize} + + The product diagram of \(A \times B\) in \(\C\) then also holds in \(\elgotalgs{\C}\), we just have to check that the projections are iteration preserving, which follows instantly, and that the unique morphism \(\langle f , g \rangle\) is iteration preserving for any \(f : C \hookrightarrow A, g : C \rightarrow B\) where \(C \in \obj{\elgotalgs{\C}}\). + + Let \(h : X \rightarrow C + X\). We use the fact that \(f\) and \(g\) are iteration preserving to show: + \begin{alignat*}{1} + & \langle f , g \rangle \circ (h^{\sharp_c}) + \\=\;&\langle f \circ (h^{\sharp_c}) , g \circ (h^{\sharp_c}) \rangle + \\=\;&\langle {((f + id) \circ h)}^{\sharp_a} , {((g + id) \circ h)}^{\sharp_b} \rangle + \\=\;&\langle {((\pi_1 + id) \circ (\langle f , g \rangle + id) \circ h)}^{\sharp_a} , {((\pi_1 + id) \circ (\langle f , g \rangle + id) \circ h)}^{\sharp_b} \rangle + \end{alignat*} + Which confirms that \(\langle f , g \rangle\) is indeed iteration preserving. Thus, it follows that \(A \times B\) extends to a product in \(\elgotalgs{\C}\) and therefore \(\elgotalgs{\C}\) is Cartesian, if \(\C\) is Cartesian. +\end{proof} + +\begin{lemma}\label{lem:elgotexp} + Given \(X \in \obj{\C}\) and \(A \in \obj{\elgotalgs{\C}} \). The exponential \(X^A\) (if it exists) can be equipped with an Elgot algebra structure. +\end{lemma} +\begin{proof} + Take \(f^\sharp = curry ({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a})\) as the iteration of some \(f : Z \rightarrow A^X + Z\). + + \begin{itemize} + \item \textbf{Fixpoint}: Let \(f : Y \rightarrow X^A + Y\). We need to show that \(f^\sharp = [ id , f^\sharp ] \circ f\), which follows by uniqueness of \[f^\sharp = curry\;({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a})\] and + \begin{alignat*}{1} + & eval \circ ([ id , curry ({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) ] \circ f \times id) + \\=\;&eval \circ [ id , curry ({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id ] \circ dstr \circ (f \times id)\tag*{\ref{hlp:elgot_exp_fixpoint}} + \\=\;&[ eval , eval \circ (curry ({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id) ] \circ dstr \circ (f \times id) + \\=\;&[ eval , {((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a} ] \circ dstr \circ (f \times id) + \\=\;&[ id , {((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a} ] \circ (eval + id) \circ dstr \circ (f \times id) + \\=\;&{((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a},\tag{\ref{law:fixpoint}} + \end{alignat*} + where + \begin{alignat*}{1} + & [ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) ] \times id + \\= \;&[ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id ] \circ dstr \tag*{(*)}\label{hlp:elgot_exp_fixpoint} + \end{alignat*} + follows by post-composing with \(\pi_1\) and \(\pi_2\), indeed: + + \begin{alignat*}{1} + & \pi_1 \circ [ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id ] \circ dstr + \\=\;&[ \pi_1 , \pi_1 \circ (curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id) ] \circ dstr + \\=\;&[ \pi_1 , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \circ \pi_1 ] \circ dstr + \\=\;&[ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) ] \circ (\pi_1 + \pi_1) \circ dstr + \\=\;&[ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) ] \circ \pi_1, + \end{alignat*} + and + \begin{alignat*}{1} + & \pi_2 \circ [ id , curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id ] \circ dstr + \\=\;&[ \pi_2 , \pi_2 \circ (curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id) ] \circ dstr + \\=\;&[ \pi_2 , \pi_2 ] \circ dstr + \\=\;&\pi_2. + \end{alignat*} + \item \textbf{Uniformity}: Let \(f : Y \rightarrow X^A + Y, g : Z \rightarrow X^A + Z, h : Y \rightarrow Z\) and \((id + h) \circ f = g \circ h\). Again, by uniqueness of \(f^\sharp = curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a})\) it suffices to show: + \begin{alignat*}{1} + & {((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a} + \\=\;&{((eval + id) \circ dstr \circ (g \times id))}^{\sharp_a} \circ (h \times id)\tag{\ref{law:uniformity}} + \\=\;&eval \circ ({((eval + id) \circ dstr \circ (g \times id))}^{\sharp_a} \times id) \circ (h \times id) + \\=\;&eval \circ ({((eval + id) \circ dstr \circ (g \times id))}^{\sharp_a} \circ h \times id). + \end{alignat*} + Note that the application of \ref{law:uniformity} requires: % chktex 2 + \begin{alignat*}{1} + & (id + (h \times id)) \circ (eval + id) \circ dstr \circ (f \times id) + \\=\;&(eval + id) \circ (id + (h \times id)) \circ dstr \circ (f \times id) + \\=\;&(eval + id) \circ dstr \circ (id \times h) \circ (id \times id) \circ (f \times id) + \\=\;&(eval + id) \circ dstr \circ (g \times id) \circ (h \times id). + \end{alignat*} + \item \textbf{Folding}: Let \(f : Y \rightarrow X^A + Y, h : Y \rightarrow Z\). We need to show that + \begin{alignat*}{1} + & {(f^\sharp + h)}^\sharp + \\=\;&curry({((eval + id) \circ dstr \circ ((curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) + h) \times id))}^{\sharp_a}) + \\=\;&curry({((eval + id) \circ dstr \circ ([ (id + i_1) \circ f , i_2 \circ h ] \times id))}^{\sharp_a}) + \\=\;&{[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp. + \end{alignat*} + Indeed, we are done by + \begin{alignat*}{1} + & {((eval + id) \circ dstr \circ ((curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) + h) \times id))}^{\sharp_a} + \\=\;&{((eval + id) \circ ((curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id) + (h \times id)) \circ dstr)}^{\sharp_a} + \\=\;&{((eval \circ (curry({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a}) \times id) + (h \times id)) \circ dstr)}^{\sharp_a} + \\=\;&{(({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a} + (h \times id)) \circ dstr)}^{\sharp_a} + \\=\;&{(({((eval + id) \circ dstr \circ (f \times id))}^{\sharp_a} + dstr \circ (h \times id)))}^{\sharp_a} \circ dstr\tag{\ref{law:uniformity}} + \\=\;&[ (id + i_1) \circ (eval + id) \circ dstr \circ (f \times id) , i_2 \circ dstr \circ (h \times id) ] \circ dstr\tag{\ref{law:folding}} + \\=\;&{((eval + id) \circ dstr \circ ([ (id + i_1) \circ f , i_2 \circ h ] \times id))}^{\sharp_a},\tag{\ref{law:uniformity}} + \end{alignat*} + where the identity that is required for the second application of~\ref{law:uniformity} follows by epicness of \(dstr^{-1}\). + \qedhere + + % \begin{alignat*}{1} + % & (id + dstr) \circ (eval + id) \circ dstr \circ ([ (id + i_1) \circ f , i_2 \circ h ] \times id) \circ dstr^{-1} + % \\=\;&[ (id + dstr) \circ (eval + id) \circ dstr \circ ([ (id + i_1) \circ f , i_2 \circ h ] \times id) \circ (i_1 \times id) + % \\&, (id + dstr) \circ (eval + id) \circ dstr \circ ([ (id + i_1) \circ f , i_2 \circ h ] \times id) \circ (i_2 \times id) ] + % \\=\;&[ (id + dstr) \circ (eval + id) \circ dstr \circ (((id + i_1) \circ f) \times id) + % \\&, (id + dstr) \circ (eval + id) \circ dstr \circ ((i_2 \circ h) \times id) ] + % \\=\;&[ (id + dstr) \circ (eval + id) \circ dstr \circ ((id + i_1) \times id) \circ (f \times id) + % \\&, (id + dstr) \circ (eval + id) \circ dstr \circ (i_2 \times id) \circ (h \times id) ] + % \\=\;&[ (id + dstr) \circ (eval + id) \circ (id + (i_1 \times id)) \circ dstr \circ (f \times id) + % \\&, (id + dstr) \circ (eval + id) \circ i_2 \circ (h \times id) ] + % \\=\;&[ (eval + i_1) \circ dstr \circ (f \times id) , i_2 \circ dstr \circ (h \times id) ] + % \\=\;&[ (id + i_1) \circ (eval + id) \circ dstr \circ (f \times id) , i_2 \circ dstr \circ (h \times id) ] \circ dstr \circ dstr^{-1}.\tag*{\qedhere} + % \end{alignat*} + \end{itemize} +\end{proof} + +\section{The Initial (Strong) Pre-Elgot Monad} +In this section we will study the monad that arises from existence of all free Elgot algebras. We will show that this is an equational lifting monad and also the initial strong pre-Elgot monad. Starting in this section we will now omit indices of the iteration operator of Elgot algebras for the sake of readability. + +Let us first recall the following notion that was introduced in~\cite{elgotmonad} and reformulated in~\cite{uniformelgot}. +\begin{definition}[Elgot Monad] + An Elgot monad consists of + \begin{itemize} + \item A monad \(\mathbf{T}\), + \item for every \(f : X \rightarrow T(Y + X)\) an iteration \(f^\dag : X \rightarrow TY \) satisfying: + \begin{itemize} + \item \textbf{Fixpoint}: \(f^\dag = {[ \eta , f^\dag ]}^* \circ f \) + \\ for any \(f : X \rightarrow T(Y + X)\), + \item \textbf{Uniformity}: \(f \circ h = T(id + h)\) implies \(f^\dag \circ g = g^\dag\) + \\ for any \(f : X \rightarrow T(Y + X), g : Z \rightarrow T(Y + Z), h : Z \rightarrow X\), + \item \textbf{Naturality}: \(g^* \circ f^\dag = {({[ Ti_1 \circ g , \eta \circ i_2 ]}^* \circ f)}^\dag\) + \\ for any \(f : X \rightarrow T(Y + X), g : Y \rightarrow TZ\), + \item \textbf{Codiagonal}: \({f^\dag}^\dag = {(T[id , i_2] \circ f)}^\dag\) + \\ for any \(f : X \rightarrow T((Y + X) + X)\). + \end{itemize} + \end{itemize} + If the monad \(\mathbf{T}\) is strong with strength \(\tau\) and \(\tau \circ (id \times f^\dag) = {(Tdstl \circ \tau \circ (id \times f))}^\dag\) for any \(f : X \rightarrow T(Y+X)\), then \(\mathbf{T}\) is a strong Elgot monad. +\end{definition} + +We regard Elgot monads as minimal semantic structures for interpreting side-effecting while loops, as has been argued in~\cite{goncharov2018unguarded, goncharov2017unifying}. +The following notion has been introduced in~\cite{uniformelgot} as a weaker approximation of the notion of Elgot monad, using less sophisticated axioms. + +\begin{definition}[Pre-Elgot Monad] + A monad \(\mathbf{T}\) is called pre-Elgot if every \(TX\) extends to an Elgot algebra such that for every \(f : X \rightarrow TY\) the Kleisli lifting \(f^* : TX \rightarrow TY\) is iteration preserving. + + If the monad \(\mathbf{T}\) is additionally strong and the strength \(\tau \) is right iteration preserving we call \(\mathbf{T}\) strong pre-Elgot. +\end{definition} + +(Strong) pre-Elgot monads form a subcategory of \(\monads{\C}\) where objects are (strong) pre-Elgot monads and morphisms between pre-Elgot monads are natural transformations \(\alpha \) as in \autoref{def:monadmorphism} such that additionally each \(\alpha_X\) is iteration preserving. Similarly, morphisms between strong pre-Elgot monads are natural transformations \(\alpha \) as in \autoref{def:strongmonadmorphism} such that each \(\alpha_X\) is iteration preserving. We call these categories \(\preelgot{\C}\) and \(\strongpreelgot{\C}\) respectively. + +\begin{lemma} + \(\preelgot{\C}\) and \(\strongpreelgot{\C}\) are categories. +\end{lemma} +\begin{proof} + Since \(\preelgot{\C}\) and \(\strongpreelgot{\C}\) are subcategories of the previously defined categories \(\monads{\C}\) and \(\strongmonads{\C}\) respectively, it suffices to show that the components of the identity natural transformation are iteration preserving and that the component wise composition of two pre-Elgot monad morphisms is iteration preserving. This has already been shown in \autoref{lem:elgotalgscat}. +\end{proof} + +Assuming a form of the axiom of countable choice it has been proven in~\cite{uniformelgot} that the initial pre-Elgot monad and the initial Elgot monad coincide, thus closing the expressivity gap in such a setting. +However, it is believed to be impossible to close this gap in a general setting. + +\begin{proposition} + Existence of all free Elgot algebras yields a monad that we call \(\mathbf{K}\). +\end{proposition} +\begin{proof} + This is a direct consequence of \autoref{thm:freemonad}. +\end{proof} + +We will need a notion of stability for \(\mathbf{K}\) to make progress, since we do not assume \(\C \) to be Cartesian closed. + +\begin{definition}[Right-Stable Free Elgot Algebra]\label{def:rightstablefreeelgot} + Let \(KY\) be a free Elgot algebra on \(Y \in \obj{\C}\). We call \(KY\) \textit{right-stable} if for every \(A \in \elgotalgs{\C}, X \in \obj{\C}\), and \(f : X \times Y \rightarrow A\) there exists a unique right iteration preserving \(\rs{f} : X \times KY \rightarrow A\) such that + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJYIFxcdGltZXMgWSJdLFsyLDAsIkEiXSxbMCwyLCJYIFxcdGltZXMgS1kiXSxbMCwxLCJmIl0sWzAsMiwiaWRcXHRpbWVzXFxldGEiLDJdLFsyLDEsIlxccnN7Zn0iLDJdXQ== + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times Y} \&\& A \\ + \\ + {X \times KY} + \arrow["f", from=1-1, to=1-3] + \arrow["id\times\eta"', from=1-1, to=3-1] + \arrow["{\rs{f}}"', from=3-1, to=1-3] + \end{tikzcd} + \] + commutes. +\end{definition} + +A symmetrical variant of the previous definition is sometimes useful. + +\begin{definition}[Left-Stable Free Elgot Algebra]\label{def:leftstablefreeelgot} + Let \(KY\) be a free Elgot algebra on \(Y \in \obj{\C}\). We call \(KY\) \textit{left-stable} if for every \(A \in \elgotalgs{\C}, X \in \obj{\C}\), and \(f : Y \times X \rightarrow A\) there exists a unique left iteration preserving \(\ls{f} : KY \times X \rightarrow A\) such that + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJYIFxcdGltZXMgWSJdLFsyLDAsIkEiXSxbMCwyLCJLWCBcXHRpbWVzIFkiXSxbMCwxLCJmIl0sWzAsMiwiXFxldGFcXHRpbWVzIGlkIiwyXSxbMiwxLCJcXGxze2Z9IiwyXV0= + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times Y} \&\& A \\ + \\ + {KX \times Y} + \arrow["f", from=1-1, to=1-3] + \arrow["{\eta\times id}"', from=1-1, to=3-1] + \arrow["{\ls{f}}"', from=3-1, to=1-3] + \end{tikzcd} + \] + commutes. +\end{definition} + +\begin{lemma} + Definitions~\ref{def:rightstablefreeelgot} and~\ref{def:leftstablefreeelgot} are equivalent in the sense that they imply each other. +\end{lemma} +\begin{proof} Let \(KY\) be a left stable free Elgot algebra on \(Y \in \obj{\C}\). Furthermore, let \(A\) be an Elgot algebra and \(X \in \obj{\C}, f : Y \times X \rightarrow A\). + + We take \(\rs{f} := \ls{f \circ swap} \circ swap\), which is indeed right iteration preserving, since + \begin{alignat*}{1} + & \rs{f} \circ (id \times h^\sharp) + \\=\;&\ls{f \circ swap} \circ swap \circ (id \times h^\sharp) + \\=\;&\ls{f \circ swap} \circ (h^\sharp \times id) \circ swap + \\=\;&{((\ls{f \circ swap} + id) \circ dstr \circ (id \times h))}^\sharp \circ swap + \\=\;&{((\ls{f \circ swap} \circ swap + id) \circ dstl \circ (id \times h))}^\sharp\tag{\ref{law:uniformity}} + \\=\;&{((\rs{f} + id) \circ dstl \circ (id \times h))}^\sharp, + \end{alignat*} + for any \(Z \in \obj{\C}, h : Z \rightarrow KY + Z\). + + % Where the application of \ref{law:uniformity} is justified by + % \begin{alignat*}{1} + % &(id + swap) \circ ((\ls{f \circ swap} \circ swap) + id) \circ dstl \circ (id \times h) + % \\=\;&((\ls{f \circ swap} \circ swap) + swap) \circ dstl \circ (id \times h) + % \\=\;&(\ls{f \circ swap} + id) \circ (swap + swap) \circ dstl \circ (id \times h) + % \\=\;&(\ls{f \circ swap} + id) \circ dstr \circ swap \circ (id \times h) + % \\=\;&(\ls{f \circ swap} + id) \circ dstr \circ (h \times id) \circ swap. + % \end{alignat*} + + The requisite diagram commutes, since + \begin{alignat*}{1} + & \rs{f} \circ (id \times \eta) + \\=\;&\ls{f \circ swap} \circ swap \circ (id \times \eta) + \\=\;&\ls{f \circ swap} \circ (\eta \times id) \circ swap + \\=\;&f \circ swap \circ swap + \\=\;&f. + \end{alignat*} + + Finally, let us check uniqueness of \(\rs{f} = \ls{f \circ swap} \circ swap\). Let \(g : X \times KY \rightarrow A\) be right iteration preserving with \(g \circ (id \times \eta) = f\). To show that \(g = \ls{f \circ swap} \circ swap\), by uniqueness of \(\ls{f \circ swap}\) it suffices to show that \(g \circ swap\) satisfies \(g \circ swap \circ (\eta \times id) = f \circ swap\) and is left iteration preserving. + + Indeed, + \[ g \circ swap \circ (\eta \times id) = g \circ (id \times \eta) \circ swap = f \circ swap\] + and + \begin{alignat*}{1} + & g \circ swap \circ (h^\sharp \times id) + \\=\;&g \circ (id \times h^\sharp) \circ swap + \\=\;&{((g + id) \circ dstl \circ (id \times h))}^\sharp \circ swap + \\=\;&{((g \circ swap + id) \circ dstr \circ (h \times id))}^\sharp,\tag{\ref{law:uniformity}} + \end{alignat*} + for any \(Z \in \obj{\C}, h : Z \rightarrow KY + Z\). + + % The application of \ref{law:uniformity} is justified by + % \begin{alignat*}{1} + % &(id + swap) \circ ((g \circ swap) + id) \circ dstr \circ (h \times id) + % \\=\;&(g + id) \circ (swap + swap) \circ dstr \circ (h \times id) + % \\=\;&(g + id) \circ dstl \circ swap \circ (h \times id) + % \\=\;&(g + id) \circ dstl \circ (id \times h) \circ swap. + % \end{alignat*} + + This concludes one direction of the proof, the other direction follows symmetrically. +\end{proof} + +\begin{lemma}\label{thm:stability} + In a Cartesian closed category every free Elgot algebra is stable. +\end{lemma} +\begin{proof} + Let \(\C\) be Cartesian closed and let \(KX\) be a free Elgot algebra on some \(X \in \obj{\C}\). + + To show left stability of \(KX\) we define \(\ls{f} := eval \circ (\free{curry\;f} \times id)\) for any \(X \in \obj{\C}\), \(A \in \vert\elgotalgs{\C}\vert\), and \(f : Y \times X \rightarrow A\). + We will now verify that this does indeed satisfy the requisite properties, i.e. + \begin{alignat*}{1} + & eval \circ (\free{curry\;f} \times id) \circ (\eta \times id) + \\=\;&eval \circ (\free{curry\;f} \circ \eta \times id) + \\=\;&eval \circ (curry\;f \times id) + \\=\;&f + \end{alignat*} + and for any \(Z \in \obj{\C}, h : Z \rightarrow KY + Z\): + \begin{alignat*}{1} + & eval \circ (\free{curry\;f} \times id) \circ (h^\sharp \times id) + \\=\;&eval \circ (\free{curry\;f} \circ h^\sharp \times id) + \\=\;&eval \circ (curry({((eval + id) \circ dstr \circ (((\free{curry\;f} + id) \circ h) \times id))}^\sharp) \times id) + \\=\;&{((eval + id) \circ dstr \circ ((\free{curry\;f} + id) \circ h \times id))}^\sharp + \\=\;&{((eval + id) \circ dstr \circ ((\free{curry\;f} + id) \times id) \circ (h \times id))}^\sharp + \\=\;&{((eval + id) \circ ((\free{curry\;f} \times id) + id) \circ dstr \circ (h \times id))}^\sharp + \\=\;&{((eval \circ (\free{curry\;f} \times id) + id) \circ dstr \circ (h \times id))}^\sharp. + \end{alignat*} + + Lastly, we need to check uniqueness of \(\ls{f}\). Let us consider a left iteration preserving morphism \(g : KY \times X \rightarrow A\) that satisfies \(g \circ (\eta \times id) = f\). Since \(curry\) is an injective mapping it suffices to show that + \begin{alignat*}{1} + & curry\;\ls{f} + \\=\;&curry(eval \circ (\free{curry\;f} \times id)) + \\=\;&\free{curry\;f} + \\=\;&curry\;g. + \end{alignat*} + Where the last step is the only non-trivial one. Since \(\free{curry\;f}\) is a unique iteration preserving morphism satisfying \(\free{curry\;f} \circ \eta = curry\;f\), we are left to show that \(g\) is also iteration preserving and satisfies the same property. + + Indeed, + \begin{alignat*}{1} + & curry\;g \circ h^\sharp + \\=\;&curry\;(g \circ (h^\sharp \times id)) + \\=\;&curry\;({((g + id) \circ dstr \circ (h \times id))}^\sharp) + \\=\;&curry\;({((eval \circ (curry\; g \times id) + id) \circ dstr \circ (h \times id))}^\sharp) + \\=\;&curry\;({((eval + id) \circ ((curry\; g \times id) + id) \circ dstr \circ (h \times id))}^\sharp) + \\=\;&curry\;({((eval + id) \circ dstr \circ ((curry\;g + id) \times id) \circ (h \times id))}^\sharp) + \\=\;&curry\;({((eval + id) \circ dstr \circ (((curry\;g + id) \circ h) \times id))}^\sharp) + \end{alignat*} + for any \(Z \in \obj{\C}, h : Z \rightarrow KY + Z\), and + \begin{alignat*}{1} + & curry\;g \circ \eta + \\=\;&curry(g \circ (\eta \times id)) + \\=\;&curry\;f. + \end{alignat*} + Which completes the proof. +\end{proof} + +For the rest of this chapter we will assume every \(KX\) to exist and be stable. Under these assumptions we show that \(\mathbf{K}\) is an equational lifting monad and in fact the initial strong pre-Elgot monad. +Let us first introduce a proof principle similar to the one introduced in \autoref{rem:coinduction}. +\begin{remark}[Proof by right-stability]~\label{rem:proofbystability} + Given two morphisms \(g, h : X \times KY \rightarrow A\) where \(X, Y \in \obj{\C}, A \in \obj{\elgotalgs{\C}}\). To show that \(g = h\), it suffices to show that \(g\) and \(h\) are right iteration preserving and there exists a morphism \(f : X \times Y \rightarrow A\) such that + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJYIFxcdGltZXMgS1kiXSxbMiwwLCJBIl0sWzAsMiwiWCBcXHRpbWVzIFkiXSxbMCwxLCJnIiwwLHsib2Zmc2V0IjotMX1dLFswLDEsImgiLDIseyJvZmZzZXQiOjF9XSxbMiwxLCJmIiwyXSxbMiwwLCJpZCBcXHRpbWVzIFxcZXRhIl1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + {X \times KY} \&\& A \\ + \\ + {X \times Y} + \arrow["g", shift left, from=1-1, to=1-3] + \arrow["h"', shift right, from=1-1, to=1-3] + \arrow["f"', from=3-1, to=1-3] + \arrow["{id \times \eta}", from=3-1, to=1-1] + \end{tikzcd} + \] + commutes. +\end{remark} +Of course there is also a symmetric version of this. +\begin{remark}[Proof by left-stability]~\label{rem:proofbyleftstability} + Given two morphisms \(g, h : KX \times Y \rightarrow A\) where \(X, Y \in \obj{\C}, A \in \obj{\elgotalgs{\C}}\). To show that \(g = h\), it suffices to show that \(g\) and \(h\) are left iteration preserving and there exists a morphism \(f : X \times Y \rightarrow A\) such that + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJLWCBcXHRpbWVzIFkiXSxbMiwwLCJBIl0sWzAsMiwiWCBcXHRpbWVzIFkiXSxbMCwxLCJnIiwwLHsib2Zmc2V0IjotMX1dLFswLDEsImgiLDIseyJvZmZzZXQiOjF9XSxbMiwxLCJmIiwyXSxbMiwwLCJcXGV0YSBcXHRpbWVzIGlkIl1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + {KX \times Y} \&\& A \\ + \\ + {X \times Y} + \arrow["g", shift left, from=1-1, to=1-3] + \arrow["h"', shift right, from=1-1, to=1-3] + \arrow["f"', from=3-1, to=1-3] + \arrow["{\eta \times id}", from=3-1, to=1-1] + \end{tikzcd} + \] + commutes. +\end{remark} + +\begin{lemma}\label{lem:Kstrong} + \(\mathbf{K}\) is a strong monad. +\end{lemma} +\begin{proof} + We define strength as \(\tau = \rs{(\eta : X \times Y \rightarrow K(X \times Y))} : X \times KY \rightarrow K(X \times Y)\). Note that by definition \(\tau\) is right iteration preserving and \(\tau \circ (id \times \eta) = \eta\). + Most of the requisite proofs will be done by right-stability using \autoref{rem:proofbystability}, i.e.\ to prove an identity we need to give a unifying morphism such that the requisite diagram commutes, and we need to show that both sides of the identity are right iteration preserving. The proofs of commutativity follow by easy rewriting and are thus deferred to the formalization. The proofs of right iteration preservation follow in most cases instantly since the morphisms are composed of (right) iteration preserving morphisms but in non-trivial cases we will give the full proof. + + Naturality of \(\tau \) follows by: + % https://q.uiver.app/#q=WzAsNSxbMSwwLCJBIFxcdGltZXMgS0IiXSxbMCwzLCJBIFxcdGltZXMgQiJdLFsxLDIsIksoQSBcXHRpbWVzIEIpIl0sWzMsMiwiSyhYIFxcdGltZXMgWSkiXSxbMywwLCJYIFxcdGltZXMgS1kiXSxbMSwwLCJpZCBcXHRpbWVzIFxcZXRhIiwwLHsiY3VydmUiOi0yfV0sWzAsMiwiXFx0YXUiLDJdLFsyLDMsIksoZlxcdGltZXMgZykiLDJdLFswLDQsImYgXFx0aW1lcyBLZyJdLFs0LDMsIlxcdGF1Il0sWzEsMywiXFxldGEgXFxjaXJjIChmIFxcdGltZXMgZykiLDIseyJjdXJ2ZSI6Mn1dXQ== + \[ + \begin{tikzcd} + & {A \times KB} && {X \times KY} \\ + \\ + & {K(A \times B)} && {K(X \times Y)} \\ + {A \times B} + \arrow["{id \times \eta}", curve={height=-12pt}, from=4-1, to=1-2] + \arrow["\tau"', from=1-2, to=3-2] + \arrow["{K(f\times g)}"', from=3-2, to=3-4] + \arrow["{f \times Kg}", from=1-2, to=1-4] + \arrow["\tau", from=1-4, to=3-4] + \arrow["{\eta \circ (f \times g)}"', curve={height=12pt}, from=4-1, to=3-4] + \end{tikzcd} + \] + + Notably, \(\tau \circ (f \times Kg)\) is right iteration preserving, since for any \(Z \in \obj{\C}\) and \(h : Z \rightarrow KY + Z\): + \begin{alignat*}{1} + & \tau \circ (f \times Kg) \circ (id \times h^\sharp) + \\=\;&\tau \circ (f \times {((Kg + id) \circ h)}^\sharp) + \\=\;&{((\tau + id) \circ dstl \circ (id \times ((Kg + id) \circ h)))}^\sharp \circ (f \times id) + \\=\;&{(((\tau \circ (f \times Kg)) + id) \circ dstl \circ (id \times h))}^\sharp.\tag{\ref{law:uniformity}} + \end{alignat*} + + % where uniformity is justified by + % \begin{alignat*}{1} + % &(id + (f \times id)) \circ \tau \circ ((f \times Kg) + id) \circ dstl \circ (id \times h) + % \\=\;&(\tau + id) \circ dstl \circ (id \times ((Kg + id) \circ h)) \circ (f \times id) + % \end{alignat*} + + % Both sides of the identity are right iteration preserving, since for any \(Z \in \obj{\C}\) and \(h : Z \rightarrow KY + Z\): + % \begin{alignat*}{1} + % &K(f \times g) \circ \tau \circ (id \times h^\sharp) + % \\=\;&K(f \times g) \circ ((\tau + id) \circ dstl \circ (id \times h))^\sharp + % \\=\;&(((K(f \times g) \circ \tau) + id) \circ dstl \circ (id \times h))^\sharp + % \end{alignat*} + % and + % \begin{alignat*}{1} + % &\tau \circ (f \times Kg) \circ (id \times h^\sharp) + % \\=\;&\tau \circ (f \times (Kg \circ h)^\sharp) + % \\=\;& + % \end{alignat*} + + Let us now check the strength laws. + + \begin{itemize} + \item[\ref{S1}] Note that for \(\mathbf{K}\), the identity \(K\pi_2 \circ \tau = \pi_2\) holds more generally for any \(X, Y \in \obj{\C}\) instead of just for \(X = 1\), which is proven by right-stability, using: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgS1kiXSxbMiwwLCJLKFhcXHRpbWVzIFkpIl0sWzIsMiwiS1kiXSxbMCwyLCJYIFxcdGltZXMgWSJdLFswLDEsIlxcdGF1Il0sWzEsMiwiS1xccGlfMiJdLFswLDIsIlxccGlfMiIsMl0sWzMsMCwiaWQgXFx0aW1lcyBcXGV0YSIsMl0sWzMsMiwiXFxldGEgXFxjaXJjIFxccGlfMiIsMl1d + \[ + \begin{tikzcd} + {X \times KY} && {K(X\times Y)} \\ + \\ + {X \times Y} && KY + \arrow["\tau", from=1-1, to=1-3] + \arrow["{K\pi_2}", from=1-3, to=3-3] + \arrow["{\pi_2}"', from=1-1, to=3-3] + \arrow["{id \times \eta}"', from=3-1, to=1-1] + \arrow["{\eta \circ \pi_2}"', from=3-1, to=3-3] + \end{tikzcd} + \] + + \item[\ref{S2}] As already mentioned, \(\tau \circ (id \times \eta) = \eta\) follows by definition of \(\tau\). + \item[\ref{S3}] To show that \(\tau \circ (id \times \mu) = \tau^* \circ \tau\), we will proceed by right-stability using: + % https://q.uiver.app/#q=WzAsNSxbMSwwLCJYIFxcdGltZXMgS0tZIl0sWzMsMCwiWCBcXHRpbWVzIEtZIl0sWzMsMiwiSyhYXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFswLDMsIlggXFx0aW1lcyBLWSJdLFswLDEsImlkIFxcdGltZXMgXFxtdSIsMl0sWzEsMiwiXFx0YXUiLDJdLFswLDMsIlxcdGF1Il0sWzMsMiwiXFx0YXVeKiJdLFs0LDAsImlkIFxcdGltZXMgXFxldGEiLDAseyJjdXJ2ZSI6LTJ9XSxbNCwyLCJcXHRhdSIsMCx7ImN1cnZlIjoyfV1d + \[ + \begin{tikzcd} + & {X \times KKY} && {X \times KY} \\ + \\ + & {K(X \times KY)} && {K(X\times Y)} \\ + {X \times KY} + \arrow["{id \times \mu}"', from=1-2, to=1-4] + \arrow["\tau"', from=1-4, to=3-4] + \arrow["\tau", from=1-2, to=3-2] + \arrow["{\tau^*}", from=3-2, to=3-4] + \arrow["{id \times \eta}", curve={height=-12pt}, from=4-1, to=1-2] + \arrow["\tau", curve={height=12pt}, from=4-1, to=3-4] + \end{tikzcd} + \] + \item[\ref{S4}] Lastly, consider the following diagram for the proof by right-stability: + % https://q.uiver.app/#q=WzAsNixbMSwwLCIoWCBcXHRpbWVzIFkpIFxcdGltZXMgS1oiXSxbMSwyLCJYIFxcdGltZXMgWSBcXHRpbWVzIEtZIl0sWzMsMCwiSygoWCBcXHRpbWVzIFkpIFxcdGltZXMgWikiXSxbMywyLCJLKFggXFx0aW1lcyBZIFxcdGltZXMgWikiXSxbMiwyLCJYIFxcdGltZXMgSyhZIFxcdGltZXMgWikiXSxbMCwzLCIoWCBcXHRpbWVzIFkpIFxcdGltZXMgWiJdLFswLDEsIlxcYWxwaGEiXSxbMiwzLCJLXFxhbHBoYSJdLFswLDIsIlxcdGF1Il0sWzEsNCwiaWQgXFx0aW1lc1xcdGF1Il0sWzQsMywiXFx0YXUiXSxbNSwwLCJpZCBcXHRpbWVzIFxcZXRhIiwwLHsiY3VydmUiOi0yfV0sWzUsMywiXFxldGEgXFxjaXJjIFxcYWxwaGEiLDIseyJjdXJ2ZSI6Mn1dXQ== + \[ + \begin{tikzcd} + & {(X \times Y) \times KZ} && {K((X \times Y) \times Z)} \\ + \\ + & {X \times Y \times KY} & {X \times K(Y \times Z)} & {K(X \times Y \times Z)} \\ + {(X \times Y) \times Z} + \arrow["\alpha", from=1-2, to=3-2] + \arrow["K\alpha", from=1-4, to=3-4] + \arrow["\tau", from=1-2, to=1-4] + \arrow["{id \times\tau}", from=3-2, to=3-3] + \arrow["\tau", from=3-3, to=3-4] + \arrow["{id \times \eta}", curve={height=-12pt}, from=4-1, to=1-2] + \arrow["{\eta \circ \alpha}"', curve={height=12pt}, from=4-1, to=3-4] + \end{tikzcd} + \] + where \(\tau \circ (id \times \tau) \circ \alpha \) is right iteration preserving, since for any \(Z \in \obj{\C}\) and \(h : Z \rightarrow KX + Z\): + \begin{alignat*}{1} + & \tau \circ (id \times \tau) \circ \alpha \circ (id \times h^\sharp) + \\=\;&\tau \circ \langle \pi_1 \circ \pi_1 , \tau \circ \langle \pi_2 \circ \pi_1 , \pi_2 \rangle \rangle \circ (id \times h^\sharp) + \\=\;&\tau \circ \langle \pi_1 \circ \pi_1 , \tau \circ \langle \pi_2 \circ \pi_1 , h^\sharp \circ \pi_2 \rangle \rangle + \\=\;&\tau \circ \langle \pi_1 \circ \pi_1 , \tau \circ (id \times h^\sharp) \circ \langle \pi_2 \circ \pi_1 , \pi_2 \rangle \rangle + \\=\;&\tau \circ \langle \pi_1 \circ \pi_1 , {((\tau + id) \circ dstl \circ (id \times h))}^\sharp \circ \langle \pi_2 \circ \pi_1 , \pi_2 \rangle \rangle + \\=\;&\tau \circ (id \times {((\tau + id) \circ dstl \circ (id \times h))}^\sharp) \circ \alpha + \\=\;&{((\tau + id) \circ dstl \circ (id \times ((\tau + id) \circ dstl \circ (id \times h))))}^\sharp \circ \alpha + \\=\;&{(((\tau \circ (id \times \tau) \circ \alpha) + id) \circ dstl \circ (id \times h))}^\sharp.\tag{\ref{law:uniformity}} + \end{alignat*} + \end{itemize} + Thus, strength of \(\mathbf{K}\) has been proven. +\end{proof} + +As we did when proving commutativity of \(\mathbf{D}\), let us record some facts about \(\tau \) and the induced \(\sigma \), before proving commutativity of \(\mathbf{K}\). + +\begin{corollary} + \(\sigma \) is left iteration preserving and satisfies \(\sigma \circ (\eta \times id) = \eta \) and the following properties of \(\tau \) and \(\sigma \) hold. + \begin{alignat*}{2} + & \tau \circ (f^* \times g^*) & & = {(\tau \circ (id \times g))}^* \circ \tau \circ (f^* \times id)\tag{\(\tau_1\)}\label{Ktau1} + \\&\sigma \circ (f^* \times g^*) &&= {(\sigma \circ (f \times id))}^* \circ \sigma \circ (id \times g^*)\tag{\(\sigma_1\)}\label{Ksigma1} + \end{alignat*} +\end{corollary} +\begin{proof} + Note that the first part of the proof amounts to showing that \(\sigma = \ls{\eta}\) using uniqueness of \(\ls{\eta}\). Indeed, + \begin{alignat*}{1} + & \sigma \circ (\eta \times id) + \\=\;&Kswap \circ \tau \circ swap \circ (\eta \times id) + \\=\;&Kswap \circ \tau \circ (id \times \eta) \circ swap + \\=\;&Kswap \circ \eta \circ swap + \\=\;&\eta \circ swap \circ swap + \\=\;&\eta + \end{alignat*} + and for any \(h : Z \rightarrow KX + Z\) + \begin{alignat*}{1} + & \sigma \circ (h^\sharp \times id) + \\=\;&Kswap \circ \tau \circ swap \circ (h^\sharp \times id) + \\=\;&Kswap \circ \tau \circ (id \times h^\sharp) \circ swap + \\=\;&Kswap \circ {((\tau + id) \circ dstl \circ (id \times h))}^\sharp \circ swap + \\=\;&{(((Kswap \circ \tau) + id) \circ dstl \circ (id \times h))}^\sharp \circ swap + \\=\;&{((\sigma + id) \circ dstr \circ (h \times id))}^\sharp.\tag{\ref{law:uniformity}} + \end{alignat*} + + Let us now proceed with the properties of \(\tau \) and \(\sigma \). + \begin{itemize} + \item[(\ref{Ktau1})] + \begin{alignat*}{1} + & {(\tau \circ (id \times g))}^* \circ \tau \circ (f^* \times id) + \\=\;&\tau^* \circ K(id \times g) \circ \tau \circ (f^* \times id) + \\=\;&\tau^* \circ \tau \circ (id \times Kg) \circ (f^* \times id) + \\=\;&\tau \circ (id \times \mu) \circ (id \times Kg) \circ (f^* \times id) + \\=\;&\tau \circ (id \times g^*) \circ (f^* \times id) + \\=\;&\tau \circ (f^* \times g^*) + \end{alignat*} + + \item[(\ref{Ksigma1})] + \begin{alignat*}{1} + & {(\sigma \circ (f \times id))}^* \circ \sigma \circ (id \times g^*) + \\=\;&\sigma^* \circ K(f \times id) \circ \sigma \circ (id \times g^*) + \\=\;&\sigma^* \circ \sigma \circ (Kf \times id) \circ (id \times g^*) + \\=\;&\sigma \circ (\mu \times id) \circ (Kf \times id) \circ (id \times g^*) + \\=\;&\sigma \circ (f^* \times id) \circ (id \times g^*) + \\=\;&\sigma \circ (f^* \times g^*) + \end{alignat*} + \end{itemize} + Thus, the proof has been concluded. +\end{proof} + +The following Lemma is central to the proof of commutativity. + +\begin{lemma}\label{lem:KCommKey} Given \(f : X \rightarrow KY + X, g : Z \rightarrow KA + Z\), + \[\tau^* \circ \sigma \circ ({((\eta + id) \circ f)}^\sharp \times {((\eta + id) \circ g)}^\sharp) = \sigma^* \circ \tau \circ ({((\eta + id) \circ f)}^\sharp \times {((\eta + id) \circ g)}^\sharp).\] +\end{lemma} +\begin{proof} + Let us abbreviate \(\hat{f} := (\eta + id) \circ f\) and \(\hat{g} := (\eta + id) \circ g\). It suffices to find a + \[w : X \times Z \rightarrow K(X \times KA + KY \times Z) + X \times Z\] + such that \(\hat{f}^\sharp \circ \pi_1 = {[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ]}^* \circ w^\sharp\) and \(\hat{g}^\sharp \circ \pi_2 = {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^* \circ w^\sharp \), because then + \begin{alignat*}{1} + & \tau^* \circ \sigma \circ (\hat{f}^\sharp \times \hat{g}^\sharp) + \\=\;&\tau^* \circ \sigma \circ ({[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ]}^* \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ (w^\sharp \times w^\sharp) + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* \circ \sigma \circ (id \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ (w^\sharp \times w^\sharp) + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* \circ K(id \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ \sigma \circ (w^\sharp \times w^\sharp) + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* \circ K(id \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ Kswap \circ \tau \circ \Delta \circ w^\sharp + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* + \\&\hphantom{\tau^* }\circ K(id \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ Kswap \circ K\langle \eta , id \rangle \circ w^\sharp\tag{\autoref{thm:Klifting}} + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* \circ K(id \times {[ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]}^*) \circ K\langle id , \eta \rangle \circ w^\sharp + \\=\;&\tau^* \circ {(\sigma \circ ([ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] \times id))}^* \circ K\langle id , [ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]\rangle \circ w^\sharp + \\=\;&\tau^* \circ {(\sigma \circ \langle[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ] , [ \hat{g}^\sharp \circ \pi_2 , \eta \circ \pi_2 ]\rangle)}^* \circ w^\sharp + \\=\;&\tau^* \circ {(\sigma \circ [\langle \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_2 \rangle , \langle \eta \circ \pi_1 , \hat{g}^\sharp \circ \pi_2 \rangle])}^* \circ w^\sharp + \\=\;&{(\tau^* \circ \sigma \circ [\hat{f}^\sharp \times \eta , \eta \times \hat{g}^\sharp])}^* \circ w^\sharp + \\=\;&{([\tau^* \circ \sigma \circ (\hat{f}^\sharp \times \eta) , \tau^* \circ \sigma \circ (\eta \times \hat{g}^\sharp)])}^* \circ w^\sharp + \\=\;&{([\tau^* \circ K(id \times \eta) \circ \sigma \circ (\hat{f}^\sharp \times id) , \tau^* \circ \eta \circ (id \times \hat{g}^\sharp)])}^* \circ w^\sharp + \\=\;&{([\sigma \circ (\hat{f}^\sharp \times id) , \tau \circ (id \times \hat{g}^\sharp)])}^* \circ w^\sharp, + \end{alignat*} + and by a symmetric argument also + \[\sigma^* \circ \tau \circ (\hat{f}^\sharp \times \hat{g}^\sharp) = {([\sigma \circ (\hat{f}^\sharp \times id) , \tau \circ (id \times \hat{g}^\sharp)])}^* \circ w^\sharp.\] + + Note that we are referencing the equational lifting law established in \autoref{thm:Klifting} even though for a monad to be an equational lifting monad it has to be commutative first. However, since we are merely referencing the equational law, which can (and does in this case) hold without depending on commutativity, this does not pose a problem. + + We are thus left to find such a \(w\), consider + \[w := [ i_1 \circ K i_1 \circ \tau , ((K i_2 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times \hat{g}). \] + \(w\) indeed satisfies the requisite properties, let us check the first property, the second one follows by a symmetric argument. We need to show that + \[{[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ]}^* \circ w^\sharp = {([ i_1 \circ \pi_1 , (\hat{f}^\sharp \circ \pi_1 + id) \circ dstl ] \circ dstr \circ (\hat{f} \times g))}^\sharp = \hat{f}^\sharp \circ \pi_1. \] + Indeed, + \begin{alignat*}{1} + & {[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ]}^* \circ w^\sharp + \\=\;&{(({[ \hat{f}^\sharp \circ \pi_1 , \eta \circ \pi_1 ]}^* + id) \circ w)}^\sharp + \\=\;&{([ i_1 \circ {(\hat{f}^\sharp \circ \pi_1)}^* \circ \tau , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times \hat{g}))}^\sharp + \\=\;&{([ i_1 \circ {(\hat{f}^\sharp \circ \pi_1)}^* \circ \tau , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times (\eta + id)) \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ {(\hat{f}^\sharp \circ \pi_1)}^* \circ \tau , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ ((id \times \eta) + id) \circ dstl \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ {(\hat{f}^\sharp \circ \pi_1)}^* \circ \tau \circ (id \times \eta) , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ \hat{f}^\sharp \circ \pi_1 , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ \hat{f} \circ \pi_1 , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times g))}^\sharp\tag{\ref{law:fixpoint}} + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ \pi_1 \circ (\hat{f} \times id) , ((K\pi_1 \circ \sigma) + id) \circ dstr \circ (\hat{f} \times id) ] \circ dstl \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ \pi_1 , ((K\pi_1 \circ \sigma) + id) \circ dstr ] \circ ((\hat{f} \times id) + (\hat{f} \times id)) \circ dstl \circ (id \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ \pi_1 , ((K\pi_1 \circ \sigma) + id) \circ dstr ] \circ dstl \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ (\pi_1 + \pi_1) \circ dstr , ((K\pi_1 \circ \sigma) + id) \circ dstr ] \circ dstl \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ (\pi_1 + \pi_1) , ((K\pi_1 \circ \sigma) + id) ] \circ (dstr + dstr) \circ dstl \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ i_1 \circ [id , \hat{f}^\sharp] \circ (\pi_1 + \pi_1) , ((K\pi_1 \circ \sigma) + id) ] \circ [ i_1 + i_1 , i_2 + i_2 ] \circ (dstl + dstl) \circ dstr \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ [ i_1 \circ [id , \hat{f}^\sharp] \circ i_1 \circ \pi_1 , i_1 \circ K\pi_1 \circ \sigma ] , [ i_1 \circ [id , \hat{f}^\sharp] \circ i_2 \circ \pi_1 , i_2 ] ] \circ (dstl + dstl) \circ dstr \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ [ i_1 \circ \pi_1 , i_1 \circ \pi_1 ] , [ i_1 \circ \hat{f}^\sharp \circ \pi_1 , i_2 ] ] \circ (dstl + dstl) \circ dstr \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ i_1 \circ [ \pi_1 , \pi_1 ] , (\hat{f}^\sharp \circ \pi_1 + id) ] \circ (dstl + dstl) \circ dstr \circ (\hat{f} \times g))}^\sharp + \\=\;&{([ i_1 \circ \pi_1 , (\hat{f}^\sharp \circ \pi_1 + id) \circ dstl ] \circ dstr \circ (\hat{f} \times g))}^\sharp + \end{alignat*} + and + \begin{alignat*}{1} + & \hat{f}^\sharp \circ \pi_1 + \\=\;&{((id + \Delta) \circ h)}^\sharp \tag{\ref{law:uniformity}} + \\=\;&{([ i_1 , {((id + \Delta) \circ h)}^\sharp + id] \circ h)}^\sharp \tag{\ref{law:diamond}} + \\=\;&{([ i_1 , (\hat{f}^\sharp \circ \pi_1) + id ] \circ h)}^\sharp \tag{\ref{law:uniformity}} + \\=\;&{([ i_1 \circ \pi_1 , ((\hat{f} \circ \pi_1 \circ \pi_1) + (\pi_1 \times id)) \circ dstl \circ \langle id , g \circ \pi_2 \rangle ] \circ dstr \circ (\hat{f} \times id))}^\sharp + \\=\;&{([ i_1 \circ \pi_1 , ((\hat{f} \circ \pi_1) + id) \circ ((\pi_1 \times id) + (\pi_1 \times id)) \circ dstl \circ \langle id , g \circ \pi_2 \rangle ] \circ dstr \circ (\hat{f} \times id))}^\sharp + \\=\;&{([ i_1 \circ \pi_1 , ((\hat{f} \circ \pi_1) + id) \circ dstl \circ \langle \pi_1 , g \circ \pi_2 \rangle ] \circ dstr \circ (\hat{f} \times id))}^\sharp + \\=\;&{([ i_1 \circ \pi_1 \circ (id \times g) , ((\hat{f} \circ \pi_1) + id) \circ dstl \circ (id \times g) ] \circ dstr \circ (\hat{f} \times id))}^\sharp + \\=\;&{([ i_1 \circ \pi_1 , ((\hat{f} \circ \pi_1) + id) \circ dstl ] \circ dstr \circ (\hat{f} \times g))}^\sharp, + \end{alignat*} + + where \(h = (\pi_1 + (\pi_1 + (\pi_1 \times id)) \circ dstl \circ \langle id , g \circ \pi_2 \rangle) \circ dstr \circ (\hat{f} \times id)\) and the application of \ref{law:uniformity} is justified, since % chktex 2 + \begin{alignat*}{1} + & (id + \pi_1) \circ (id + \Delta) \circ h + \\=\;&(\pi_1 + ((\pi_1 \circ [ \pi_1 , \pi_1 \times id ]) \circ dstl \circ \langle id , g \circ \pi_2 \rangle)) \circ dstr \circ (\hat{f} \times id) + \\=\;&(\pi_1 + ([ \pi_1 \circ \pi_1 , \pi_1 \circ \pi_1 ] \circ dstl \circ \langle id , g \circ \pi_2 \rangle)) \circ dstr \circ (\hat{f} \times id) + \\=\;&(\pi_1 + (\pi_1 \circ \pi_1 \circ \langle id , g \circ \pi_2 \rangle)) \circ dstr \circ (\hat{f} \times id) + \\=\;&(\pi_1 + \pi_1) \circ dstr \circ (\hat{f} \times id) + \\=\;&\pi_1 \circ (\hat{f} \times id) + \\=\;&\hat{f} \circ \pi_1 . + \end{alignat*} + + This concludes the proof. +\end{proof} + +\begin{lemma} + \(\mathbf{K}\) is a commutative monad. +\end{lemma} +\begin{proof} We need to show that \(\tau^* \circ \sigma = \sigma^* \circ \tau : KX \times KY \rightarrow K(X \times Y)\). + Let us proceed by right stability, consider the following diagram. + % https://q.uiver.app/#q=WzAsNSxbMSwwLCJLWCBcXHRpbWVzIEtZIl0sWzMsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzEsMiwiSyhYIFxcdGltZXMgS1kpIl0sWzMsMiwiSyhYIFxcdGltZXMgWSkiXSxbMCwzLCJLWCBcXHRpbWVzIFkiXSxbMCwxLCJcXHRhdSJdLFswLDIsIlxcaGF0e1xcdGF1fSIsMl0sWzEsMywiXFxoYXR7XFx0YXV9XioiXSxbMiwzLCJcXHRhdV4qIiwyXSxbNCwwLCJpZCBcXHRpbWVzIFxcZXRhIiwwLHsiY3VydmUiOi0yfV0sWzQsMywiXFxoYXR7XFx0YXV9IiwyLHsiY3VydmUiOjJ9XV0= + \[ + \begin{tikzcd} + & {KX \times KY} && {K(KX \times Y)} \\ + \\ + & {K(X \times KY)} && {K(X \times Y)} \\ + {KX \times Y} + \arrow["\tau", from=1-2, to=1-4] + \arrow["{\sigma}"', from=1-2, to=3-2] + \arrow["{\sigma^*}", from=1-4, to=3-4] + \arrow["{\tau^*}"', from=3-2, to=3-4] + \arrow["{id \times \eta}", curve={height=-12pt}, from=4-1, to=1-2] + \arrow["{\sigma}"', curve={height=12pt}, from=4-1, to=3-4] + \end{tikzcd} + \] + + The diagram commutes since + \[\sigma^* \circ \tau \circ (id \times \eta) = \sigma^* \circ \eta = \sigma \] + and + \[\tau^* \circ \sigma \circ (id \times \eta) = \tau^* \circ K(id \times \eta) \circ \sigma = {(\tau \circ (id \times \eta))}^* \circ \sigma = \sigma.\] + + We are left to show that both \(\sigma^* \circ \tau \) and \(\tau^* \circ \sigma \) are right iteration preserving. Let \(h : Z \rightarrow KY + Z\), indeed + \[\sigma^* \circ \tau \circ (id \times h^\sharp) = \sigma^* {((\tau + id) \circ dstl \circ (id \times h))}^\sharp = {(((\sigma^* \circ \tau) + id) \circ dstl \circ (id \times h))}^\sharp. \] + + Let \(\psi := \tau^* \circ \sigma \) and let us proceed by left stability to show that \(\psi \) is right iteration preserving, consider the following diagram + % https://q.uiver.app/#q=WzAsNCxbNCwwLCJLWCBcXHRpbWVzIEtZIl0sWzQsMSwiSyhYIFxcdGltZXMgWSkiXSxbMCwxLCJLWCBcXHRpbWVzIFoiXSxbMCwzLCJYIFxcdGltZXMgWiJdLFswLDEsIlxccHNpIl0sWzIsMCwiaWQgXFx0aW1lcyBoXlxcIyJdLFsyLDEsIigoXFxwc2kgKyBpZCkgXFxjaXJjIGRzdGwgXFxjaXJjIChpZCBcXHRpbWVzIGgpKV5cXCMiLDJdLFszLDIsIlxcZXRhIFxcdGltZXMgaWQiXSxbMywxLCJcXHRhdSBcXGNpcmMgKGlkIFxcdGltZXMgaF5cXCMpIiwyXV0= + \[ + \begin{tikzcd} + &&&& {KX \times KY} \\ + {KX \times Z} &&&& {K(X \times Y)} \\ + \\ + {X \times Z} + \arrow["\psi", from=1-5, to=2-5] + \arrow["{id \times h^\sharp}", from=2-1, to=1-5] + \arrow["{((\psi + id) \circ dstl \circ (id \times h))^\sharp}"', from=2-1, to=2-5] + \arrow["{\eta \times id}", from=4-1, to=2-1] + \arrow["{\tau \circ (id \times h^\sharp)}"', from=4-1, to=2-5] + \end{tikzcd} + \] + which commutes, since + \begin{alignat*}{1} + & \psi \circ (id \times h^\sharp) \circ (\eta \times id) + \\=\;&\psi \circ (\eta \times id) \circ (id \times h^\sharp) + \\=\;&\tau^* \circ \eta \circ (id \times h^\sharp) + \\=\;&\tau \circ (id \times h^\sharp) + \\=\;&{((\tau + id) \circ dstl \circ (id \times h))}^\sharp + \\=\;&{((\psi + id) \circ dstl \circ (id \times h))}^\sharp \circ (\eta \times id).\tag{\ref{law:uniformity}} + \end{alignat*} + + We are left to show that both \(\psi \circ (id \times h^\sharp)\) and \({((\psi + id) \circ dstl \circ (id \times h))}^\sharp \) are left iteration preserving. Let \(g : A \rightarrow KX + A\), then \(\psi \circ (id \times h^\sharp)\) is left iteration preserving, since + \begin{alignat*}{1} + & \psi \circ (id \times h^\sharp) \circ (g^\sharp \times id) + \\=\;&\psi \circ (g^\sharp \times id) \circ (id \times h^\sharp) + \\=\;&\tau^* \circ {((\sigma + id) \circ dstr \circ (g \times id))}^\sharp \circ (id \times h^\sharp) + \\=\;&{((\psi + id) \circ dstr \circ (g \times id))}^\sharp \circ (id \times h^\sharp) + \\=\;&{(((\psi \circ (id \times h^\sharp)) + id) \circ dstr \circ (g \times id))}^\sharp.\tag{\ref{law:uniformity}} + \end{alignat*} + + Lastly, we need to show that + \[{((\psi + id) \circ dstl \circ (id \times h))}^\sharp \circ (g^\sharp \times id) = {(({((\psi + id) \circ dstl \circ (id \times h))}^\sharp + id) \circ dstr \circ (g \times id))}^\sharp.\] + Note that by~\ref{law:uniformity} the left-hand side can be rewritten as + \[{(({((\psi + id) \circ dstr \circ (g \times id))}^\sharp + id) \circ dstl \circ (id \times h))}^\sharp.\] + + Consider now, that + \begin{alignat*}{1} + & {(({((\psi + id) \circ dstl \circ (id \times h))}^\sharp + id) \circ dstr \circ (g \times id))}^\sharp + \\=\;&{(({({((\psi + id) \circ dstl \circ (id \times h))}^\sharp)}^* + id) \circ (\eta + id) \circ dstr \circ (g \times id))}^\sharp + \\=\;&{({((\psi + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ {((\eta + id) \circ dstr \circ (g \times id))}^\sharp + \\=\;&{({((\psi + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ {(((\sigma \circ (\eta \times id)) + id) \circ dstr \circ (g \times id))}^\sharp + \\=\;&{({((\psi + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&{({((\psi^* + id) \circ (\eta + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ {({((\eta + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ {({((\eta + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ {({(((\tau \circ (id \times \eta)) + id) \circ dstl \circ (id \times h))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ {({((\tau + id) \circ dstl \circ (id \times ((\eta + id) \circ h)))}^\sharp)}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ {(\tau \circ (id \times {((\eta + id) \circ h)}^\sharp))}^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ \tau^* \circ K(id \times {((\eta + id) \circ h)}^\sharp) \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ \tau^* \circ \sigma \circ (id \times {((\eta + id) \circ h)}^\sharp) \circ ({((\eta + id) \circ g)}^\sharp \times id) + \\=\;&\psi^* \circ \tau^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times {((\eta + id) \circ h)}^\sharp), + \end{alignat*} + and by a symmetric argument + \begin{alignat*}{1} + & {(({((\psi + id) \circ dstr \circ (g \times id))}^\sharp + id) \circ dstl \circ (id \times h))}^\sharp + \\=\;&\psi^* \circ \sigma^* \circ \tau \circ ({((\eta + id) \circ g)}^\sharp \times {((\eta + id) \circ h)}^\sharp). + \end{alignat*} + + We are thus done by + \begin{alignat*}{1} + & {((\psi + id) \circ dstl \circ (id \times h))}^\sharp \circ (g^\sharp \times id) + \\=\;&{(({((\psi + id) \circ dstr \circ (g \times id))}^\sharp + id) \circ dstl \circ (id \times h))}^\sharp\tag{\ref{law:uniformity}} + \\=\;&\psi^* \circ \sigma^* \circ \tau \circ ({((\eta + id) \circ g)}^\sharp \times {((\eta + id) \circ h)}^\sharp) + \\=\;&\psi^* \circ \tau^* \circ \sigma \circ ({((\eta + id) \circ g)}^\sharp \times {((\eta + id) \circ h)}^\sharp)\tag{\autoref{lem:KCommKey}} + \\=\;&{(({((\psi + id) \circ dstl \circ (id \times h))}^\sharp + id) \circ dstr \circ (g \times id))}^\sharp.\tag*{\qedhere} + \end{alignat*} +\end{proof} + +\begin{theorem}\label{thm:Klifting} + \(\mathbf{K}\) is an equational lifting monad. +\end{theorem} + +\begin{proof} + Since we have already shown commutativity, we are left to show that \(\tau \circ \Delta = K \langle \eta , id \rangle \). Note that \(K \langle \eta , id \rangle = \free{\eta \circ \langle \eta , id \rangle}\), which is the unique Elgot algebra morphism satisfying \(K \langle \eta , id \rangle \circ \eta = \eta \circ \langle \eta , id \rangle \). It thus suffices to show that \(\tau \circ \Delta \) satisfies the same identity and is iteration preserving. + + The identity follows easily: + \begin{alignat*}{1} + & \tau \circ \Delta \circ \eta + \\=\;&\tau \circ \langle \eta , \eta \rangle + \\=\;&\tau \circ (id \times \eta) \circ \langle \eta , id \rangle + \\=\;&\eta \circ \langle \eta , id \rangle. + \end{alignat*} + + For iteration preservation of \(\tau \circ \Delta \) consider \(Z \in \obj{\C}\) and \(h : Z \rightarrow KX + Z\), then + \begin{alignat*}{1} + & \tau \circ \Delta \circ h^{\sharp} + \\=\;&\tau \circ \langle h^{\sharp} , h^{\sharp} \rangle + \\=\;&\tau \circ (id \times h^{\sharp}) \circ \langle h^{\sharp} , id \rangle + \\=\;&{((\tau + id) \circ dstl \circ (id \times f))}^\sharp \circ \langle h^{\sharp} , id \rangle + \\=\;&{(((\tau \circ \Delta) + id) \circ f)}^\sharp.\tag{\ref{law:uniformity}} + \end{alignat*} + + Note that by monicity of \(dstl^{-1}\) and by~\ref{law:fixpoint} + \[(\Delta + \langle f^\sharp , id \rangle) \circ f = dstl \circ \langle f^\sharp , f \rangle.\tag{*}\label{helperinkey} \] + The application of~\ref{law:uniformity} is then justified by + \begin{alignat*}{1} + & (id + \langle f^\sharp , id \rangle) \circ ((\tau \circ \Delta) + id) \circ f + \\=\;&((\tau \circ \Delta) + \langle f^\sharp , id \rangle) \circ f + \\=\;&(\tau + id) \circ (\Delta + \langle f^\sharp , id \rangle) \circ f + \\=\;&(\tau + id) \circ dstl \circ \langle f^\sharp , f \rangle\tag{\ref{helperinkey}} + \\=\;&(\tau + id) \circ dstl \circ (id \times f) \circ \langle f^\sharp , id \rangle.\tag*{\qedhere} + \end{alignat*} +\end{proof} + +\begin{theorem} + \(\mathbf{K}\) is the initial (strong) pre-Elgot monad. +\end{theorem} +\begin{proof} + Note that \(\mathbf{K}\) is a pre-Elgot monad by definition and strong pre-Elgot by \autoref{lem:Kstrong}. Let us first show that \(\mathbf{K}\) is the initial pre-Elgot monad. + + Given any pre-Elgot monad \(\mathbf{T}\), let us introduce alternative names for the monad operations of \(\mathbf{T}\) and \(\mathbf{K}\) to avoid confusion: + \[\mathbf{T} = (T , \eta^T, \mu^T)\] + and + \[\mathbf{K} = (K , \eta^K, \mu^T).\] + + For every \(X \in \obj{\C} \) we define \(¡ = \free{(\eta^T : X \rightarrow TX)} : KX \rightarrow TX \). Note that \(¡\) is per definition the unique iteration preserving morphism that satisfies \(¡ \circ \eta^K = \eta^T\). We are done after showing that \(¡\) is natural and respects the monad multiplication. + + Let \(f : X \rightarrow Y\). For naturality of \(¡\) it suffices to show + \[¡ \circ Kf = \free{Tf \circ \eta^T} = Tf \circ ¡,\] + where \(\free{Tf \circ \eta^T}\) is the unique Elgot algebra morphism satisfying \(\free{Tf \circ \eta^T} \circ \eta^K = Tf \circ \eta^T \). + Note that both \(¡ \circ Kf \) and \(Tf \circ ¡ \) are iteration preserving since they are composed of iteration preserving morphisms and both satisfy the requisite property, since \(Tf \circ ¡ \circ \eta^K = Tf \circ \eta^T \) follows instantly and + \begin{alignat*}{1} + & ¡ \circ Kf \circ \eta^K + \\=\;&¡ \circ \eta^K \circ f + \\=\;&\eta^T \circ f + \\=\;&Tf \circ \eta^T. + \end{alignat*} + + Let us proceed similarly for showing that \(¡\) respects the monad multiplication, i.e.\ consider + \[¡ \circ \mu = \free{¡} = \mu^T \circ T ¡ \circ ¡,\] + where \(\free{¡}\) is the unique Elgot algebra morphism satisfying \(\free{¡} \circ \eta^K = ¡\). Note that again both sides of the identity are iteration preserving, since they are composed of iteration preserving morphisms. Consider also that \(¡ \circ \mu^K \circ \eta^K = ¡\) and + \begin{alignat*}{1} + & \mu^T \circ T¡ \circ ¡ \circ \eta^K + \\=\;&\mu^T \circ ¡ \circ K¡ \circ \eta^K + \\=\;&\mu^T \circ ¡ \circ \eta^K \circ ¡ + \\=\;&\mu^T \circ \eta^T \circ ¡ + \\=\;&¡. + \end{alignat*} + + Thus, \(\mathbf{K}\) is an initial pre-Elgot monad. To show that \(\mathbf{K}\) is also initial strong pre-Elgot, assume that \(\mathbf{T}\) is strong with strength \(\tau^T\) and let us call the strength of \(\mathbf{K}\) \(\tau^K\). We are left to show that \(¡\) respects strength, i.e.\ \( ¡ \circ \tau^K = \tau^T \circ (id \times ¡) : X \times KY \rightarrow T(X \times Y) \). We proceed by right-stability, using: + % https://q.uiver.app/#q=WzAsNSxbMSwwLCJYIFxcdGltZXMgS1kiXSxbMywwLCJLKFggXFx0aW1lcyBZKSJdLFszLDIsIlQoWCBcXHRpbWVzIFkpIl0sWzEsMiwiWCBcXHRpbWVzIFRZIl0sWzAsMywiWCBcXHRpbWVzIFkiXSxbMCwxLCJcXHRhdV5LIl0sWzEsMiwiwqEiXSxbMCwzLCJpZCBcXHRpbWVzIMKhIiwyXSxbMywyLCJcXHRhdV5UIiwyXSxbNCwwLCJpZCBcXHRpbWVzIFxcZXRhIiwwLHsiY3VydmUiOi0yfV0sWzQsMiwiXFxldGFeVCIsMix7ImN1cnZlIjoyfV1d + \[ + \begin{tikzcd}[ampersand replacement=\&] + \& {X \times KY} \&\& {K(X \times Y)} \\ + \\ + \& {X \times TY} \&\& {T(X \times Y)} \\ + {X \times Y} + \arrow["{\tau^K}", from=1-2, to=1-4] + \arrow["{¡}", from=1-4, to=3-4] + \arrow["{id \times ¡}"', from=1-2, to=3-2] + \arrow["{\tau^T}"', from=3-2, to=3-4] + \arrow["{id \times \eta}", curve={height=-12pt}, from=4-1, to=1-2] + \arrow["{\eta^T}"', curve={height=12pt}, from=4-1, to=3-4] + \end{tikzcd} + \] + The diagram commutes, since \( ¡ \circ \tau^K = \eta^T = \tau^T \circ (id \times \eta^T) = \tau^T \circ (id \times ¡) \circ (id \times \eta^T) \). Now we are done, since \(¡ \circ \tau^K\) and \(\tau^T \circ (id \times ¡)\) are both right iteration preserving because both are composed of (right) iteration preserving morphisms. +\end{proof} \ No newline at end of file diff --git a/src/06_setoids.tex b/src/06_setoids.tex new file mode 100644 index 0000000..8b42816 --- /dev/null +++ b/src/06_setoids.tex @@ -0,0 +1,521 @@ +\chapter{A Case Study on Setoids}\label{chp:setoids} + +In \autoref{chp:partiality} we have argued that the delay monad is not an equational lifting monad, because it does not only model partiality, but it also considers computation time in its built-in notion of equality. +One way to remedy this is to take the quotient of the delay monad where computations with the same result are identified. +In this chapter we will use the quotients-as-setoid approach, i.e.\ we will work in the category of setoids and show that the quotiented delay monad is an instance of the previously defined monad \(\mathbf{K}\) in this category. + +\section{Setoids in Type Theory} +We will now introduce the category that the rest of the chapter will take place in. Let us start with some basic definitions. + +\begin{definition}[Setoid] + A setoid is a tuple \((A, \overset{A}{=})\) where \(A\) (usually called the \textit{carrier}) is a type and \(\overset{A}{=}\) is an equivalence relation on the inhabitants of \(A\). +\end{definition} + +For brevity, we will not use the tuple notation most of the time, instead we will just say `Let \(A\) be a setoid' and implicitly call the equivalence relation \(\overset{A}{=}\). + +\begin{definition}[Setoid Morphism] + A morphism between setoids \(A\) and \(B\) constitutes a function \(f : A \rightarrow B\) between the carriers, such that \(f\) respects the equivalences, i.e.\ for any \(x,y : A\), \(x \overset{A}{=} y\) implies \(f\;x \overset{B}{=} f\;y\). We will denote setoid morphisms as \(A ⇝ B\). +\end{definition} +Let us now consider the function space setoid, which is of special interest, since it carries a notion of equality between functions. +\begin{definition}[Function Space Setoid] + Given two setoids \(A\) and \(B\), the function space setoid on these setoids is defined as \((A ⇝ B, \doteq)\) or just \(A ⇝ B\), where \(\doteq\) is the point wise equality on setoid morphisms. +\end{definition} + +Setoids together with setoid morphisms form a category that we will call \(\setoids\). +Properties of \(\setoids\) have already been examined in~\cite{setoids}, however we will reiterate some of these properties now to introduce notation that will be used for the rest of the chapter. + +\begin{proposition} + \(\setoids\) is a distributive category. +\end{proposition} +\begin{proof} + To show that \(\setoids\) is (co)Cartesian we will give the respective data types and unique functions. % chktex 36 + For brevity, we will omit the proofs that the functions respect the corresponding equivalences, these are however included in the Agda standard library~\cite{agda-stdlib}. + + \begin{itemize} + \item \textbf{Products}: + \begin{minted}{agda} + record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where + constructor _,_ + field + fst : A + snd : B + + <_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (A → B) → (A → C) → A → (B × C) + < f , g > x = (f x , g x) + \end{minted} + The product setoid is denoted \((A \times B, \overset{\times}{=})\) or just \(A \times B\). Equality of products is defined in the canonical way. + \item \textbf{Terminal Object}: + \begin{minted}{agda} + record ⊤ {l} : Set l where + constructor tt + + ! : ∀ {l} {X : Set l} → X → ⊤ {l} + ! _ = tt + \end{minted} + The terminal setoid is thus \((\top, \overset{\top}{=})\), where \(\top \overset{\top}{=} \top\). + \item \textbf{Coproducts}: + \begin{minted}{agda} + data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where + i₁ : A → A + B + i₂ : B → A + B + + [_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (A → C) → (B → C) → (A + B) → C + [ f , g ] (i₁ x) = f x + [ f , g ] (i₂ x) = g x + \end{minted} + Similarly to products, the coproduct setoid is denoted \((A + B, \overset{+}{=})\) or just \(A + B\), where equality of coproducts is defined in the canonical way. + \item \textbf{Initial Object}: + \begin{minted}{agda} + data ⊥ {l} : Set l where + + ¡ : ∀ {l} {X : Set l} → ⊥ {l} → X + ¡ () + \end{minted} + The initial setoid is then \((\bot, \emptyset)\), where the equivalence is the empty relation. + \end{itemize} + + Lastly we need to show that the canonical distributivity function is an iso. Recall that the canonical distributivity morphism is defined as \(dstl^{-1} = [ id \times i_1 , id \times i_2 ] : A \times B + A \times C \rightarrow A \times (B + C)\). + This is equivalent to the following definition that uses pattern matching. + \begin{minted}{agda} + distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (A × B) + (A × C) → A × (B + C) + distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y) + distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y) + \end{minted} + The inverse can then be defined similarly: + \begin{minted}{agda} + distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → A × (B + C) → (A × B) + (A × C) + distributeˡ (x , i₁ y) = i₁ (x , y) + distributeˡ (x , i₂ y) = i₂ (x , y) + \end{minted} + Note that these functions are inverse by definition, and it follows quickly that they are setoid morphisms. +\end{proof} + +\begin{proposition}\label{prop:setoids-ccc} + \(\setoids\) is Cartesian closed. +\end{proposition} +\begin{proof} + Let \(A\) and \(B\) be two setoids. The function space setoid \(A ⇝ B\) is an exponential object of \(A\) and \(B\), together with the functions \(curry\) and \(eval\) defined in the following listing. + \begin{minted}{agda} + curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} + → (C × A → B) → C → A → B + curry f x y = f (x , y) + + eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B + eval (f , x) = f x + \end{minted} + The universal property of exponential objects follows instantly. +\end{proof} + +\section{Quotienting the Delay Monad} +In this section we will introduce data types only using inference rules. For that we adopt the convention that coinductive types are introduced by doubled lines while inductive types are introduced with a single line. + +Now, recall from previous chapters that Capretta's delay monad~\cite{delay} is a coinductive type defined by the two constructors: +\[ + \mprset{fraction={===}}\inferrule*{x : A}{now\; x : D\;A} \qquad + \inferrule*{x : D\;A}{later \;x : D\;A} \qquad +\] +Furthermore, let us recall two different notions of bisimilarity between inhabitants of the delay type that have been studied previously in~\cite{quotienting}. Afterwards, we will reiterate some facts that have been proven in~\cite{quotienting} to then finally prove that the quotiented delay type extends to an instance of the monad \(\mathbf{K}\) that has been introduced in \autoref{chp:iteration}. + +Let \(A\) be a setoid. Lifting the equivalence \(\overset{A}{=}\) to \(D\;A\) yields another equivalence called \emph{strong bisimilarity}. This equivalence is defined by the rules + +\[ + \mprset{fraction={===}}\inferrule*{x \overset{A}{=} y}{x \sim y} \qquad + \inferrule*{x \sim y}{later\; x \sim later\; y} \qquad +\] + +\begin{proposition}[\cite{quotienting}] + \((D\;A, \sim)\) is a setoid and admits a monad structure. +\end{proposition} + +Computations in \((D\;A, \sim)\) are only identified if they evaluate to the same result in the same number of steps. In many contexts this behavior is too intensional. Instead, we will now consider the quotient of this setoid, where all computations that evaluate to the same result are identified. Let us first define a relation that states that two computations evaluate to the same result + +\[ + \inferrule*{x \overset{A}{=} y}{now\;x \downarrow y} \qquad + \inferrule*{x \downarrow c}{later\;x \downarrow c }. +\] + +Now, we call two computations \(p\) and \(q\) \emph{weakly bisimilar} or \(p \approx q\) if they evaluate to the same result, or don't evaluate at all, which is specified by the rules +\[ + \mprset{fraction={===}}\inferrule*{a \overset{A}{=} b \\ x \downarrow a \\ y \downarrow b}{x \approx y} \qquad + \inferrule*{x \approx y}{later \;x \approx later \;y} \qquad +\] + +\begin{proposition}[\cite{delay}] + \((D\;A, \approx)\) is a setoid and admits a monad structure. +\end{proposition} +\begin{proof} + The monad unit is the constructor \(now : A \rightarrow D\;A\) and the multiplication \(\mu : D\;D\;A \rightarrow D\;A\) can be defined as follows: + + \[\mu\;x = \begin{cases} + z & \text{if } x = now\;z \\ + later(\mu\;z) & \text{if } x = later\;z + \end{cases}\] + + Given a function \(f : A \rightarrow B\), the lifted function \(Df : D\;A \rightarrow D\;B\) is defined as + \[Df\;x = \begin{cases} + now(f\;z) & \text{if } x = now\;z \\ + later(Df\;z) & \text{if } x = later\;z + \end{cases}\] + + It has been shown in~\cite{delay} that this indeed extends to a monad. +\end{proof} + +For the rest of this chapter we will abbreviate \(\tilde{D}\;A = (D_A , \sim)\) and \(\dbtilde{D}\;A = (D_A, \approx)\). + +\begin{lemma}\label{lem:Delgot} + Every \(\dbtilde{D}\;A\) can be equipped with an Elgot algebra structure. +\end{lemma} +\begin{proof} + We need to show that for every setoid \(A\) the resulting setoid \(\dbtilde{D}\;A\) extends to an Elgot algebra. + + Let \(X\) be a setoid and \(f : X ⇝ \dbtilde{D}\;A + X\) be a setoid morphism, we define \(f^\sharp : X ⇝ \dbtilde{D}\;A\) point wise: + \[ + f^\sharp\;x := + \begin{cases} + a & \text{if } f\;x = i_1 (a) \\ + later\;(f^{\sharp}\;a) & \text{if } f\;x = i_2 (a) + \end{cases} + \] + + Let us first verify that \(f^\sharp\) is indeed a setoid morphism, i.e.\ given \(x, y : X\) with \(x \overset{X}{=} y\), we need to show that \(f^\sharp\;x \approx f^\sharp\;y\). Since \(f\) is a setoid morphism we know that \(f\;x \overset{+}{=} f\;y\), which already implies that \(f^\sharp\;x \approx f^\sharp\;y\) by the definition of \(f^\sharp\). Note that by the same argument we can define an iteration operator that respects strong bisimilarity, let us call it \(f^{\tilde{\sharp}}\) as we will later need to distinguish between \(f^\sharp\) and \(f^{\tilde{\sharp}}\). + + Next, we check the iteration laws: + + \begin{itemize} + \item \ref{law:fixpoint}: We need to show that \(f^\sharp \;x \approx [ id , f^\sharp ](f\;x)\) for any \(x : X\). Let us proceed by case distinction: % chktex 2 + \begin{mycase} + \case{} \(f\;x = i_1\;a\) + \[ f^\sharp\;x \approx a \approx [ id , f^\sharp ] (i_1\;a) \approx [ id , f^\sharp ] (f\;x) \] + \case{} \(f\;x = i_2\;a\) + \[ f^\sharp\;x \approx later (f^{\sharp}\;a) \approx f^\sharp\;a \approx [ id , f^\sharp ] (i_2 \;a) \approx [ id , f^\sharp ] (f\;x)\] + \end{mycase} + \item \ref{law:uniformity}: Let \(Y\) be a setoid and \(g : Y ⇝ \dbtilde{D}\;A + Y, h : X ⇝ Y\) be setoid morphisms, such that \((id + h) \circ f \doteq g \circ h\). We need to show that \(f^\sharp\;x \approx g^\sharp(h\;x)\), for any \(x : X\). Let us proceed by case distinction over \(f\;x\) and \(g (h\;x)\), note that by the requisite equation \((id + h) \circ f \doteq g \circ h\), we only need to consider two cases: % chktex 2 + \begin{mycase} + \case{} \(f\;x = i_1\;a\) and \(g (h\;x) = i_1\;b\)\\ + Consider that \((id + h) \circ f \doteq g \circ h\) on \(x\) yields \(i_1 \; a \overset{+}{=} i_1 \; b\) and thus \(a \approx b\). Then indeed, + \[f^\sharp\; x \approx a \approx b \approx g^\sharp (h\;x)\] + \case{} \(f\;x = i_2\;a\) and \(g (h\;x) = i_2\;b\)\\ + Note that \((id + h) \circ f \doteq g \circ h\) on \(x\) yields \(i_2(h\;a) \overset{+}{=} i_2\;b\) and thus \(h\;a \overset{Y}{=} b\). + We are done by coinduction, which yields + \[f^\sharp\;x \approx later(f^\sharp\;a) \approx later(g^\sharp(h\;a)) \approx later(g^\sharp\;b) \approx g^\sharp (h\;x).\] + \end{mycase} + \item \ref{law:folding}: Let \(Y\) be a setoid and \(h : Y ⇝ X + Y\) a setoid morphism, we need to show that \({(f^\sharp + h)}^\sharp\;z \approx {[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp\;z\) for any \(z : X + Y\). % chktex 2 + Let us first establish the following fact + \[f^\sharp\;c \approx {[(id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;c) \qquad \text{for any } c : X, \tag{*}\label{folding-helper}\] + which follows by case distinction on \(f\;c\) and coinduction: + \begin{mycase} + \case{} \(f\;c = i_1\;a\) + \[f^\sharp\;c \approx a \approx {[(id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;c)\] + \case{} \(f\;c = i_2\;a\) + \[f^\sharp\;c \approx later(f^\sharp\;a) \approx later({[(id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;a)) \approx {[(id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;c)\] + \end{mycase} + We will now proceed with the proof of \ref{law:folding}, by case distinction on \(z\): % chktex 2 + \begin{mycase} + \case{} \(z = i_1\;x\)\\ + Another case distinction on \(f\;x\) yields: + \subcase{} \(f\;x = i_1\;a\)\\ + We are done, since \({(f^\sharp + h)}^\sharp(i_1 \; x) \approx a \approx {[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;x)\) + \subcase{} \(f\;x = i_2\;a\)\\ + Now, using the fact we established prior + \begin{alignat*}{1} + & {(f^\sharp + h)}^\sharp(i_1 \; x) + \\\approx\;&later(f^\sharp\;a) + \\\approx\;&later({[(id + i_1) \circ f , i_2 \circ h]}^\sharp (i_1\;a))\tag{\ref{folding-helper}} + \\\approx\;&{[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;x). + \end{alignat*} + \case{} \(z = i_2\;y\)\\ + Let us proceed by discriminating on \(h\;y\). + \subcase{} \(h\;y = i_1\;a\)\\ + Indeed by coinduction, + \begin{alignat*}{1} + & {(f^\sharp + h)}^\sharp(i_2 \; y) + \\\approx\;&later((f^\sharp + h)(i_1\;a)) + \\\approx\;&later({[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_1\;a)) + \\\approx\;&{[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_2\;y) + \end{alignat*} + \subcase{} \(h\;y = i_2\;a\)\\ + Similarly by coinduction, + \begin{alignat*}{1} + & {(f^\sharp + h)}^\sharp(i_2 \; y) + \\\approx\;&later((f^\sharp + h)(i_2\;a)) + \\\approx\;&later({[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_2\;a)) + \\\approx\;&{[ (id + i_1) \circ f , i_2 \circ h ]}^\sharp(i_2\;y) + \end{alignat*} + \end{mycase} + \end{itemize} + This concludes the proof that every \(\dbtilde{D}\;A\) extends to an Elgot algebra. +\end{proof} + +In the next proof a notion of \emph{discretized} setoid is needed, i.e.\ given a setoid \(Z\), we can discretize \(Z\) by replacing the equivalence relation with propositional equality, yielding \(\disc{Z} := (Z, \equiv)\). Now, the following corollary describes how to transform an iteration on \(\dbtilde{D}\;A\) into an iteration on \(\tilde{D}\;A\). + +\begin{corollary}\label{cor:discretize} + Given a setoid morphism \(g : X ⇝ \dbtilde{D}\;A + X\), there exists a setoid morphism \(\bar{g} : \disc{X} ⇝ \tilde{D}\;A + \disc{X}\) such that \(g^\sharp\;x \sim \bar{g}^{\tilde{\sharp}}\;x\) for any \(x : X\). +\end{corollary} +\begin{proof} + It is clear that propositional equality implies strong bisimilarity and thus \(\bar{g}\) is a setoid morphism that behaves as \(g\) does but with a different type profile. + The requisite property follows by case distinction on \(g\;x\). + \begin{mycase} + \case{} \(g\;x = i_1\;a\)\\ + We are done, since \(g^\sharp\;x \sim a \sim \bar{g}^{\tilde{\sharp}}\;x\) + \case{} \(g\;x = i_2\;a\)\\ + By coinduction \(g^\sharp\;x \sim later(g^\sharp\;a) \sim later(\bar{g}^{\tilde{\sharp}}\;a) \sim \bar{g}^{\tilde{\sharp}}\;x\), which concludes the proof. + \qedhere + \end{mycase} +\end{proof} + +\begin{theorem}\label{thm:Dfreeelgot} + Every \(\dbtilde{D}\;A\) can be equipped with a free Elgot algebra structure. +\end{theorem} +\begin{proof} + We build on \autoref{lem:Delgot}, it thus suffices to show that for any setoid \(A\), the Elgot algebra \((\dbtilde{D}\;A, {(-)}^\sharp)\) together with the setoid morphism \(now : A ⇝ \dbtilde{D}\;A\) is a free such algebra. + Given an Elgot algebra \((B, {(-)}^{\sharp_b})\) and a setoid morphism \(f : A ⇝ B\). We need to define an Elgot algebra morphism \(\free{f} : \dbtilde{D}\;A ⇝ B\). Consider \(g : \tilde{D}\;A ⇝ B + \tilde{D}\;A\) defined by + \[g\;x = + \begin{cases} + i_1(f\;a) & \text{if } x = now\;a \\ + i_2\;a & \text{if } x = later\;a + \end{cases}\] + + \(g\) trivially respects strong bisimilarity, thus consider \(g^{\sharp_b} : \tilde{D}\;A ⇝ B\). We need to show that \(g^{\sharp_b}\) also respects weak bisimilarity, thus yielding the requisite function \(\free{f} = g^{\sharp_b} : \dbtilde{D}\;A ⇝ B\). However, the proof turns out to be rather complex, let us postpone it to~\autoref{cor:respects}. + + Instead, we will continue with the proof. Let us now show that \(g^{\sharp_b}\) is iteration preserving. Given a setoid morphism \(h : X ⇝ \dbtilde{D}\;A + X\), we need to show that \(g^{\sharp_b} (h^\sharp\;x) \overset{B}{=} {((g^{\sharp_b} + id) \circ h)}^{\sharp_b}\;x\) for any \(x : X\). Using \autoref{cor:discretize} we will proceed to show + \[g^{\sharp_b} (h^\sharp\;x) \overset{B}{=} {((g^{\sharp_b} + id) \circ \bar{h})}^{\sharp_b}\;x \overset{B}{=} {((g^{\sharp_b} + id) \circ h)}^{\sharp_b}\;x.\] + + The second step instantly follows by \ref{law:uniformity}, considering that the identity function easily extends to a setoid morphism \(id : \disc{X} ⇝ X\), and thus the second step can be reduced to \({((g^{\sharp_b} + id) \circ \bar{h})}^{\sharp_b}\;x \overset{B}{=} {((g^{\sharp_b} + id) \circ h)}^{\sharp_b}(id\;x)\). % chktex 2 + For the first step consider + \begin{alignat*}{1} + & g^{\sharp_b} (h^\sharp\;x) + \\\overset{B}{=}\;&g^{\sharp_b} (\bar{h}^{\tilde{\sharp}}\;x)\tag{\autoref{cor:discretize}} + \\\overset{B}{=}\;&(g^{\sharp_b} \circ [ id , \bar{h}^{\tilde{\sharp}}])(i_2\;x) + \\\overset{B}{=}\;&{([(id + i_1) \circ g , i_2 \circ i_2 ] \circ [i_1 , h])}^{\sharp_b} (i_2\;x)\tag{\ref{law:uniformity}} + \\\overset{B}{=}\;&{((g^{\sharp_b} + id) \circ h)}^{\sharp_b}\;x.\tag{\ref{law:compositionality}} + \end{alignat*} + + Thus, \(g^{\sharp_b}\) is an Elgot algebra morphism. We are left to check that \(g^{\sharp_b}\) satisfies the requisite properties of free objects. First, note that \(g^{\sharp_b} \circ now \doteq [ id , g^\sharp_b ] \circ g \circ now \doteq f\) by \ref{law:fixpoint} and the definition of \(g\). % chktex 2 + Next, we need to check uniqueness of \(g^{\sharp_b}\). It suffices to show that any two Elgot algebra morphisms \(e, h : \dbtilde{D}\;A ⇝ B\) satisfying \(e \circ now \doteq f\) and \(h \circ now \doteq f\) are equal. + + First, note that the identity function extends to the following conversion setoid morphism \(conv : \tilde{D}\;A ⇝ \dbtilde{D}\;A\), since strong bisimilarity implies weak bisimilarity. Furthermore, consider the setoid morphism \(o : \tilde{D}\;A ⇝ \tilde{D}\;A + \tilde{D}\;A\) defined by + \[o\;x := \begin{cases} + i_1(now\;z) & \text{if } x = now\;z \\ + i_2\;z & \text{if } x = later\;z + \end{cases}\] + Now, by coinduction we can easily follow that + \[x \approx {((conv + id) \circ o)}^\sharp\;x \qquad \text{for any } x : D\;A.\tag{\(∗\)}\label{uniq-helper}\] + + Let us now return to the proof of uniqueness. We proceed by + \begin{alignat*}{1} + & e\;x + \\\approx\;&e({((conv + id) \circ o)}^\sharp\;x)\tag{\ref{uniq-helper}} + \\\approx\;&{((e \circ conv + id) \circ o)}^{\sharp_b}\;x\tag{Preservation} + \\\approx\;&{((h \circ conv + id) \circ o)}^{\sharp_b}\;x + \\\approx\;&h({((conv + id) \circ o)}^\sharp\;x)\tag{Preservation} + \\\approx\;&h\;x.\tag{\ref{uniq-helper}} + \end{alignat*} + It thus suffices to show that \((e \circ conv + id)(o\;x) \approx (h \circ conv + id)(o\;x)\). Indeed, discriminating over \(x\) yields: + + \begin{mycase} + \case{} \(x = now\;z\) + \begin{alignat*}{1} + & (e \circ conv + id)(o(now\;z)) + \\\overset{+}{=}\;&(e \circ conv + id)(i_1(now\;z)) + \\\overset{+}{=}\;&e(now\;z) + \\\overset{+}{=}\;&f\;z + \\\overset{+}{=}\;&h(now\;z) + \\\overset{+}{=}\;&(h \circ conv + id)(i_1(now\;z)) + \\\overset{+}{=}\;&(h \circ conv + id)(o(now\;z)) + \end{alignat*} + \case{} \(x = later\;z\) + \begin{alignat*}{1} + & (e \circ conv + id)(o(later\;z)) + \\\overset{+}{=}\;&(e \circ conv + id)(i_2\;z) + \\\overset{+}{=}\;&i_2\;z + \\\overset{+}{=}\;&(h \circ conv + id)(i_2\;z) + \\\overset{+}{=}\;&(h \circ conv + id)(o(later\;z)) + \end{alignat*} + \end{mycase} + + It has thus been proven that every \(\dbtilde{D}\;A\) admits a free Elgot algebra structure. +\end{proof} + +Let us now establish some functions for inspecting and manipulating the computation of elements of \(D\;A\). These functions and some key facts will then be used to finish the remaining proof needed for \autoref{thm:Dfreeelgot}. + +First, consider the ordering with respect to execution time on elements of \(D\;A\), defined by +\[ + \mprset{fraction={===}}\inferrule*{p: x \downarrow a}{now_\lesssim\;p : now\;a \lesssim x} \qquad + \inferrule*{p : x \lesssim y}{later_\lesssim\;p : later\;x \lesssim later\;y}. +\] +Note that \(x \lesssim y\) implies \(x \approx y\) for any \(x, y : D\;A\), which follows easily by coinduction. + +Now, consider the following function \(race : D\;A \rightarrow D\;A \rightarrow D\;A\) which tries running two computations and returns the one that finished first: +\[race\;p\;q := \begin{cases} + now\;a & \text{if } p = now\;a \\ + now\;b & \text{if } p = later\;a \text{ and } q = now\;b \\ + later\;(race\;a\;b) & \text{if } p = later\;a \text{ and } q = later\;b + \end{cases}\] + +The following Corollary, whose proof can be found in the formalization, will be needed. + +\begin{corollary}\label{cor:race} + \(race\) satisfies the following properties: + \begin{alignat*}{3} + & x \approx y & & \text{ implies } race\;x\;y \sim race\;y\;x & \text{for any } x, y : D\;A + \\ &x \approx y && \text{ implies } race\;x\;y \lesssim y & \text{ for any } x, y : D\;A. + \end{alignat*} +\end{corollary} + +Next, let us consider functions for counting steps of computations, first regard \(\Delta_0 : (x : D\;A) \rightarrow (a : A) \rightarrow (x \downarrow a) \rightarrow \mathbb{N}\), which returns the number of steps a terminating computation has to take and is defined by +\[\Delta_0\;x\;a\;p := \begin{cases} + 0 & \text{if } x = now\;y \\ + (\Delta_0\; y\;a\;q) + 1 & \text{if } x = later\;y \text{ and } p = later_\downarrow q + \end{cases}\] + +Similarly, consider \(\Delta : (x, y : D\;A) \rightarrow x \lesssim y \rightarrow D(A \times \mathbb{N})\) defined by +\[\Delta\;x\;y\;p := \begin{cases} + now(a , \Delta_0\;x\;a\;q) & \text{if } x = now\;a \text{ and } p = now_\lesssim q \\ + later(\Delta\;a\;b\;q) & \text{if } x = later\;a, y = later\;b \text{ and } p = later_\lesssim q + \end{cases}\] + +Lastly, consider the function \(\iota : A \times \mathbb{N} \rightarrow D\;A\), which adds a number of \(later\) constructors in front of a value and is given by +\[\iota\;(a, n) := \begin{cases} + now\;x & \text{if } n = 0 \\ + later(\iota\;(a, m)) & \text{if } n = m + 1 + \end{cases}\] + +Trivially, \(\iota\) extends to a setoid morphism \(\iota : A \times \mathbb{N} ⇝ \tilde{D}\;A\), where the equivalence on \(\mathbb{N}\) is propositional equality. +Let us state two facts about \(\Delta\), the proofs can again be found in the formalization. +\begin{corollary}\label{cor:delta} + \(\Delta\) satisfies the following properties: + \begin{alignat*}{4} + & p : x \lesssim y & & \text{ implies } \tilde{D}(fst (\Delta\;x\;y\;p))\; & \sim x & & \text{ for any } x, y : D\;A\tag{\(\Delta_1\)}\label{delta1} \\ + & p : x \lesssim y & & \text{ implies } \iota^* (\Delta\;x\;y\;p) & \sim y & & \text{ for any } x, y : D\;A.\tag{\(\Delta_2\)}\label{delta2} + \end{alignat*} +\end{corollary} + +Let us now return to the missing Corollary of \autoref{thm:Dfreeelgot}. + +\begin{corollary}\label{cor:respects} + The setoid morphism \(g^{\sharp_b} : \tilde{D}\;A ⇝ B\) defined in \autoref{thm:Dfreeelgot} respects weak bisimilarity, thus yielding \(\free{f} = g^{\sharp_b} : \dbtilde{D}\;A ⇝ B\). +\end{corollary} +\begin{proof} + Let \(x, y : D\;A\) such that \(x \approx y\). Recall that by \autoref{cor:race} \(x \approx y\) implies \(p: race\;x\;y \lesssim y\) and symmetrically \(q: race\;y\;x \lesssim x\), now, using Corollaries~\ref{cor:race} and~\ref{cor:delta}: + \begin{alignat*}{1} + & g^{\sharp_b}\;x + \\\overset{B}{=}\;&g^{\sharp_b}(\iota^*(\Delta\;(race\;y\;x)\;x\;q))\tag{\ref{delta2}} + \\\overset{B}{=}\;&g^{\sharp_b}(\tilde{D}fst(\Delta\;(race\;y\;x)\;x\;q))\tag{\ref{respects-key-helper}} + \\\overset{B}{=}\;&g^{\sharp_b}(race\;y\;x)\tag{\ref{delta1}} + \\\overset{B}{=}\;&g^{\sharp_b}(race\;x\;y)\tag{\autoref{cor:race}} + \\\overset{B}{=}\;&g^{\sharp_b}(\tilde{D}fst(\Delta\;(race\;x\;y)\;y\;p))\tag{\ref{delta1}} + \\\overset{B}{=}\;&g^{\sharp_b}(\iota^*(\Delta\;(race\;x\;y)\;y\;p))\tag{\ref{respects-key-helper}} + \\\overset{B}{=}\;&g^{\sharp_b}\;y.\tag{\ref{delta2}} + \end{alignat*} + + We have thus reduced the proof to showing that + \[g^{\sharp_b} (\tilde{D}fst\;z) \overset{B}{=} g^{\sharp_b}(\iota^*\;z) \text{ for any } z : D(A \times \mathbb{N}). \tag{*}\label{respects-key-helper}\] + + Let us proceed as follows + \begin{alignat*}{1} + & g^{\sharp_b} (\tilde{D}fst\;z) + \\\overset{B}{=}\;&g_1^{\sharp_b}\;z\tag{\ref{law:uniformity}} + \\\overset{B}{=}\;&g_2^{\sharp_b}\;z + \\\overset{B}{=}\;&g^{\sharp_b}(\iota^*\;z). \tag{\ref{law:uniformity}} + \end{alignat*} + + Which leaves us to find suitable \(g_1, g_2 : \tilde{D}(A \times \mathbb{N}) ⇝ B + \tilde{D} (A \times \mathbb{N})\). Consider, + \[g_1\;p := \begin{cases} + i_1(f\;x) & \text{if } p = now\;(x, zero) \\ + i_2(\tilde{D}o (\iota\;(x,n))) & \text{if } p = now\;(x, n + 1) \\ + i_2\;q & \text{if } p = later\;q + \end{cases}\] + and + \[g_2\;p := \begin{cases} + i_1(f\;x) & \text{if } p = now\;(x , n) \\ + i_2\;q & \text{if } p = later\;q + \end{cases}\] + where \(o : A ⇝ A \times \mathbb{N}\) is a setoid morphism that maps every \(z : A\) to \((z , 0) : A \times \mathbb{N}\). The applications of \ref{law:uniformity} are then justified by the definitions of \(g_1\) and \(g_2\) as well as the fact that \(\iota \circ o \doteq now\). % chktex 2 + + We are thus done after showing that \(g_1^{\sharp_b}\;z \overset{B}{=} g_2^{\sharp_b}\;z\). + Consider another setoid morphism + \[g_3 : \tilde{D}(A \times \mathbb{N}) ⇝ B + \tilde{D}(A \times \mathbb{N}) + \tilde{D}(A \times \mathbb{N}),\] + defined by + \[g_3\;p := \begin{cases} + i_1(f\;x) & \text{if } p = now\;(x, 0) \\ + i_2(i_1(\tilde{D}o(\iota\;(x,n)))) & \text{if } p = now\;(x, n + 1) \\ + i_2(i_2\;q) & \text{if } p = later\;q + \end{cases}\] + + Let us now proceed by + \begin{alignat*}{1} + & g_1^{\sharp_b}\;z + \\\overset{B}{=}\;&{((id + [ id , id ]) \circ g_3)}^{\sharp_b}\;z + \\\overset{B}{=}\;&{([ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] \circ g_3)}^{\sharp_b}\;z\tag{\ref{law:diamond}} + \\\overset{B}{=}\;&g_2^{\sharp_b}\;z. + \end{alignat*} + + Where for the first step notice that \(g_1\;x \overset{+}{=} (id + [ id , id ])(g_3\;x)\) for any \(x : \tilde{D}(A \times \mathbb{N})\) follows simply by case distinction on \(x\). For the last step, it suffices to show that \([ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (g_3\;x) \overset{+}{=} g_2\;x\) for any \(x : \tilde{D}(A \times \mathbb{N})\). We proceed by case distinction on \(x\). + + \begin{mycase} + \case{} \(x = now\;(y, 0)\)\\ + The goal reduces to + \begin{alignat*}{1} + & [ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (g_3\;x) + \\\overset{+}{=}\;&[ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (i_1(f\;y)) + \\\overset{+}{=}\;&i_1(f\;y) + \\\overset{+}{=}\;&g_2\;x, + \end{alignat*} + which indeed holds by the definitions of \(g_2\) and \(g_3\). + + \case{} \(x = now\;(y, n + 1)\)\\ + The goal reduces to + \begin{alignat*}{1} + & [ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (g_3\;x) + \\\overset{+}{=}\;&[ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (i_2(i_1(\tilde{D}o(\iota\;(y,n))))) + \\\overset{+}{=}\;&i_1({((id + [ id , id]) \circ g_3)}^{\sharp_b}((\tilde{D}o(\iota\;(y,n))))) + \\\overset{+}{=}\;&i_1(f\;y)\tag{\ref{finalhelper}} + \\\overset{+}{=}\;&g_2\;x + \end{alignat*} + + Where + \[{((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(\iota\;(y,n))) \overset{B}{=} f\;y \tag{\(∗\)}\label{finalhelper}\] + follows by induction on \(n\): + + \subcase{} \(n = 0\)\\ + We are done by + \begin{alignat*}{1} + & {((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(\iota\;(y,0))) + \\\overset{B}{=}\;&{((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(now\;y)) + \\\overset{B}{=}\;&{((id + [ id , id]) \circ g_3)}^{\sharp_b}(now(y,0)) + \\\overset{B}{=}\;&([ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ] \circ (id + [ id , id]) \circ g_3) (now(y,0))\tag{\ref{law:fixpoint}} + \\\overset{B}{=}\;&([ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ] \circ (id + [ id , id])) i_1(f\;y) + \\\overset{B}{=}\;&[ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ] i_1(f\;y) + \\\overset{B}{=}\;&f\;y + \end{alignat*} + + \subcase{} \(n = m + 1\)\\ + Assuming that \({((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(\iota\;(y,m))) \overset{B}{=} f\;y\), we are done by + \begin{alignat*}{1} + & {((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(\iota\;(y,m+1))) + \\\overset{B}{=}\;&{((id + [ id , id]) \circ g_3)}^{\sharp_b}(\tilde{D}o(later(\iota\;(y,m)))) + \\\overset{B}{=}\;&{((id + [ id , id]) \circ g_3)}^{\sharp_b}(later(\tilde{D}o(\iota\;(y,m)))) + \\\overset{B}{=}\;&([ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ] \circ (id + [ id , id]) \circ g_3) (later(\tilde{D}o(\iota\;(y,m))))\tag{\ref{law:fixpoint}} + \\\overset{B}{=}\;&([ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ] \circ (id + [ id , id])) (i_2(i_2(\tilde{D}o(\iota\;(y,m))))) + \\\overset{B}{=}\;&[ id , {((id + [ id , id]) \circ g_3)}^{\sharp_b} ](\tilde{D}o(\iota\;(y,m))) + \\\overset{B}{=}\;&f\;y + \end{alignat*} + + \case{} \(x = later\;p\)\\ + The goal reduces to + \begin{alignat*}{1} + & [ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (g_3\;x) + \\\overset{+}{=}\;&[ i_1 , {((id + [ id , id]) \circ g_3)}^{\sharp_b} + id ] (i_2(i_2\;p)) + \\\overset{+}{=}\;&i_2\;p + \\\overset{+}{=}\;&g_2\;x, + \end{alignat*} + which instantly follows by definition. + \end{mycase} + This finishes the proof of the Corollary and thus \autoref{thm:Dfreeelgot} holds. +\end{proof} + +We have shown in \autoref{thm:Dfreeelgot} that every \(\dbtilde{D}\;A\) extends to a free Elgot algebra. Together with \autoref{prop:setoids-ccc} and \autoref{thm:stability} this yields a description for the monad \(\mathbf{K}\) which has been defined in \autoref{chp:iteration}, in the category \(\setoids\). \ No newline at end of file diff --git a/src/07_conclusion.tex b/src/07_conclusion.tex new file mode 100644 index 0000000..66d5791 --- /dev/null +++ b/src/07_conclusion.tex @@ -0,0 +1,9 @@ +\chapter{Conclusion} +We have considered a novel approach to defining a monad suitable for modelling partiality from first principles, which has first been introduced in~\cite{uniformelgot}. +Using the dependently typed programming language Agda, we were able to formally verify important properties of this monad: +it is an equational lifting monad, i.e.\ a monad that offers no other side effect besides some form of non-termination and furthermore it turns out to be the initial pre-Elgot monad. +Moreover, we have considered a concrete description of this monad in the category of setoids, where it turns out to be a quotient of the delay monad. + +With this thesis we have thus created a small Agda library that contains categorical concepts concerning partiality and iteration theories. +Future work might improve on this library by formalizing important results concerning partiality monads, such as the fact that every equational lifting monad has a restriction category as its Kleisli category. +Furthermore, one can continue studying the delay monad in a categorical setting, by modeling the quotient by weak bisimilarity of the delay monad through a certain coequalizer, as has been done in~\cite{uniformelgot}, and then identifying assumptions under which this constitutes a suitable monad for modeling partiality. diff --git a/src/titlepage.tex b/src/titlepage.tex new file mode 100644 index 0000000..a0b902c --- /dev/null +++ b/src/titlepage.tex @@ -0,0 +1,49 @@ +\begin{titlepage} + \newcommand{\drop}{0.07\textheight} + \begin{center} + \begingroup% + \vfill + {\LARGE\textsc{% + Friedrich-Alexander-Universität\\[2mm] + Erlangen-Nürnberg% + }}\\[\drop] + {% + % trim= left bottom right top + \includegraphics[height=1.8cm,trim=0cm 0mm 0 0mm]{img/tcs}\\ + \textsc{\large Chair for Computer Science 8}\\ + \textsc{\large Theoretical Computer Science}}%\\[\drop] + \vfill + \rule{\textwidth}{1pt}\par + \vspace{0.5\baselineskip} + {% maybe \itshape? + \Huge\bfseries + \makeatletter + \@title \\[1cm] % chktex 1 + \makeatother + % \large\bfseries + % \\ and \ldots + % \\[1cm] + \textbf{\large Bachelor Thesis in Computer Science} + }\\[0.5\baselineskip] + \rule{\textwidth}{1pt}\par + \vfill + {\Large{\makeatletter\@author\makeatother} + %\\ {\large\normalsize{maybe-ur-mail@example.org}} + } + \vfill + \large Advisor: + \vfill + \begin{tabular}{ccc} + \large + Sergey Goncharov + \end{tabular} + \vfill + % trim= left bottom right top + \includegraphics[height=1.8cm,trim=0cm -5mm 0 0mm]{img/fau} + \vfill + {\large Erlangen, \today} + \endgroup + \end{center} +\end{titlepage} + +% vim: tw=80 spell spelllang=en nocul diff --git a/thesis.pdf b/thesis.pdf new file mode 100644 index 0000000000000000000000000000000000000000..03bb319233c85b2fa553e8a07c669c7700aedd6f GIT binary patch literal 331855 zcmce-1#BfjvMp$4cAKHi%*@Q}Yi4$vnVFfHnVGT8%*<_OW~S|V`?Z?UytjX}`r48z zm8FQRlu{X|PMpXhRS*%QWu#+;Aw9Uce1TynU?8wHw1DB^p;vadGoe?PH?%M@a-vsq zHgx*OvzV=e^?x=0uo5uR3klh}X)*jA#LCP<$H2tQ!puRy#K26)$-=_U!l6SiYvANy z?xw{E^A8`!zc+&pJ;21#*4e?x#PRPWqHa#&N=^n&CV%?|41XJ8!M|@cG9X~&`>%^$ z%-qV!#DQMS>aUN8iIJ_b3B8Po%`Yc27)B1xzfLfYP7Wpp)-Z1C)~SLuB<=7b&+ZXC z{$ePS;atPGeJ=vB>|J%j0r!9Lt zuN!i2duKSdbYGRT8@9Ap$Kc}f23p_7Tuym(BeFa3iAS}FH~6-ypW{uJ)~;-%UAQ2G zf7Tpj8Fymkf-!5Y?)I7ex(Kyvw`e?~dQLq!GVY0878c)#UHBc}L^-0wPK{i%s?A~8 zYV=f>ZQZg~=b`2GW-;RKsc~;$`%p4ubxtwmyxyR*9pk9muz5^J4BFNa^XNfv0i82> z%xmM!*NITaHTU?NT+npWXL=FVo62kYZYxWIfVSOJU_EW0w{ae=UFn^9og|-k)oTz| zkBT%;YwZm^^zx#3N016lI+J<}Tr|vp;-N5^-2b_yb?;~s@5|J?eeB2%1rm5nOti=$ z7Hw=Mg&N{N#)p3(`|Hk<{{o;=xSE;++=-)Dn zCo0svy>#8}tz^%LeG)T?Qm zzP>X)J-%Proj)$IW>Ij^w7k8@x2+;Q_WPue9H?-x{j^zN%C6qg3R;t1d}uKYt;_fV z<;}#KCt!czb?%h9*s9>R63QCNny~6Fg{lIXy-M((g7dxVeHu?s8=Px0SH-7-Sbw%UxYmbZg^*u5F7M7F&~9$ z8{!HOtOC;=Q5j`-vN1FM1ph|KRg#c!n0!t@!M)Bf{zbkk*h+QmxQs(;d{Hw1Wn9P` z6pJqzCv^#XE$n>v7+1_|5?%Ty8pkj<_~<~S?9{xH))X1j}$|{YHZe@5u?3 z_}YG9f-_AzkzR#;0I2f^@h~r*a;ONwtd!ZEd;uZ3Q(FZRq;f~bvf8bSvoqago9JtV z$z%DIiq+DylfRcF~#8ls3 zYnk1=zzGTJQ>YC0c-B4{_^0K?{_jiCUYku@hu0>HI*^?*CIHq37La4$z8FQ~paeU! zjpkui85)kk>-Otr{UeuiRWkPqpis@ImH4Gkodk_Wf=bOIr~*CvC*)>TTU?ICwm1~@ zoDyUTsUw%7d4*TAH#-Qt=7J`RC+)tYwa5xxwEK^m1okBj=N>7g5 zF}^n?)h|h%Yh4h7>$y00mP$#%fW?3g#g>;=0*oSL6Y;1T!_05x*&iq>x{rb)Tj1At zr)e-%GPk$cD`COG5Ms{2uMXzx1{RHaIhrG#+uf8K^JNoOP137-LaV6g8W%HQ`#NmM z*kz>1zY3Ij&A8BEci{aAx3g) znSXLkEMApI$`nh(YL_88hs+7g>4ooNIPC5o(>u}5R)eH^?aE5rFj?iMAo&(^0Rz7^ z`_*<8u9zxSI1viANm?JFn2YNxLG|8*#ZZ^*bOs>#e-!-2G^jY-4b(^!Vo)2e0B_3k z*Pl5}P^SAJb&Kf7OdL#ftZe_p6aK*v{=pMq{$F^4 zxYA!2roVmwK0bN{2U|N62PgCYViU5$e=RKkx8<+xf94J>Y|JeG%pESZ$6`n%k-Lu7 z4iJr_t|yX#?S-K1cR-~CepbZ$eW$w3OnQY+R$NsWnr0L)0o2lhLqpr!FOTB+KfXrJ z5qsX}bbKGrf7W8Sa_H4u-SF;w2c7$VJl+lbWfwKRpT~#SYQD}d$F-yf#3|S{gp0(U zYBln?^uHfp9qu0`828@Xb+_LXg@}mo>Yv3|j|(50_;16)fsJ?>f#uuZKuT~GOPue| z77poC`L(|gWXyI)i*>xm523nrY(ej1`Sre>J~z5Mlo3+f+T4Qdba8DC&Z}{koZWAC z3wrsCurQ}P33!2|#LLYEjue&*?}DPP?`BucrxuR9p+Ml2 zJnZCO?7@aX#UKXBa3f!yU`CL8oNG%`;A!b;A7QRsyoFnWUk}s59oHoV{gUrLN)W^p z8GiP9>1}7a5*Ffef!03y+?rq&@ztNo#UOeh)_->xauf}!0P{OF^9hj0oQ8)z=QHb@ zyf+7Rc0u?V=Eia{@5OUOJkou{o+gh8>^Ml^Hfg5`q}C-V3(f>NdClvB|3kL^7Wl4! z%75a=Ix8OVpJCk>Y{IH$l8;=!`SVg~4o!Td7KZ(Bj&z;a6H4kwC_Vs<2|I+9SC4-b z<{Q}U9@Tpp1DobiZ!UG%UAmL8j8X5xQ0aj1E!@+m-9ZD770^(w7Y@MzxaM&mNgBjx z&%Fl0Hq_E^u)&y*z^pQba0!Z=0=9u&(8b<7nk9|5kbJ7oLlzlaK~@#AR+Nd~VqD!F z1aohnn|TqKp*lMC9%a0RD%DnyhJ!_-(J!A0hT7AKadJ+XDuV7{Jba* zYOp>|$;jF9C{m>9qcMFS2(+n*BCC&qd33N{47P~7Oi&{D>Bu6iBkkubZ|?nealNR6 z434$BLIU1#yaoMWZnz!plHZA zHt_+TwEMbkX!MEXH`vv0x0dhQzORwok*|^1_3sDLcRl8$rY?&wOaCmZW#3+l?#k6= zgAM8|7VUeM&sp@lT&uxu*SF0eH_4Wbb{i!2PQkeKHrRG)b@attRTBZXB9S#HVHPB`L90iI z>Og#>F{HBLWQw3U1_hsfc2@KsR^;~hx=0N6q={J3f}UY8I{#J-D5^@oK#+adL>-nU>4vTs)8A+>kZ;r6 zexM-$lMQX8nVKpUB{ze8poxwSQ{F>|VH>wDQt%TH?8=~!3Itn!MT{ag3x$IL&>=XQ zu9%6iL$Bq+EcxVeS-U*uWDp$kT1UcE&%2-|*+OEVLi$M&TIw3Sab8r_Clf9LHrgau zFbV|*=adwz>gKOuRGpYiTb{^L%PyM;fiQcl1B*>ux?UMI9ah!46KWul*jzyoKuQS? z4Ew_BtmhYVPuBbSchSd)^>laj9}VW zAHS$fSji&XHjc$1}dqG>0Pq9}BD9=8An2Kz@h@1_E^&l_k@p@IywvM{y?r35@-X z9BkZ<9K!#CsFGndi!3$X(-)}gl>jyg5{i`;WovoVdJJWlg|WC!(_LV%s&M9%G9pHcCs+`63EXYBcg*=<9UBO^?j)St7=-VzD7t zZrvemy};QV&97#W$)C19+_}iMS=@4pQ`&M$*G&7_)n4ri?lPq~yrowB_6;k@!uyUG zCisS9gmjI^0`~s4+%L+7MmJw>7vCeg%hl!QCcfKY;~crZt=RUIL+R|HRk80)cn`A* z_m`%oOqmg3ODQ?n9Qn89cDFz$mPMJ>)F3183ZrD^7_Y%Zls8(=Vpa~?By_KcgK;e0 zK^RRWP@pYOi;NvT$po$gnFI=FF>s7IfaG3!3ve}-6)$2BXKr?Q+0k`3cH{G<`TM#q z*7e7Y5GlS-ps~`UtiDy0(?+QdGl2gt&2?t&75y_?RRtWl(n!W44t8sA2@xp%XgOf! zZY67Q*!Y;Dp|2G*$(Z=WIN{EC%#?`;9UrC)M6B^UGLf@vqeTx%sXSW_j$Nz*H{;hM zimBXiTMiY9(gvUuUN~LN-aGC#?(;e5%a<`9(i)4pu=-sBgTVWp?xxkD1P8IOuxt*2 zD`X|jof>7)s=-(e#$pPmiC&{p~h1nC5u z-FbB5-&9^a-_(xRF1Hho>>g`=v?yVk@k2%ZG^h>y0?X7qAu2QSd7ehOx)uqNnl@rm zikD~5Z-r#E9hio(uF5)(&M#th9jISX1oy|{eDorU*yAV=IlQnUct9M}G0C?9jKjiE z-+1CC437>Gn@>PR*^RY<&1m$5CLLwJ=DW(Vhm#~@gC-JNDhuP0f?*Jx}rozFgN&!2n5F}bN4gr zl_^_sI7T`@9lFHDHwP-*P#48eVPRAz0pim#8>o;3A*8|XGm+Mv;TT?PO^b5KE9eIO zWnJfFDj@r~hQmxX1}e=m#RS4^je^QB-ICw)Xz~YaPdpQBJzeussCCpf=@&Cqk}crd zWs_>lcHH~k_aR}xmMDCfAgU!M@K?Du&<^d!m$&05TldA;kP#{{WXiC%5ueC-3Z_4#)YPel^lZcSnc zmp7T{J7Z+QETvXKqtr^RqN{_VUVsh25v)(|Bzo~^p!HYr-2_eqF?gvf)Sk!iW)M3D zQS5=AyK_N51t1i9IgP)*6shDh9Xbe*Qj z$&NI!;!T|Mj{JVcy&v(2v9;wad2Yfj=DOcrbCfyGG2(i}UC^0f>}ow$H)z%NjQr74 z7>CsZ7==3)I>LxWNnUvDgiU|krZhhK%1JQ_J|d#f2f(1Yux`JaEoUv=D$Euv<-o0S z#ek`eFpji2p&%iVWG^ zT#_7HZ3Vuon_Jde1RBr`v>LO9(!v52tV7;VW4#JbhsXGdU)-K) zq2#XctW7dlzeq;O%UMvsHoMf!Z`4z>O)}xokRP@0ok0zuwKsnhyWY*rhSP##VCn0Z zRIc$i_{A=5WPPHKlCNYWQ1^n7B~qO;LYH5SrTyW9@GZ=`=9)ba+cU}e0dapaE=_pk z%KX8`{0ESP4`Xfn`W7#Df*ji*#2QCfQa#mWd=tDmgnPs=U%Np{DH8bdQ@QrcZc-*g_m^S1;1S#s#q#4($r^t;IeWe~Mc$&6Q z+!z-HG@sC;E6?jHNVZM3}ya`}*M=UuGz_QJi{uu`8ZUixK^FkbM^!D^K&a2D$hwsrca%?J@W;cfQ=d-ZS zby%CHtyP_9^BZLrkqtG_Y5XP@(@|4)=Mt)k%M6IpDylyVQWL`5C9Z#F&LRiM17S}> zhpoNEfVW7v7ON|^2a#ikEM?HW1*qz*L{v~S-xW8{I&kb+RVaRZtG z%#^1(&Ox}?_;>*p@|QbAKyXkk#4!JmLGZ(8T|Ye z#4+MSq&HOxwess`dR?TgQZ~rZx}Xb?Y36Bdxb^B_-~af2Cc>>o-rvrJd{v3MyIn5# z;-i;C!7uAhls$oZ340iR!<?qZod!ebfDSYSPUL`nX4k zTHHHJ73pUJ*4~8>U;c7napblaFf+7{@m14)Fi#OF#py%r7<^+F z9lLpm;}uCm0}`9G`JKtb(LG`aIQxOsWOFi8boY;<;tw#Z!fO`enYgECw~`Grt{^TGPFG^OlhAQc4Q z0mi)Et2o$}IfNDtfc(|9Iv}>1_gRh;+jwE7c*uE(tl>3&VVbK%_Ns0^LoyZAzWpC6 z^0dlV7-b8ArDDl_c~nH@$-!%3gW1MSXNReAbzZz#K*aQGGCTBlqvr7xdQp6^-|kO0 zDQ<7^ zVf*LnJsa2<;SLUwQFJK1Be&a~;mSMdq-*+A$_Cx9 zLF*A6x{dDdhVK)=Wg6QePz!=p(@QmT4(`;i*!*ib|HI!|N<2)4S80nQ_3yqtt~1k) zFm^SIbkah1Z?@;$R8+EUif%k<}f>=wjf zm`ihcF>rZOLD&j;vCY7vfumIw`BA08BYMMmp`4WRsa86qOLX#>$F@DD zalJnS#}(eiO6p9it^Gw{&YH;J;DB%g9Q`N!^lW5ERzS3?MaLs|>4piZY1A?!iszNKC-Q!JtjHHtW#~ ze{5(##+Zyu$D7gjp>Ks(Qm8>tkv2(%rj-WTrvznSSj3N&^mhJOyUWYwvdMFzO; z`ycN9(Bav7=B$t;0(&inHemx!((QGjyti+I^$R4M>EJ9C>-HBj{JEE^T@;lvuNr8A zLvhaIXQ%B@e5vQhoA05K9^aHy3|wG0XANklW8!!Ys;Q3~fs8i;n2^Ik4t;=}M8>CZ zlbR24F6QIwRQj`hli{gx>}=VV0L$n(K5}4}6rdTT31*w)#EEVmQQ`!c2^+jR(~6AG zsH-|Q=~a$8g+Nksx09AejQL{JDi0@9jA1aI+|_svgmyvqiL1?ZILU~5Na066Yp&!o z#U+Wx+@R!meM`bW!;nZ9$%zD=ankvKk=|lb)pQN5AG{6yaXTu}EGcE@s_5Yqi(9a= z@W{dEF1fJHSAyt-;Cr>W_)>SxK#9ZDI~;X6!MVZE`mjGjAXhHUs>q~cE@z9Q-6VEx z2OHxv_l8YIP0wm{EhK7CsNxv#kVluCYAoHi!20dv2=IjJJBqX8yj_)mK%QR(iYyZ^ zgnrVp$BFsO4&ZDGj}_KZ8YBk@pMEqaV#eqwqSQ~Qj8hx+F<6gl2~|UC>O6lhF(Ujy zrH*0*Omh)iv|c1RhVh!XVnX)GYF~88n8)s#?%w^oP zN`5KZ>Z)1eB;_}Enh*jOW=&qS!7ChPAC|K!bOoEzMr}*f5ZlS}<2>y(roC%TFKL=H z@2%SERr6+N5t_gpPJ@@aN%9!bsPiE0trE-L4MGE^!=|R_l$RZC%{q3qP2Q?XW5pBB z^Xzr$so(W{YX6No$XScJ3J?H;N5&ai@kENf{sIa?0mb$5wbB7Nl{B0`LGl^H{G^1ZR=G_juM^jJ)=}NHuf`2xT9A`#xyl(> zRQ;!S3*mt80882fJ3Mg6&VJkA?x!pEOS(@F-M6nNg6|g;Xxf}-TIg|(n5`qGchrF6 z`?1Yr6E^5FCgLf^!c0;9GfT_S^GMH3PssI*sva&GvluG*GCLOYw7o&_)l?cM{93XP z0zSK4oT(MTk_{WQBiRd$$u*1NGtI4E+!iR0{#fM#$AzdGbzk9{KMR#@)po$i zw44cSgZA>TA(RDmBuU>Cj+tp@^K2b#%8>j*Nvq0C{K zY`y61hgQE(x$}a}`o)mP6Jn+w{PIlyTyV@pVH2U_vs==3{@ALpY*We$JNlG_8O;9J zw*PGuT^D#p*U_Goz0VPd(VsWEe{@uqH6EE*&VD=vj8Y`SoJomt^#f`iMLmQ8iPLF9 z1*Kqc_*`O7fSR2i1}&joB)9~YK8|aAE6b!Ga=B>8D9H zbwj_Ak5OIoRYHdP4W`AnIzuaJ#01N)OLJqY6ccaVxwwAn&ZdWZ-nV?*Dq2iT7sBRp z0NA8Tb^;F>Ka0AY1s7A_Y(k05DF>7jQ2jnuw5h;pIiwlU!{K-&$(&XAaEZgIrY+? z7P+4j1=S9ErM=}0kS)+#qgHdI2oC<~F7kHkr1%1IzbR+utYZ1uGCXMyA5yTy<NZIb?F0yGGQF;2G>s$ZGRnhu2yI#KRtxh_p;6m)> ztmb!?&qZ-Vv7jj@$g=MYww9QH%5)$=@gNDRw#-^qu4J9011tVC4nB4Piq9)?pVUS_ z7|(|=KO%kaKjf5ws89TUav_YOesLR4(Wjs8@j+&Nq&pEn$LwTDQ3{np112;DAYrPq z;qLXQ+bjO6ORFRc?vRtUn5(C*PKL#{L&aA9_y85w0V+yeHi)9aW1Hti z>>*U%#?xG)ySHa0P7#o=tTz!#62g|zXiF}C9$pw|aqJ9n4BMYwlwJ<0cm~T_)h0K(0xiSm&X;UOVauPI8at0fA4gVM zuYdl9@SK1kEmevd{kGqJ8r!<8i$l(1nFhYFBZm7~=h;s7O^%_d>HE;@Q&dZuSnDQV z{ax8b<7++ZK!E3S^9_vZ(n>OOcVM{En$ysUn7c|J?bFS%X1(rkR9#L*c|)J;>1ke7 zSKEy&;CTKldKEA4 zvERV@y>c7>4JQ9n5&VD72>wq{A~xp#2$PwanEx4*FEyoY57^+kpVeLvMT#jD5%n2D zL9G3^U=CCt7`8Sa7KOjRiwp2uNcdfNGDT6UkiqurS$~N75WOnmf8iVe?aCvdLt6f} z^Lcr&ZM*e+`Tli(pL)D|ynW$E5G9D6qu0Ml-q7#H&*S@b4&uiSlmPU`>~{+Ub8H#7 z(v$m*>EpeXKrQHY!!!X80CP_TN7c>!{j@7Jah~{F+0eiAHy>qpIQ_1eo1c+KS^dev zOjnkYC5o9Wf8$p}@l*Gk1jwiicOLg2#Y9+FSE>6)GEvIL9>NE+=qT{pZw zSs41?{Y?O`U2ZDk(Cdb%0Nj*`9{Ixacq`VY%CTjQ_(YR3#@H;Y^hMTT3iN3!C0)K+ znO|m@9;`vlHO4{hpiqs3(Ftcr=nR@jrp7uRBt_-*#(9r_&`0cJek#$?yw)F7B#`SQ zlE)fi^+8qF=?y^tDFm{Z8fgyW10sm+?*kF28TVBSRYB(9&f=gBL1Ek@C`+8*T~(W< zb__&6cx#{ecvd7*J!cyZ;u1+!(DWBWpWH-u3Rf(1Oiz9lo0^7s4zr(Jos#k}C0o9c z7}!=nlE!Z4Ba);~I7}2|5F`tpQ*)ndwWx?3jZeWMl}i<};@4 z%$uYMb8-_9Jl&7@EDWm002|yJ?)jkUmXCa{Pt+G3=+OI&DS?`>qTK_ELk?{+3hCG* ze=DUbD(fV{EXVzM0>sgSofMa9fI!%l;b-hzC=VT)W;;wHr0$}FB^z=IfR=zh zj>Hpn$&Qu=D^GoDi=b#A%}0+cBzJajA;>uUXqIaXD1^cy62G;{#W)dPN!gM4G@80{ zLK80!UD8J#2M2jBTjdB#2gD*r`F?3;TC4aO$th*pqy549_2MIfjAwL26_>XXfLYCZ zBK1+YL!mqVp3OWYqU9Ne6I&zxHgh!L%58HrHF*9N)8cN$^mSxhl~GAfWzXor`k8Hb zL|54b80A`}1JPczk^Om0+Sw^kjRJIB$HB zERhiXP=G|Yra;l>>`x3LzHt5zk;NHrn_^dW@m4xb$TftvDs*EL$ePa#0$b>4?_G}M z)F$U5q?#%1AXR$!Ui_%o15jlEhy3Tb4`weukleXP&+zp#anm!fJ8EDdO1{ZOTSv#7 zQVf`(c6MGoPF%R(n)J`kl?_>OBfCNp&<|>NGv`dR@IKXhKq~FBwGM1pz0dJ}vsQ%| z^fg9Aj>@d-wrF+V-?a*)W)Uhlw^Iq$>nQdXYA|^MmONc-=06PscdCl+R_oL0c&@%8 z@6`pBiI&8Y*`PnK4l$M`7?p(w(Gge6+@g8A!hQ$9?WAd1aeT{6-`$jGfG@>YOP^m8 z()T%f2Z%=qKeH)+PVA)m`o6y()^2;mofa%5D9=LysJleakV-!DlfH5=#v|Kq3=Q4Y zeDo&dL(&%E1;CVYCgFiV1+sntl{3}qTbwgTFK?f+Ujx}=E9nm^bfY&|1=ZR}Ve3O< z-fF^huXBIsivPJC>80^3#RAvFyA5Hso4WHHdZBgH3&s&>xvq2Rol7~*uT6PXRIM`d zG(ai=ACOR%!dI>#+i^bC0gT^BqL)S5fN>!Xg!tfj5{WfTZK^Teqh-gu% zR&i+NDT7J_zA(?keh2r5v?v7OnEpTI9D3^|txglZpHhklzz?4H1ou2IFtmcH%(o4Zou7 z-jHYwVJH%lG(ALc{gphmuuGBJ3c0lg3w1qJhH9mBt|PrhZl?&4PNbw}AyC}Q8TK~^ zuj%OfjR<2y=+G!Kh5@+a1Xgk@oT{-X(tHrB#bzRfdE9yS<#Cw9)gqRW{5IC_4|v~K zP#vghdUM9Psso`as>Y3kjlKBEpzot!KdEl|ekw{g?bU*m`re1yWu_qA>#Y+B?ZwYE zfY2VJ*UpD!(xLBM61!PpAw3w1ahTwA{wB{dRPTvfUZSJR_T3cJpCcP!ry8-1S^JEL8I!8|)+WSB zAqCrJjon>YX z2BY&9Krv)&RJ4MetA|`1H?tw!!0)44+oh?@%CzZm#BDb}GV&(NXVKHYKp3P#x*Yq> zUT|^ynzp7Axu45b$1AsHutJIkySAUV3Hf@X6v4Q2BOP!R+VE4BL>BdFj(QUGUFE>d zxTNMNkhgffz~eRxT}KOGpJ?)=XqtZhL6^9>g(=lTJUvjK`aG85d~F}+r4!9R6l#{b zq@|kx&q;;_%qnI6G)6*HCH@=hB1K^!qA$Znq^U}Y;fIVqXRh&3K=7Oi!_uh4q>J3D z%hc5fKv+LM**8ufv+dx*&`O`KxghnBDTQ~^dp=D3^*vz>PQ}Tf+9Y7yR!T*P(Be=y ze%FGlLllNdBfU#j4)-|;)aH>Su3Q;~^+2K&{qDX8VmxdLPaln#Y;7 zbC|}+9M+~(h5mw$3b`n}EqhT!zcdnTd6dZikQS2fOq~RX-&vQ0KzV)-9uMv5F@H}d z`-xrSC#`Ki-&iyP3L~7aSUb=`;kXlPTt{tG#CUOup{?iskowctRM_s36EkxLPeU)Z z1{TIeo`+u9p$(2gTLl_*T&%#jB3jMfi9~%@A{sp_w~OfKx?*y99C@(9l4g=|wwCBx zu!WW!dg-~QduW{p5g-MGXpoo%C)$zYu=TQwVVHhR&xwjVhFa;%gQ3s#dZ^PrLefls zp9*FsTMDQJ^7uy-hte+>-RLuwV;h(^I@$5^o0K;=9*z<|hD zGZ`$HU+^{CdY})%+i=b58_mP{a;K(GhBWRf0{PSSJ`5i?K$kG5J#ptw2b3H8%Iyfu zy}8XzEy3TC(yg1%5DJ(VpDsDe zU+S=KCc=1G=Y_F^Ss4^^KYDQ0Z@g``H2SM=VCMF8HpHEF*iJ%!*W;7#Fo07%?jNao zC^eRlg~#(*JV?m3l^rZ1c%oac<3h`Ol(W7>Xn=|d zxgz<}oNDcX&lXRasavL8e#pu|T$2f|f1R|3lL_9{%?!H4V?&PNWnfqz5ltO0fHhU5 zW~aiJ9V3>OKV%rvUy!K6K4>Coc;@JDL~$sMwmlpiD4cqoBIHIL5>DLr%2c7HZY*K0 zjx|dj$#wR$32|Oj8(CLwSn{UFgeP|5Ud+5A3^!@&9GeB&?4`iT)yBO4Gu>FY6(b4b zyZ(ZIKNsw;!ja|zIn9rV4~qI+M_ofjJovep<*AgH?IsmM*0@z{E!NW-NV~unlMD@Y zB~8R<2S&DO61H}MymG$M)h&U1U0#C|`G<85jnrtqTWF4>{%4UhIPAN&ddKqZeH@bo zNBWr!_@8Z&ui1{darHIm^&z$fet?bZ6Rn~$w`alC2h4T(>cSgpIJ~-AA$aH(OUYp` ziB>XgyR@TcDUZXNDD+q;Y6?@#ON4 zq$j!u$rO>*^)wxLYNK^qMZ&(a3}ykG!Oe}dWEx$jLMigj%n=-|jY~3lH{(C~n?5Wk zdzSayDp|wK-jJLueVt#k>5z?;ddgHViXO->VLsN=(C+!dHunSqEo^jSBL=dkCk7MU z3}kiZomm#CK*=_6Y&YAPl0@+3@jVjiOl01g19lx?uw?|!DYNPdOCB_%7Tjw-H&5l% zNb5PP7f{jM&ekKc@nFlQ%r=pa!n})+9uy2AV(#(48Pm4jvo4Fky!KDOjxAGBnwPX^ zxh`;n*TU!ZjCvinhK`)BEbKH>n{8lH(a%?yI}7%ljfI=lB4IN{C0|MGy+4dXnIq5c zuaxPVZ~&AC(s$_0cR*xAn+Go^BBsA;g(He5M>b!9Tc8~;ZOT=FgR0G7k8>`biqk*l-rh}7B zFg*-GQ|`l796VUsuJ$pvMZ5wuNlTCz&eusZG#_O9N~rm)+KziSEY)Qp<@0npI5BLv z+G&~A9H>QGSn^-gJ9Y|~B4INJmrJ`%3_UYUtM5Cb(ogR(HzGv@+J9Rbf%A0l zjyNrRsydY|k%%g4sCQu@=OMV?QqTcvvV0tv4o^O4OxiM;{F37P4PQ<=6+?q~8uPG? zj9mlIuZ%iw@$pH$NbpJUe}!bGX9;n6E(3ouuLCJXVDUU@zCegBCVF;TCq`yk&9g;E z9UiBpeHf0MhUom%o=v?J9e539cw_pLkE@MJoJ#7AGU3u{K;b(9T8s7ev=rL73wPze?ebP8H7SIvw~2y!NeIRR;2#wK?*?{Yv?FY1y+h zZtB?X#O@p=;^c5>Pl_Jwd2GFTII5};J&)UBJtg&=EY0B_Ey3?ryg#5-gk+xR=3T3u zQ?%~!%TTJ<4VKBh1(&>3ntxSw!OyR=XMj4EF-r&iS=DWIe6l}lM(=#9Yw9MFJ$%V` zkX`3bXF5#K&~i*jAJto=nFrwfL{Lb}qC1&}#XNwKAXihx!r}DKHAM?J!+MG$_S$~? zFozez`Di7)ta^E3?Dc5dJ=vus(W^eWmzaqWg262ge?SqPPi)0g(BX26N0n#Ux*mx%d$GsWj6}YvyuJ@k7B$ue>2O|;7vn3*tuaPa3@0W#dAPoefxPQ+@IsPM=k&*FVPaY(z zkH!2I|GJK;KR{iKrItZ3y`kd3Mrj2$AsoX-_Bp2vzP?f7e~^y5II9&Zo;0A}#d~RM z57Zjq%Y0>q0tw%kN0`4nG1Gr!^Yhbvf4jl;d?$yj$&3}byWzSo$u1A=*86Hi+dF<; z*cLjI@zcJJ;TY{O4EJwv)V|Pk^4*RzO+@fvxFikE{O0x@uyq>PMV&yWL~xrD{mNM( z%)`yKT?-;-n;S{EWx*v{I7UPCN`0^?z_>iM_oye$4UB$V6@DO)TMxbylx7pVM72bM zYePJsk5tbetzd%`3{n;Ci|`TJXe4Vv7GXEcQo{qijpc39hIEi~Q7<4p*Rbe*eY}-N zxZ&6^w=WOEY=OuH9klE+hcfG1c(M*^Lx(TltF{z1;+&4RbfXw=4WL~14A1*}o>*T0 zsULx3`>}E`t?K>We!$$%Jz^T(D5H1M@Y(l*N|`3#I1OZM*i{6AoAcN+o+3bfsD{e^ zBu(Be{MD)CuKXpO!z%sfrC09HpN9~y-rUFFwSd4djp8`&yVO>}=6)zAKmwX^S*oR{c_9ZIM#&{zMBN^9 zFQ81;*YeuJ*TyP!3M2q5%$k5Z6PNtOfNTx<3;sc}WI|W>i%7?lySd5YAeffZDR~66 zu7Rte!&-)@W%)RfzJQe;{+@$W%IW)46q30sSO40(sJJF3ji`s}tQ*SChy^{$J|Z=V z-k45{h0&l0<==(eOQKYQLhFn30VpxXCl9;H&s7fZ<&2CmMdMrsL*50~?Z)$Td~3au zwA12JG(*oWbiu}`l<88sUXxb|Q-8=B z4me?;Z~y*saD3zjJ>NbJKr*C6CUBi5Nd?M+);uUyswTl|ZJuxSsJ>N!ysYR@(K2Jt zZm$1S8JER6o!N-EDD3Yq)upFt4%Ia+E96|KL~yOfMPDLNJlT7oDfZ|@S^$J5(8Zou z?h+ZWdf zIHLyj7MiZ13s~`vWQA6Ysv7kxByZmkY}}$(xt|x3|7bZ{qY*WqNmNyUlWL|FprM|$_GD9CUiTrYGGZFrWIGRIvTUKjs~YQE6=yoXRbByJ0c}yhj^lZ8 z)e=7{H&E%Ad9H(lPH!?a`;xyd)oimsuG#d5d_LLz>VY0OTc>Lgac|zCzesD_D@OP! zN0_P}BYCCc9?8&BUMEy-oja>bnM;$X)#|btUZ?eBtVrhB9NMT&uVVD`59WLJ zzhfTff2O~&bN-cu~Cx(^{SgN;o*%`B_f%!Uj&%Nxhd098r4Qb_+F7}z@(hb& zb`UwfuXhV~vGiIMKFC?_SE2<}91NgT@y&Z{eW-+Px_u~8_GHSZj^W1p3qZe!MX+SB zwNH{Ej6Rsv`>o3`WQT-&0x)Z^Fh-@KbNb79IE%^oPrr1lfkUV7QbJN z9S~9uFPQPq==LYZ)kKy?VaTfRSt3M{jDwabhru4kuS0HbaF8jGbWS8S z7bCD1tHgFDj~TPX_HK}C-j2J!l?*`CWR8wKSbBonCW{cct@~#Jatr zZyPizwi<}B@-!W#I=pl0*m9S`9x~GDr7viX@GiKV#B`)ypB&w>#5GVjD98qD*70$_ zSR*K?|(`F^j#WRXK~uCv<^GBqNDFH05^$NOt_iY64?FS}$D} zz4FGcn3BUjt4KdoQp`o7lw*^MX?tP2I11;A0gAe7$~dU%b29S={3~VIf4G;>2<9n3 zZCr~vj&X=mWO?wWaH%=RoEY6?J7d^4LjBGoZdOW`JYR4)C5fC`SRHiT`8GU(j8Zn5 z1?H&di@*uzlw;s`i8?J{J{8VHlVYsS7wqkR`7vWE+EIq#Pe=+tBLBcRW)^6LjyWh5L+qP}nwr$(CZQHhO-tS*d z+*!=JB5GApm3ivqb86dgd^=HmM}NmcIfO`}STbAX*;$lMXTmJ^Ge&3nsbGk)$M`2^ zJssxy7P>#!l%XPWFR){%zAf`$%MZtmQ?16hE4=M41*PD;fwUZx<8|b*V~nwBS?r7g z{Ea8az{Y7|Iv1q1D<)^_1dPEU^y55xs|NW_=G1Jy; z;0-ugNO^KE^AKfJzM6=A$k%}|&0d4k5N-SW80*Z94*^<+Q8j0>G0tdi%`#8byIlWt zG#egM+|+DUajN}>!ekUEqlKW#Jj1MYI&|Hj2b+k{?FJf*hK@JV&?5E&{2laGM(;QH zthmk!h*llL%=g)h;JTezoPT%FS}!_c0)HOwSnLmU9~*%Y!cyes&lq=g*||Q;ijrX9 zvZymBo5#Qu7lF;EQq)aBg1ZdE&mY1TOi1a_XK+#8nb4&mvw|~^z9vG@+}n5&Dgx=7 z58^f&jS`CQqcMPn2t%k{I^?QUi&1&&(sV9&BQ19QT^(-d^Kso8jV|H~TrHGZs zAi~gy+^1nlhO!Wx7p=@m@PiNMDu;Jcno z$xW^4-CqUv_zln10au@&GC%1f*66Di|3lAIG`J=i=hrvxcgdXZA;Q=92uq+6r3yMj zUK&5Bx8>|xPJ*8j(~&{bC+U{6VGhe%>U;E?pV7aMoW})r%P;9~2U^D7;2C^`yB4k1 z&V=;co2UEM1@tdmNPCvjx#3~Nkg*m7TMWk_o}1`50+~3`GNJE(q@{#+l?37WAP)Rm z=Sd#|>2gS+w=vzQi8j#OWNY*aJ^`kghW!wuo;HU=zFx)Ih{@XJaJAY#sA!{n1DFuo zOw08)(`D!5Gt~uK$~@>x!zlTb_{FxDcKQNV=!8P#usfmTF?%+ zp;N#HxKTCh3D)UZ1p7QR`>9jJiBjU`_Hil98?nf9ns$YA`#7a^O}lFj*2!5wac<~o zmR~iJ6F94SLZivZ{}>>-sN^Rs2FA3ml2GC9U5{;vxY!yM8>3L!zNHz$EUkWoL+f~2 z4bu1h-xn+6)P-;*^PiW-FJ@<5;J=DzNIwvJcxMcq{sd|uKOJ94{o&iZ`zJci8c`=C z_@a=Y5RlPqRVhqo%|1}C59Q?rsc%}z5YD?*3SfTQW9>puW3 zseq};gH)t7L&KGt%oU~IEP?n;NC)4Fu$WAW8fke6(sl@G2hvNTVx@_VpKYp7rz$~n zKjJc_y%;cxk!lrvFsS8AIeGlxl}-D%3Ld6SBh;r=pZLe~w7V*9pdg&ub|FXrMr~-K z#!n2p0LKnuHTLX6o@|b2-FU)J1}fAE#@})HKu$<0sEA~MFJH^00M>tuIJpMAjF+}1 zhnoX#tBBVH#cRBm;m!M%Nsfw91m*_W=GiC~z=H{n`*GzY7h>)RKB)pzB0VjKuS=IW zU(_QYJKh}GG49Gr!)`0db;%a|t6uAD5Odkbgqs z-$~>Hvd}gq_m4_uvCg96rq<8omkeqneLeQHJ1Kt1jOXy3e31<*^juXU00q5OiWCv1 zgSLU#aj)ap-#?z#LHVlWFPNLtFGLk=zwk}yT&;)<*XtmI(ZD8=+* zbT3@I`MZ-&s9sh9ve!y!aMXx7X5$#w-wZ}MqrLgnECgy266DHYS2_qyhob4Uq_te6 zUB`Fd{+>aOAcB%WyH#=|9IWiSAMGBEe$z8czT(uurnByth8nfW3jzU>R3j6MdmzIL z3?~p~z&646d8#Mk2EjrT^P9sQ{ac3yv~zP+zLE?LyQ9O}y=`8De}5OUMPV80P~k|E}816s1=N0i=Z=}poT;(ZY%j)bkKHF2XPCdWZaxVKQ4 z6>J2xXow$c6~>>dp(x(78O2iSx26UhgLV}DiPl|qxp2tF_esR+p@#Uf;V7;abHAm2 zH1^MJ)cX^!fhfrYNdE^D*_bly%Ni~{UAxo{Hk%3N5f9?7d|oOotT8Ya>a56=VB%UK zo5V#MM&rOm5f*Oh%P@J6R$_#kXJb6|lpDqFa|`Rkn*1D1vN6U5djP1=vbFATF=k)X zw==;5&J?{3GF+Frs7?M_yv@G83f!exN37iEXM2-Io#;%$aGQ4Cu8 z)uC^ZrhsR?-bFti%>(gm1TJ2Jkgk^TD#6C|7kaKz?hU z8N67=-B*o{TyUAz46yR)O_uWs_MNk0hr23;*>6=izf)pcA@EC+(#vvdNBeA~&^~x{ z<$Z(m_CLV|i*-nU^DVWlEYp(=W%y09!IdjdQ*F#vn15Knxb2-92Lv{KjC2SEC_MYM zMPpPE9wKfQG&vmYR%j%mzWb*!do9g-2m7HjF#7o}+b$7b<Qx73|DSBh4{UP)H++whPx;|3cOihRVoJ?Gr9mrOOutNj}N&&;ON_% zDULAkLKSar=K(k$L#=e^u`wF!(^$Xz5!7PT1E4Te-Rf@ZOiaSMWJ~YA1~KW_ufIPclI#){0+Lg5`C_GgfEQn0mPdU$wrvNfI4@4GF2W$6 zrE!W_DV|s~B&rxM2?h5imKnc_cFT{uy;AD>wj)MT8huV%Z0$@Fg`V_R}ae=cy}_SIyMFtNLqQN=B96U{-#h>R(NAFzZvigLG-p_2dgtnnh| z8;d9Z*mkI=W}DSaIwaU;X*x&8a)rzjYmLGfEE$#0`r&jzP@}PZi$q6scainRqk#qQ zf!Pa^(^R4WEd?&Z2(niq0|)89sfyr5GYyE_ipR@fPncSj#2n)?xiKh6m)eJz8e(&h(6RdZQBWBdi@A@fXh9PJIwW}Pn(I50ZZHalp<`cD(;w|7WyO`CGEgEd<>1y^{GwxH-e^may5jlqDU!0Pv^Y=2@OgWxFENyMH z9zJv_8uv3Q-A!_irnT*MLZt?Adm@&$_TrS2|!H*^RDAhEanb{lItACO9PMSXm=Yg9dWbgqWIZB zSu{mRMw2zsy!B>>ws=pbJpy7GIH^ysjoqQgge^m+VchbKg;KKF;yPwxcC&**-D*-qEr<+&u5uY(~1@Q-&TS~Db*3^-Ju`6)VStk zrq3<-X?wcOvhVFMLa(U6Wrs-}i2zpvq{_*Lqf7KMj=?{gA-J zK>IxvGhEj-bPthFPs0#?{dM!%5|#S0mZXo z&Z|6i9wO8)$#z1$D>>0x$RZGHe;OK!I`v&PTMp4pKLh1e^ToDTd$8(a)W~o~AX$>#J^5VsP6if;esXP{oBPM!BL<$?;S zt%80#se2kc!U`z`$9-9`IT)g?jik6evD`>X-=fRdb# zHW@}@Sf7iiwcr|IzH`!UXf_*u@m%9x=qxuGVWa4EP|(f5J0DIH8Ofo zsXN{!1+`U0HK!1Ba)bOW%hL1^6#d2yORHkzJa*1vV5F*Q2zUh>PoCZ1L-C|gw%FVV zQ>-$7A3TkPv4Q+7rP1+va;8_UC0fB$ra;X4K%)d{i2V#y`%vDkm&pB?@&k6nuE(*8 z98FMPrJ|k|RILW0Wj}JaA#m5dsKSSDMJsnlKk=f8c5(o%?arv$ihKjdnPOg}kqSf+ zJ`xfuL>XP#ol~7-l?81QfyBkN+788zL(GMC40v+H*u$y8xD9P~v0Vj4PL2~=M1CK1 z&jTZ%P(S^)wIq_aO}DVaEz?HkIK*Ps}E&9YWJ5uOA6rYCB&;jQB&Wg zy`h`|{WxxtDiOeEQ{B-c3Ba`UCB$9?0axdWNh831U}y4JXy|-I{9#bsz@+#p(7~Gs z+_r|52j#%OSmoc<3UWykBY1CqXUtl&Wf@9ktwjy-L^m_l^;nG1g23?8?$vfTJIdOl z>H^{7y-P#beXCLXRitxPm^*aOGn!egoL$cpoXjF}Du zf$lXmaF$kPfDY{}+aeUis zW{K?7@%U=Ha_%360J+PbP0A~*A4 zsCoa4#*M)v)e~qADkH%0r*+!2sIDblyEyUHp#vS=)h+(S6fVaBPxrJj>*FF)t7 z0Ug!VZZ=NFik6ZuWI*+y-O*etYa0$0I3-i}{BHvu}~t|dV#P~K8flR%#mp3Ixftm(-o zQSWsRJe1dM(BY)dJZ?15B*N*ImnmId1zkrfwjIL`1*|;_W!NM|G!ONva)gf&q*IHJ0doO+b614=|~fH z_+9`Zkw9YpPN8j33hOD!B&yoUy}4<}4)};?}HaOP`76TpSu;=K8E-$6cyW*&mneIGh?NBr&s0=^QDc_C^ZPzt%$ zmeED|eZARP(AjVvSYgr872;#i7yBKRr<>xfR}5GR&di7!S2wd7KA|~5-!*zDnW<7! zm=UnybE->?^NH$vWD2B}kl(tz>c7ygVU?fsqRU3p-+`3)FX(i>MM1IY=C4wnjI$28 z2KDGsB8P^WImYQ&&`-pDhfa92U*Fu24Rb{=S&cMufgtn2R|Bx_nL_qhu7iy+#af?v{-Snjl=KEl9F`2myE0l6&53I zxx4I?N@i=8EJJByyi z|55Hj*4e3lpXIccG%L9U5wzBEnkC^8aw{EZgpNez;T!E=V6mG|>4dQ{#zzOoOd#~| z7|H!l7j*22+W1kQd#CR#l5RoYWek`gnGJMHCTkym*!>>=F=9hFB=#A zCsLmRi1ilF+GDzA z0#n@;9499x*TFcQ_FWp`YH^HAc*bKCkCa1j5x*-{S8ibPXUGNLe~r1^>X6J0nBzJ8!uKQ8(${L@Lt4w zf~D=%IbG{IOiF0R7oDhjMz+(oCa|JPnJjfoRyr*aVTwBt&$D4r9{Y{%7;#(xOmwMd zDJl<@RC}3SoV=V3l6?v&a)ucrM^`HpE!{Zg z(kzUh3*Z2;rejM>D+HhC3G*gPn-W8FM;_;XRXnQTw|gxiNB>=~mZ~#JgXzCc^rCSY zQ!gyq`Q#s@4m{=m`lC||{KtG&8B$rX8= z#Y;~T`x?c-m*wgUvIhTgc~$zb6Bp2Z{%AXfk|EM!#V}j5UN%6vWH`{ctl?sra*z+Y zrijei4QJX25KOm27MEV(AA;bWjeQd-@ir?I=hGt@Z{XFYP}hhV%f|e?bsrscJ=-3- zM(ycPV6=pEFG7j>UhKl46gn7wp@QV`w2BQ}29&CBNYs(9Oim`I*woB6_qGfsw4e^P zq{cJT7;LA#)|BozZd$sc3wQ|LnZ$>aZdP`3kOM?ZBk88G6D2yMLVi&RlOhe~=

    Sd@HYe zIbT#RpM9Jd*1^b9e#oo8AbgMW=WHw?uxD|Em5-a{`ghMNMy+ zMQRGm`$8YK7Xa?@W32!3LG1(K0T^L4ue_8eA zOy0A+6S~ngWk06a4Y$^G)P4Qi7O*&EU|02$LGz2OF_m0JAvSMFgO9wP#P)H8-}tzy zUne;7H&y^j#F7`o)rN?Ml?R&7w}q!-g(5Z%1!q|S>$=?wXt1&~mlsNaj@JWt!ePYW zKqxr}29Nob);n(aLNH9fct;dTo)u0L(qn$<_SVAjC?Lkz$--bB^r}Br_D}w2UgwE@ zWJ5q3&wYV@FXbi2mtPVNsh&{Yl%hZ5W_}|y1+6Sh%0VL}`^`~Q#EVAoe5Xe>#%gRl z8ApMMSQl}}LBW*nh(7Dh?h!cw>(`)Di`v8>8w2roZuIG#xZtfhbY~(k)J+hE0V{rP zz{0VZUTbXkd`lf;r!Bje9ZQVqLETh#_N`kUNs&g^(~deH*c=<7bDfdYud!WjIFA*6 z{8cF50w**^LP>&h%C4M}jV{@%#i*mX)^S`V-KIxY^dKQ6I?;W8#@u02t|naSkL0T=TTfUHh0(5bxDUdv?bg<-XQ{nG(J+4ge5uNYoY@j+ zSWd_&GUQ(h&tHl@jz-1(ijRS{*yu6Jn29SWD|M<|cJTYY#y8UhT{7vd7z&XDTw|SM zDnE_Z4*CUg<;ZHG!TFfNHBVM%ASoiQtSCzNq4$2}=ga3~gT(a?w`!VDAeOya`oPkbm9`J*bkY$G`5@2hP$EKJ2Z!J$!8L zuOgMBey;FcM*X`Sk5v!|h&H(dy<|K*2?wRvgI=L9R>5J=^U%xKkq)x>G<|OVJ-c8% zTP)!?7FcOi8W%9pDG$&T$Y@G#Wp~z(CE-kf!VHCvTwY>4wz|20RRna?wPyp?7!P)U zIif3Om=Zw+oXLgQh|9#&CY{^`8D4Q8gRC367j@r+TUA=qSPff7$I4W9=eZlg+B~vz zBFkZ`u_0r3)7Z8H$wOYr&lf%x zrbWH`!oAtm(Fqsq8TriRr3e6$MiG*oMfq1>G$XF1(Z02r%(aC($db7`eN5;bmE~xy z>4vg6xJb9KHjOUPUAhd+v6rtM3>1*k`fQc{1z2twCvtPAQH^P{kn4ky6T-!N7>l?6 zLBquIpurkLdvekmN{%ufz+jF-+HU6aKL7J}IW)96%VEN*+P!D^=n+M66Ce<#m(^5P zTyDWcIV#U7>40u|l4ky>-J*o={RNQqU zcB)?7LNVVq6h|L&IIq=ba)#rm3+&jn!(mhpHz;6aXOMBNUK%(>9hHZtY?CylY~x?t zA^)C}$7ABc8`-@9wQ%3%w^fDgi1>x_e~5zW8%Wp} zRWCl_krWS85=8w~EcF#()m;_#op=U5-9)J14|{Q*AB8OejcIXvHDBp{ysNkzx?8LG z7FVeBt`em27s6sCAewERU~M&fuvDDpQsUqyt4Z@^Vz*_eI3wYPG(Iq_u~%hW!_X8Y zlq_WUsnB<04p0S#KTf%jih#rg@Jef!^o2{s;@F;l`PIsGl93iZo+KrTU?z}g78am7 z8YzesMfsB$8-k~HZ~8oK+Y9ZlSGlCkKsJ4`uQhc@RwZ#UK(qy;ix#mkQeT7zFvp7O zdlI4Xi~4CL&dQTAP7S@Elr7S|(n@kw4kuHSni-Vicoda}u{Il4iGj!O=yWPT5%c3r zd#K?pJ{3~p+7DMa@g?XzG+Gojf~N^QZ9On}6t{@)gA?{RFPkPB$uh>X5cgmD>TC*qn1NtU)swZg%#BWtku8U`!? zGu5%{B_&w`BGzkF0jt%+N^QxPbvp9NXSHA0z2y}*n<^>|B|fIEcy$$qKdA>OB5+Lq zGH;pnBswBF9qGJorPi!G^XzTT-@_xjPB+1@3z z9Q!$rp>o+u!mvR5lD?7{En%{Hnr%t*Vf0E#H5Kr-meFj@QkZMNkUZ$$P~ineVRNG4 zef}L%gEM$#X#;rs?^k}2kYcFiT0o6 zOc+n*DkLy@dDj&kbTrpjLJ(j_GI|#(O-6jYi~e55uGLtxDgof)`xHcz&v?tZ!g9 z+^qXV;_-GF*KP6?Vi)J6lvDAXDA@t3ldfmj`&?4Uf_ZoGcI|q^_3a7fJ5U4EXtwrD z03VLO9n#EUJ!l@rrJ3Fw*5v?J<56cih47Z96!ll3bFs~-*4RA1k@QiZb%lvOIp|a@ zRPBn6F%*(}GmJvWXxGS?xPGS!r=}@ZJ}J0)p?tc)?&Yq1jmy+Y>_9j`T(J zo|<*qSH!6rW12hN^bf%zZ5dV2Kl$27*mJrRbz z6Yy>hgRAOAOgA)zt0-8fN!X6pDCucV?;tK~XphfFIzp!;Iz?S`iAYK6v~v>{&lz=T z=d0k?XMJ?86rit)Pp+vKbp;u*tr<>s&+OG&3G0^ z)5N!AN}P`_IR?Dj7|m%j?JQ4XD2=;+ZhnUtbpEJicmwf|St=z30Pa|YG`Tj~LL(jS zoNbq`g|LKQIyde;03dW8S;k7YPvA~zf5`HUJ5}p_YZG zkhXv{^1btd)z^CwTFbRbwpOv6&K(nh3U1SSOEU{^CNF&;P1Wr4vk2+3>f+u8U)};I zI7DQbQ^l)MgJ=fQK@bfaq`9YhX4$D%2b$Zl$gSpGqW*`c=sj5)>}W6(u{9>uy{5&J zwu6{doET05C_qgi8m(C*Up} z1JaShw8GeVfoN<;rlE4J6D6y?0a;(?i4%vg<05(&>}4!9X$#ijAB%&IY^+zJS}@6(&E)hkHN5dCucl70@QU9TNqiaB?x8j8+crzd@Dyi{>Hcnx zd?Xqy;*ZO9ZpA|p2P1i%4`=4ci>Y(K%4!q%KzKtpW3Ljv$xxkx4v84(_5LnFZ|J6S468T z+827kM`u;i>b(L7U3{QT(p^_)KlJp7%hoz(BStY6S;+W4XDX-sXt&zS#UdVx9i6SfP$WuZ`k0io(zGE2%}4+&or{W`*-c5 zkp8}7;nOIbemVRd;L!X#7e;LWU=P4e9~kti0s+!gD}Hq31nBDpCgcV;-bTe?cz8g>>F!wpUr|F0FfkU%|XpBEc{H3V86igF#$leF&mlj6h?hF=|D~a3VEI4sNmy7||A$PBEmMcxakHz(F!rjiQrHW4gsa&MeND5z z9mvBy_5d_e$}ju#MM9#0Z#3inov8nYKpgsGN~~D?PGkAeST1tN*W#|;9Yr{Na%ARx zkL>Ha^-=h+G| zF9FaUoFYXUGRD6YtoAHK^%TG(x4=6#gV6wIB9z+~h&6XjavJwZTGSA?0<*M~b{9yV zANkpw6vuIa8hbXq7}~x?`kVNwU4D;M_8mZjRCp;^1#x;*8Up3}vtdQ!)*5TJh?}=8 zITV2eG0)g*4h;zeoS1e7Vx?AOTMxKMlfj|FNNvDP%{z1Eh^h1U1j{i0w{zW-&Do-{JWJ8IoO(c(}c7fUF)+AATVsR5Xa|{wlaZp)T{@Um zCR)=)9RQMG*e)s=MD*!6fGmV6ZE%lVN~-%u*wF8dB@4+YCR!f^l+1g2n0Q09%}2%D zT1$UnrQsFU#N;Cmw~~1oSLPiF{B#=XgAa`Y8QomJZAH_e1uJF~3L)uHxbj&%D)3m6 zE}|%AqRz^ipTc=#N;nR(6}&clkB}zM69A{tmIkSz$de?nY_!ZW%Le@evfhl?yU6?| zSbTV%3Xuw?U=(%Bp*j{{Z7()G2+g6TdruOHEQoZ*j-}~`41hf4R3jvwm_3L+sJ9(x zC2A}cC$}<1C(w4xu7eRXl<9BkMtB?0+8gl|2KQC%Y&jx}voHJ;vI6ibpE}0Y<7N%y zd<03!bG?LXt<@Cf9-Y^9iz`iriHfr(% zl?gR_Ov5^tU$|M}njq#av?tY@`4?13oma4p3rYz|(bcM@Ra9}#$gRactUb5XXt0t! z;HW~bD!W*stDB_*haOomuag=05VmkcG^hmC(b3>D7BMC#6AOpiAH6?(?&=dgM>6fl zcGd2)*lv+gi{kU%OjtWA6O$7)Yo&wbp)5qfX}LlEq&c_)?{z#ZiYwHs)QNPMz+5LV zhBb4=mTYW zZ)pt^E>PKgY_gZ$$cQ4S?F*=8D}Ga9bY^n2SbIRj;jZ*?nVqE2e`rr z3c?`=g@fmaD3B69!nk1OzsZ(@f=%X1mCZ0g1EBB!NVpUQ!}u+F7W%b{iAiMBv?Q~8 z^P0_*4e_h5j0<@s84J2M5F-qz^=CTRGTl7K66|-O`7comV0UBewa$y z8Lh~m1TPvA1xe1N`K^+!EXBBny{iIg;;t_>pDvS-CzqMlX`mQ@;vLG%RxdRQ7hzH! zJVwGROKbkgXeo=yIRv7k&}~EW*Fx^*jGxYy)p{z!b6A!zs3AN(sPn`-9vEC?7O>@> zm=1qC@9?Mp!{cZifBG_lXL`274H|G+c%cyLiw&(h8oEBWl1UEj%}d{N<>5BRIE9k# z!Sk78Zu&2#aky4IbL7hfJM#eplEQyI(s@$&;19Bn&pXbA?4Y?W1UxnAT~= zarkJfz?ApJLNmjpHm$yLYE6Y}1$lEeY)0<+3zyTMK^Kx}rV`URpK8VS3m6@Gsa8oE ztqU#6n1B-bDb@KWinvd4NBe-XMR%s5j18exM3jRJNV6H0!X)8|0*@zFZ_dBnqx{IB z-OIVS>2d`^V7&Z}BfE>?RnwM&={dwIjC^(ZrF*n0To zru3sw!1BE6^8j9=#;@0*%(>#!v}ithu{7#+@ZHl=5GDgD#g?Rcw(v0l5DW8Ym4|(s zHGxjAKCD6~jVmS&+ws7mBpsZKoYIV8Ln&bgmkLdD1i2EXz#DgNZR+E9NJ$tdCL(Y} zW%bm*v3i*lLnp63??#Jzu|mz$YJ0O6jrT-kt?&I(+=jB}x*4{3;pd{YmzitSRlh#N z<_4F9CW=t6((*rl7V&`#o_>xebTbLU&b z7PZn2uDP_h-G0o@{4S)l)a8nv304N*trVo6A9Yn}+~L|#Pz_-am$ZkCByl3$kn?iG z#`(R>ukgQwUs9J`U*A4rj063X3$jwvp){-zQc0c_{D50%*cQ#D;>8zwuUjQvQ9d!5 zGqD|){Q8u0XP){Lj>(1!g<2~keKGdk(X2hS!RTzc54Jn1joOVi%6%v|KckAPnoJG} zWc#}3Abp@EEfvD1+l0Mt3N(AR!+Gf{m2KPnE-v-~=enIXaR%sh*W^CatinJK?FJiE zsQugwN+pzUX+R6a8Ejje-c6Z}nZ53qLL{1+TYlJzT)QHS zq}vc5PYzJ8S+zkJohZozT~Cj-gQT{`ZX5p1_U9?lzEDPFIoQE!TA2pq$>9bdQpldz zTGBWSocR_O)n;Qa)uM`==Jb@wp&QI?pdQOA-T(pU(zO8mx%di8s)R#mwzibMvzC9QZ!OBqm^*{O=^7-xyGI#n=m0vrv2N!O-I`r==Q^wI1F+Qs0uMtunRh)w zmXjL&_53rg@^||K_d}N#aH~}%Ot*v}R(SiHXH85Ml01x@pcsB=qVR&Htn2v|>h>^l z{o#-B`pl-cy}Qbl(Y`g&w}VwT^ivoaM22-0yoFXIC2=Zi`nx|TerrnPfJg3)bD_OzB)dCQ*9S>es9S3ryXGz zTiB_Tq$ydwJ>TE`9S+%3Y~M)lP5F0mP02`n3h$8Id{9w*TlW+`gm~pBen&1kmNuwo znk90CE#e7I52=<=9rDZ(nGY5q8JQxI2x9ztSd-)^K0W$5N|toHh7>W9xrTqwO`IdY zBTq+kd%oGfuQrs`$bw8nJIquw)vLq(d!_wN{ml_f7dg4VTnY}KY-6iaZS%)v(`P!H zT{IuhN6$}m?>C^>fBt%XaN)E2IKU>Q8bC*~B7_}MCYb)|I8R`y6WW}Yxx+l8*6A&b zt+d^+Sdg8n6Rl7A>6u?+n8{n87bK7^FqU4#RTKZkpQio6Zn}@yd$4ftlv9=%N$w8+ zqDFYt>(O7q+4tReg?*tvc(W7%bEnDD-_9WBQUQ|Vc|p&q5#RPZg;BSGyYIg0JZx+e4SB5%bD-ZS~%j>{Mam?suq` z-F&g$=*}F4-{@ZRxQ@ewN_2J4revw_OTKxSmHEk!eeK?roCIm;>~m;^=04=GIr#A( z1Gn_t`HcKjeV>|e%jG^H%q0!6t9m@3gi(?;xhFA$3-d0z{wHpd&J1X?mUx(p)Uu(o z@N5ppw&(y|+lbhEV!p@d2dH4L~>za~-`xu|^JS$vwA$7DelBlMk{RZ=CZ6)um^ zHk{5a(G?&)e2aa5t}#QCMvGbfO9vz)O~i82G(avcuI9fHW|i9hT=<20i{x~B(dNxu zGV6HB&MLz@Er~M2VVU*J_#j&^J{V*il}Ti>Syo@6evQgYSh*eL&jh>o?i?4qyBgvr zi55s3@5$>oY8YwV%R0oIasZwYQGiNBfc$4Arl#YMu4mcM=5{viDMHk`Rsp)Engob+ zS4W`ARKdMDD9Yz}@$bdl($8Y7*Hs)NY18jFyg7wzqxp+4HWs4Cj}73af6)}+Xg_^ zbx?yvKCELk%$%sc6+!tzifGmnL>#9P5t-dIxQ{d5T`t958XC6N0d1AhB1L83H>j=G z0ZsN$79^xFrN~(97w^A&dzBRo2`TmbLW*lN19&Ps1w%eRR=Wa6wji*(r*1|brr&+T z9AckU1LM;qpYSO)wiv#g#Vs?6j)lWeIM}dVI08`8PnD&>82V{eDOHl4wB>=p?LgkD zy3m~i-Hwc|zHxpuyz((kH+x2R8VPmSFYy`l_e(B~%qk!D*wWH^2ZrP%2xAaZ3c{M7C3ldRb3b^fp)lqE+M=f6Lx~WX0UYow|3&B{ zcpf4+G9Fqo00A;sdfxP+Fb5#?Z?t1EOlo_3)X85c=uVmMKk#5d_G@UOCFDnVmGOWh zMjirsT!(bzIBkWBNb@u|fp97Z3#JPHfv3r1ar;>&7qM}|d{SaXf<-K|KSj2(`O{e6 zuZ6f;K7M>ewThuQ1jG$cSMdB1K=Q!>&H%=;3A72X$X&pp1J}f*^;G4-Ff4F{V}<4F z@J&3sEH+UWRYcqhnwi($HG6Wz%GCeI*f~UJ7H(TRww+XL+qUg5wr!_^if!ArDz;BV(Mm@?H|F8&L--U~ehfNv5 zujlpD!e+pb(MynLVD%V`1}y9i3ELV8**Qi$pvYjrvctxHjS9BHffUd+MHna9^M%kg zuM2_+jEQ{z49ZhU`@vybdH6NgQ$XEU=#4bb;b5 zFXRI=O+&gGSNQ-==84i_x_FE?{^))``ghyF^4^CVgS)Q1DJwQAI@Mc!V20c5bSLf> zTef*rq=D^xxY>Q}XUMV6G{7LxN+5eY+V=wjKkuu{Bb04I`h(md(Y$|otLu#|^fkr& z-f%GasH3N$bF}xUJi}6Ij|D5JR1L~_ znJUn@ybIkBbUrbLJjZP{ssg22V+2%IQ>3ILzMV-l~B8=4<8dhku5%=veOkro954nv?fZlur1MT@%04cDo#@H zsumPOPm{?^x8zvWT~pCdQsVvH^tws<5x!cto1Cyw&?rDgvJWLK~EC zUVDeMZGZeE?IWZncD~{eop^ck&e)%_*HJ@Q@0ik>Do*z+84fp_h`~RSb*6o)qUCzV zD)Jf}{?RBvG}P1U{WsOSavCU{%}d7&!-702Ve6e4dl+fDYGKTWbIl!_ugM2T5aHE^ zM+glBB`=V92-BntBUv(Yry83iv7!T5X7*7u$x<{$z>HS7iefs}7%FrQO=c8fc%KI- zQ4L&?9Re8%i5Q`bKo$&{HXC;P@XCRS{9$nbs-y*axgQFOI!+tHp(#;CmeLhi*gVXc zi1-e7(e}?Zs`zX-Wpe^-4LsCF2rf!wR5Vu5XHg>Fs>0jUw04Qthzn2-JIM=cr!AyR zE%+;2nB+#$<2tyS*WyS1@}&ekVwWGmAtLk$Xv{WSe>k5-Skf&IDd8lr1Iao{-n$~* z-krq~i8N>mH2Di+1XrMek8%JM8F5hkB7abrC^Tjx^FBRPIR8l_1LMSLh+QpcJUAOW zmHe|X##QeOahG@h4DC=Rwot{k9)Wr3+!%2F3@0rot0A6m7>Ft%2Cf$Uuf5q**SLN{ zWS(5~VOEoLkQbUhOX&RM#iC(<=;F$DaYSWBZRiv9ml6>5YA?KKICY42GD($9P68Pr1lJ&ghM6cPpbk9B9m%G17b*X)oKn@7_&!UdmpnX=H6+}LS(eu8qi6(E z04;Geq+NA$t*M;bq`$p`nqQjV(KrW7FwG$`Pfwf4WPwEYSJhuA?^(NxLDc2ZEKQ?l+uSM$U~!O^0Y&O9vN>q(uqQ zPY*b)Uz?vSKqZ=MX3j~^Qz22&PxzS%h9ARi1r~AqQI5OGn8a?YJ0Nh8#bV(;sDUpL zat3C-T*MToyciXQ9?62SC!%)2D1ps!L4|0pku7jNm=1BTX?8JR+CkuC=^%wtdQZGl z;g=4(+=wRLwC|eMSe#rMKnpji=-|`Bp2-qoSR=M>Vb)7{Uw%?LRd!-O!CksQegzn8 zR?7PwyNLR=Xnr-`1r2}%%Lhtk&I@w0=Ol;H0=4Qi;JL>LW!)Uxb=kjoFB%1zZ3d4J zb?9|86;Q0Isoj1)fV3B8ZOy|T7C0`EZE=p&>9;jH?X?WSuFi-@Ufdz%DTGB zwdxGnGF*gIbC8+c69hszZk)z42fJgw+(v^E)~Z6gvfE*xp3i6AyO%!mdOEv%HIpH5 z;2bU!Ohef|pLC06w*fS!;ha*q2o67~?@=S4P%^nfq^c(fesrb~iWj42R>VXm31eB|Lq}0rhEWiE5)Ct0o4q(z{|$ zjggV2?fcDfiE0i;s++^hO_?+=+O}@q{9JPlze+dmpBNY;<+^byx*)wH=7Bv&PDtoX zy{J*)JKB~xSGX%2y>Mn1KqKKNKY#z~S0%Tx|2Y=q3U4E`UhM;6$e+xDIr5BN$~6S{ z?-J5^cII(2mO>pPH|+UsVS9PLzhKA7jJ$5BZ16%lWpG_F_*6z2WbuI>s`PEQ<9K6= z|NPT&q_?|>F!XY!o zRED{PEDO(6fk*^2jHvxeUrAbROVDzTaiCqfdub#)XZOnE%kxH(Uc>?&v_X-|zBc35 zdG6wlLUj6Ny1-1J)r6Y>7up7)-<(x`Pzrh-o{VqYT`m0)h0tI{(FxhotQ_n~w-~95 zh4gZU_zimJw)XNL8aT|%|JAIYh4cRe@*Qb&CDL*sKfR)x2F?jfZy}@F3igWc((%Uj zp62BA8Aj`d_9&Ftl^30#uR$W*8f~ktoJtnoz1*E%p2*q!7$HveoBbFe+FuLoMH1Yc zIm%F3Lx8MS@*Sf9N3FV_(w9p?aF*G@qZx%#d%Pf;t<)s7CGQ5*k9iQI!DCd50wm? z-=q#=2W~wH!gAHHfu93d{Uvd}+)mml&>MC91H89HMIc{_M3Cm<5TJ9W1PYyhaq!2}khNTF(gf`0%Q|t(?vK*X3Oa9 z`7?kd#(a+2+Nia2t`5Tl5 z6wwHY`k?Wx>2T||{Bx;|kgr^rCs%X2m5A)L-%b=a;iH%XK<_(mm2joAql|NU`JNX$ z!LHmT+hc~loi#vN0HDcHl{s6R?C2FGHc1d>q1gTk)?#^R4C)*NY!E80H}_-luPj*9I0iwET9qn-G$IItH4yzCO^Ot59&=YRxf+Q0-sW$O+Lv>+z+vq5JJ7tlz zX{Ri}=}o`kf$~OoeL#+~&hh>?suiI~8F=mA2_4jhMQ%TGESquGAc8maFQhcq8s2t5^}Ar#6`4hP4SUM54%N-7YGNv2lubp+|i(zqXnZg$t4H6`;VG<>e-WPDw5gwU4?qxwb z{Z27=w=7-Up{^KfZ0I5PB%6%_d~G)une!e;zkfeZH0WochN1|ys-U7m}K%-%7lt!DSJH`=(4NhU{GQsp_E z)|gJS>1?*6m>is82c>740YH7rK2*O-bapI^Kr}+YzDvDc!Tg~N>47+Bs^4OZOS|o5ql@T;V$~4@by=ic^4NwPGf*5w zx3Sok>nwJUr2fzMA=|5Gmpi}q7^7*sfV3pYj-FKBr5VvSFZDNeS_ne9mIr%+99hK* zf8QQ2c|{l_xtFW#S8k!<<|z?skDphjH26Y99U#%9B?Hup+PTZpn;f`^nwQT^9U!_c z#}Al8WQ{|rR@>BlXtsxus|&~Msg1^nwlVEdSj%r?!ID%+0d@AT{pkIW$;!fd78Cq*$+%SHu z<*UxXafnQQBmDQ9zcQ8QRQ=@nTEc(Nw`btQ{n)p)L)`Z0df}x}R`7A*#wbHIxDf3@ z#4wohbYvpRFKPUgqTAYAmz)(_&^8xjok|=7>wOhJ5ZMGP3~1yGPe@@@N?^)RY?XB+ zrD?Si&Zj?r?H7++bgrnAU>9^&VkMJ&2Jx zCL)9d0PMXb2=JsL{K=xS$(LHu6d=ocJ!4J&@##HA&aS9 zh(eynIH!$rvbCl>9IXfdLh(hmjjvBA`<3B&K@TBsmuiMysR)-e(M3RS7_GN^#wOxo4wY zBM+x;!$-d0)k|+hpr2eSS0{+B(Y8pRni^>g3$A$gvbat+SIst2cHiQwtOF4)cELcY zdUJ7EA#|@WpVJgqEB)#$xbmY{_=Th4yOV-Ly7(1gMAKnZI83Tr5SgXyQy@w4K5bN; zZpq9d48TwbZ8J6r|MUSfc;2MVg*|K!B$*5IMZ92D~NB!q?xlqFgL{D&`#!UqUe1 z9kQHuksqtUEZ>)uce$0CB#uV|-z>Stm8r5Y&|wpfoFkx%RlJ;Hmm2GoUioFo`&DiR zm4tSB9rs3WGwJIm>Z@l9nnQKtY#hXz!WUb+?4TpQF;}?reO>@=sH=-WRJVrURl_GP+)UNhcp_Ya|~h+OMv1Aq(>S)v$A?88IT z&+iQcGt@5FG3Bci#o|Ug3_p+CW%a>YOBHB5o~E0BMLV!4ypU@jMTCa_njxkYdaJ3) z?C>@jPJ;ccW*3z;@^7%#qLI6L%Bpti{=l+Rv8S?z-<<4D3~H;M*@q7y@9$JQ)?B)z z%}j)nTF5)LsiK8*F;0@u^0kD{_$G;m> z49v-HAJAb~3C0$&{9`67A9d>=X63b~$^8s2B%X!SkGb`OdDyV_!gumT=ykTlecX^w zf`uH07JCdNX;L~ z zRN}FgA!!AEX9#`(5}8ZKdu06plK?mMj-fTnaQBl=IeIZa5$Q!Lbs9ob6IV$L zebs)90PX2_JR@BqUvkAtMU}>J&I&!&bhr5Y?Ef_o)(vEqEO}TRNFP=CH4 zz$fVv`JTh(lS3<#n=4a?+_^vKt|b)^iv1ym^qDK~-5f^iTEEfSw`6EFEL%ZGGI5 zycIMV$BS_0W_YHiGHumJKZ%yIC~4x6v$#{AL8BA31dn&{Qcy*mxZz%>IB7oJpUB|F z%snlpnV12$h6ai@ zi}mJ6hxbfLfeGQ&xSd^BF*saey}=mRz`Ze`?3r%r0lP7Dl+41;w`N7=IM@K{2j1P zj0R+{7xpjEySS}R17`!RMa#^UkL7SL?}lHg-wfVTS7}dO7ArWv#*!NC7Y2ThGI`aB zU(bpNe1zaTFrbfbRfhow@u0;om68tFnrI`pJ9f1Z=pstg7{yHzUbxeSa=ul8H~Czu zP@<|9XeG~5TunTAUayaKZa1=85$$MU+bfPH3?st`4Y&U_*JXu~lF6G7;}s>5G1Fjc zkm-x0D<_xWA;1TYYHHe(vw)ipTJ(q$enJn)7Ff}sFicNDiQWI^&i-P0Ca2pa@cP3b zXI&}AS!cXZTS_1TsyzPu@XzBkIjfw*}eH+fl94!|sv6*^cJ=w=Fc>XIi| zn|im9ytoB7itwjR-5es~JP8^Y zp9O2j&?U4Y;)(itgNY;B%#y=E5j-Mh_BY0UHkoOGy&=%$k`2e0&WjEAs(Lxn@nK7@ zS)&TZ347|wGb?12YO|9^734@;{WO?$ug5GWFY0mR#qh3UEvr^iNp4G> z8ElScrGtc-I(>;U$Wh8=KhvA{&o!7E%{)U zIVF`{UOQVynwfpy-&exfrYJ$8By)Og<7XFK$fymVRFz2gNN49()TLv9!+**}Ci}^8 zXimPlao*#vVR3L7_lOPSV#%FQy7BC>Z3(a2EE`2au5;g6$& z$VRf2gQN(mvcsg)yqq@~4dmClFvJH&qh)Xn8Ot0obLZ4&n?wr{0UZ?A+_Eev@nU4A z$}l3>7yW%|L2^=(nJi&a*(+K?g8(U~B@|ho%r!|OitQNb+~^3pTTJOla^0rzW?KIW zTqfq+kCW@2M~yEPjV*_sk)B11ua{iaphQZSy4_wrgOesB`LlBs@Q-^oCrP&rUWH{&G2Dii40ZM#wd0qsYl)ye*upolQ*7{-)FsQO%&xIWw0qw z$)!EG25uNVaZ8P(4_I_k2aP}w0XXo%6{BPYJGJB{(v!^Ok)lGIsTGF$cq^_HWIfx1 z^3AWgWjz3LiWfY&4smN7gWc4~Ul+>%a__7YE$zA@f8y2P zIGFtKz`Owt(RiFNuAUs3=tN%kJHcD-Om0LDUwK~Dr@9`1&cduQStzqfCj4>2up3s#$bUt%k8{TiRG4R3i(@c`kuB+wQ~o8sL`MhHxHAOZ%kk3r|bCP0hjdF;!mfe`nA-X;%_U~z0(6RLx~QY z?KP9;V>dl4xBp=cG}t!*K`3uHX#2;LKvGBSBdh_FYW+{#j@MeyJ}zvUkz6!B1Tb9~ zZV*U=7XeHeUbjd#F3bc@T?Zr>DeaX;2j;z&wRPI=SF|*?5|=Pd%%0XdDERpZL0~{j z@&hHUMeiH^&1RK$WF}{s_HO%X+ao9l`z}H{na|k$spbBlGHn2e;EcjrXyQ_Hsv5I$V% z&k>u>c>8M>64EIlodvR_3R@NY7j z3!7cY#q47Up96ZjD{oEo1>LtKX-I0W@ZImub<#rW4{$&c)yL!EN2HRe)j_)Yos z1qh1MkX#q-vaEZNDaP%ovuYoi6Q?T8G$r9&nUEbFm5RTctz{q_M2^K3?;;{GLyOqy z83roYcYeRGrNg_E%<+qF_h+dH&=d^<)Nxqm!i$FzvNd!e=*^=7b(X~ux$@nnYsD-` zV+NP3y6Q4?GrGdk$+ju_=}oPy{9=SMFJuWtNRfi&!v#HS7DClUmqwyW%2Z6~l@gLI zNu!t7W){gwA81givDa;tibV@H9TOSw)zb!>IV>4ZiRS0?X)UCQLY0dc%6d5A&)CDX zIsl@Nq8pp`$|lseW4z}5<-_cS8CC-;oAggm%zssn5XzKeYf|*5t=`@0Ns&y=^6F!? zT0LYdn^uM7ZZ%dgo%@q>PLu$R5AcGLnS#~(oAfoi)jCqN*P5 z)S|tCksWxdY8Of5h>rnIJzhB<)}eIGErxY3L*veZJmr&vZM|!?CKHJR<&nGU=$1z= ze)Q$hN;980w6^S9FWVKZZdgh;-uREiU8fb>I3bUS9ff18YW7^-l_3N}_gAg`Gt!kijAV$$t_fh?ox>+b=YSw31g!uHTEHF`1`Kp zFwWr}qD59LyT}3A;Uf1VZUz^8#!5!`KU!l?i?TC^I<>0d`BWE2iT0t){O1YgTabQKVTlGIi zp8MIe94Fr(U*gd~k0!53xDtp7-qIlv-C9A}c6NUDrqzp-QJ~;&px&CY1u~2dn_C2C zX2U{K1E2)eMNoXB3LQXKBIc zMN%N`3z1-)B3w5g2t7Qlk-^OEOVTofn>OlmC&q(8Db)~RgWyDNP}<0?Xsv^W5Fx=_ za2YX1rQVlVBpBULLcvI_KOTiiB* zb#iMBsF<_!ZVkW~j-kS-Mf!Ix)XzAPoI>%o3xsy`aNA2&XignbStfwRdS!pS5iPxY1ZltI%7snRL2izTG};EDyon|cxoW1COCmS2}6Ou zxDsXFmQ*L0Ip0R){eafCP__-wJb(u&N48}m5=)%ybeXbC;P)(G$RvULA4E0Fe`j*Z z!p`}>>E&k4_Mb#cq^VDIxXV1t1`jl7IPM#0PHhk7fxd@_7*zYZc>kT)RMCoZemA!{ z3(0~}BfMHYbTWQeIy65mM(8J{5K27(!(I1}@3pS42U@=mImrCvC~B+Qj}SweX!!lt zkCjB_Y04w?8XSLbUMw$a#GIstmv_w?%gLNrNSP??ui$vanxn6m=X-+vl@mvE<4<@=lvw#at2=Q3*rMwvakLmNA#<(6IXJcEcadI|<^88wH%!Uo_m9b439%H!fE=lI z25iIpFMaS&W$;lu?(FIS0^`AKKU?>ZN^P~~m&Gdj>ksU0C`&hwbMc!} zm2@?Aa}9z{>37X+GkG@)lDOEu2E>|wC-@K<1ud14Gg3ef4tE5O<}Ae1Dg?+f2Nnl~ zN?u7RkNX8;)2EVQ&@zJTdfL3=UG5@(sDOKxQ(7(6ZH3?SE#Q zHf)<-YVe`%js0oBv5jjh+t_0P7>|t`wo^GcMheg^QsM|N+UceQ~NH!-=F(FOX56mG>@jlds@m=Z61F$XQ)J@Nz$Q1*Ob)}!YET>5rJib-^vm|Ju91+g+4#w(>AHdJwLnurZKh)l zRF;cbYv*cTBxj^Z4upp!q?ae#Tc+&nX<%oZ;)7gJiv8J6;hGgkW@mw)#J$1tV%Y2W&f?Kqr_1l{CZwS`O_%!|4jS9B0 z*6&2BcpVC|#9q>sEE9uMw-Tl}^fy@*?jxuHV|mCAZ7Td~;JYz^PNB>7o zsA+8WxU=E#lC$5fee_5Y9Ia-d;|-fP*G6S4#7I0q5dm?la~+yaOJy!ep?Ehk1i~>6(rQxH$>?LJ^nL20Vxghtf7aG*?tN&Hja&7dm*E zEA4<~2=SEDjAptWUron`yTY#C&(SJhx5kRoim5Vvq{g~xyjbG&w$w96N4e}Al%ISc zdg!GN!;-j##dr@`g1ZcL4n?PAT0vfq?U9+AOzV&bdF&)_#Po8?IKd8y-BX)}}8o;Z-$cj@$uY-PwbL)&y?|e3@2B zuNhf+(4|k=!tyx;l!u1{(ZUFfu0Q@0ng-D#mYs=1k6A+mz{8I@0c2Qyr`U>TGzVmj zpCzSqF{@8arcJI$k7o@*Y4}a(b)JZ&f4qG{MA9Ns`6In@!Ryj4-%Vz?)A>|n3;uYV z_`Ri2Ilk*syk*MG<19X~QJna4Ew1#k*;&ZV;q<1!o`q`x)GkMr1v>ux5kNr8=ZnHY zOf(ta3#rAm>$ZgMP8jBX_^Py270Bt&e&)0jPRACtw^WbdbNPkATV`Z0UEB%ZrEPp?V#LWZhKhD7%*Y1yYx=>oZl zyS8e&38#|`hT;3`>3LzNJNj=V1({fqQu5Xir69<4O=0S(Meo*l)5N5`FNo>R8I^LV zD9^2^akIka{0lcVQZ0W|*RMQBfO4|3R{@_&z`eA(91JUUPqowePKCTUEBhIBmxL$3 z&??g8;BPqc3e_9J|`3b`M2f<-{0V#q#Gfl$WgFKZn(RDA+JMM+|EcK?hZqp!n&mkRYO58D>)65SL1 z2&rU?kr2&o;f+3*H@ES|s=sS5MVnh{OeNg?xiT(6b01Rf^&ZY{zn!-Qx-Q$UySid! zSpN=RdWAfSuX&s`3oB4>!G2~dhz*>8q<749qw(elP7m9MK1NCnChZA zN|T|u5rv0IImzuvoJt$y7I{H8+`CuVsB>T~8%>J5X=Viu!!rwn%u{_9cZu@5TWS1E zOm}an_i2ttC2?>q;bGeilXgxG?c+`hz*iz(S6JdhLoE+=?a z@0;xfPihq(RFKdMCZ_aL0qa(s%5nzuQ*o(Mkx#x3qq%m{znU%(i|BD}Rl-oHt1c7f z&cFUR@u)l9tzUBB;fm5t+*S+7g>w9YzTW_JxIPaJz_B7szPYfg(3Yk5Fep2aN!BC| zq@4EsBY6;Q8R*2lS!S29XqP{n54x-;JFAnLFHI2aYWMr+x34~PCq{?nq?}qw*t$9X z)5h(uzmQuDyhK3)8HTD&Qniu`( zJEF_Z%SWtUL+ObvRohl4Ot!lP!PIlg?t@vm^VGBTROJrv|7P%;SUvcNpS ziZsd)a(0fn<;LN=W>`zTmApwt6D=&?w1d!N8P`GHarnnV@^@SL^pX(r!EIbFfz$sD z`_O?$=;_uBPph-)iLbnG7YF#9INQ5QGEnql!If29kfvR>OCF!B*HSk=Jo!>b zn=y5q8aY`vsbTF;)UUf<`oT=1u*|(M)|$j+AGkB_ob2Q-6YUwrxTz6uy+&@IFIH99 zPh|SP1EH>0;>)Sv>HOVOKeRjJp#WX>W!#P!RB#btBt^5 z%^X$XXv{RCs3~-8f>>0^oy8TEBB&;y4AqX0N=LfqkBIy5lHmc$qGtLsrlR`D^Yeac zz(@65TVvPlxaDxEC`Dq%ISVmk(vI<`OABPRIme4d_nkqcOG`9m&h+ak{YSKZnJ&7i zRkv@N4TpH@kE>WR&5i9`g4CvSuC~pnXrW}AVSXZG1YA&Q$W56+&ZB>Zi8&7-ure99 zyH!+J8&(!MTaDsSyG5GjJO9O>AcQcrp7f8bnz4l zVl4@TJz}4TLVh(fs7%>xyOI)EY(c@%iIg!Ro$#O-9E!-Fasf^hJWt&V&>-9NU zW+QtZaN%%2(8Lxdd%$_Ko9lrVNE`^L<1J0TNCBeTM|C(Bx<=qr6qyr(pkUDnt`8{q zvJcF$-0VB6Z z(oE89Y7&L%@NoN^R~L*(JV~WLB@zW-39+}qPIaC@hN)m2$MvF)GoAE-?&y#=S#Esy zfY}9;xcO8rvtnjpH2O!ht^8W*HNYQ>QiUmLuFf274l%MSc<8+BF6kC8Vr?rHS5v+~ zdkN4qCwFFdo==lvaT=R^?qix@8vVK>oB=f9lm5b3S0FNNlUrikf!7IBWp|Qe3M!a7 zg;)W~=1V?Wf!A0>*Z7DtzQ6|!M!+R`dX#q;OxLJFwJIDYpa`fjQTUc|T$Lp0&GHk# zu2fv8;eWk8%PrN1o&XlC7LR2}{AIM9shmO)bjRNCM#PFG8IgqceUSQgk_(Qe{Dv0n zD1@nKq1B(_OX?{6`p?`2S|sA?E43_2;VTQrb~fafQud_tfDbif^);uUOjCn$cR&GJ z$xoHIJot&g>qLP`91SP%)HAX=kfk8ZCp(zjPvmfpW{w{nlbY*&axCxIo!w(sR!yBb zg$WS z`kj->0GLwD?uRwk!vMa@wGra*zJq75XTpW%3MbA;oV76J52 z;?));;!esYkf|XgZU0=GP7)z;|eG*OkoRK_?9%}O;jwnS!H-c0DIo%>yl~3LL z@1)*HJLaIIr_Tv)D2A42F+>3}58Ldy7my4T`a|+Oc?6V~x4)3CCJz~_BXiO$6Rv$X zAZj7IHl&b z=$Zn52f^>uf*PHAa8lRa%3edPp2p(DeSM=va{fg+^f*eIxlsJoR%8!)&SAqd%qL$fq&hvwy!Ezi$Cc5E%9_8L7U6y*{B57xi9K;gMO1z>!9w$X2wXlzN#1#=V?JFFE%2C*Ep6mQNiw(zkAYpxT_TExSmn z_j;aSzwG#EKu+9YUmYM=n)I}}EdKL!g#D#Vi`i}VQX%t>(J_{-|K=KSrc3>ZP6~g8 zk@=`YT_RK2P`8w!(XN;XwM*A?tAF=F+@IcsR5QxVqyI27%#Qa|p3qGIvQN*A*0SAJ$;QG9X# z?VY)1`vwBlkL|4QyA`2U;vY%k3Sek@ZL{O4V;Zx3%9vr@Xg3h8L%eMMCF$3>WcNDr zEVr|tAY9rsXq*i^>hi83{?=)wbG*{?L9nL?nZQzQmmS7ykR4JwMANAT#V6e-EX*e2H!n}l* z@9QNoJ?>X{WFn?H=>6W^EzRZ&H2*i?<747^BKMp8XsB*CtIOxRqZ4|7)*W*y=_&O( z_xo+Q{qyK^XXo4R_2L=UTwd*m+$nvUzGj1;hWj8O81MPYp@MO}mDR2#7VAr|OF&u# z<|nwhy?G6crGeWt{g{#yP?n(P9p!>zyoK*Us}UP&K9rS`D?hU~13YVP4*@qKe1US2 z@mEaLz%?7nLySki_=E%P;u)qV$&8I|4Zu*GFbPRZ*4S^-3f$+xPNhY zg*wAZEkRa1_c27(Vy^s6MWo3HQQc2qi%!f4+90^y08}96-_=hG#Urscl){9_1Sf4# zXS$dzl zXOY!VX9zF}5%!kqM>+wyO~72=%S9;7PliPXm$CzgGm7uRApFdVDJz5>AjgCC?Njc} z{;Yp|o3OX4#3Op@Aa05c83k*sRQ-Cs?|FJZF{$b|`+3G7IsZ*frA0;UV?L36JVCOq z{Tusy(n`8^rgx-B6z}l${v)gKw#r!MZk;Id+$=gx&5w_5iz2yWCEi#OlNb+#Xi;-S z5X!Zl-vk_WI(Akt`cVEpOS~FM!|1p(J0fAT>f`L)ZsE(hp;{wdYnV$_R_#qI;5vCa z*}8{5xTf7%SIXOqS;|?YHDgwT{x*fPwmrEb=TGkAN;CVxWM;63+;j9bj{k!@_u_Ew zwd(MWzCMVnnOHiIQw;g@0f|2A%>782XFd{M;qGfUKZ_pDbf*QthhFc>v@h_8bM40A zagPh%eGgHfeMNGa>KIg|8*p zL==pzOf`X)?^TvWp!V_0?${>40cxUC?SPe@v}*Cu=`(u@GG2 zcknhG`QI+OFm3T!`;BMVP0sb!#YxHguzuhD+r|Kz?&q5%7Q0}(l zZ?gB&ZiPyz-eEDn9tk`T*ZdbBs^=w2Im&b-G!Dqzl{xj~9+~!^EN~vB9Tin(cu(cD z*~&z=_*7I)6N|GqU>12w9n#d?L>VS^%)EE$D`d)blzPQ5rxNx3EjyP!(y=Y|^CU7icyXso^8U$*RnOQ%Ivx1}Sq;sY08&|M61B;wvG)4+=6x1doc1%k< z(G*^4T~m{(+-fEsG(!_PXKfo4z6)R!*>vc5%FsC%gV>RJ3|UsQFR~)_s6g7q!#N-f z;#KN~qfUDUSw%%GVN_Fe|9@UibuAxm*ZdQ+B&G$o9w+$5V`Q z7Om|SKPmQkRyC<Pb(#otR=O;QZMkVlk__52t;EcA)u^FOdPS>^ zX&b?sQFaA)N`8TmP-UN*f9%wF9h1hDN!blxceS zi~u1oMRo>$ZZsnv4s&5fh};6T=?)wgS;a2p1u~%qy(I`#dSE*`jCc0lDMdSN&uhU@ z5>-4Te_$8_#qyMBdK_;RN6v0(mgq$%X_NZQH+)+3CpsLCLS&>(O<8x-*OciF5BAj8h0T^u{f|>S)4tX%t-Ysq zg~m{IUZyBVhHyryVhNE~Ez?r}F!5|r8GFltfEqGgvEgPAI<-w+Y#$v|X-3bG!XT)X zGonmH8DJ{Nnr?3xPHn_w!cMs=(K^(oh+5P;vtQ(PNg$6@Voh=@kVeVxf}oZ*kCX$2 zL}@_hjB;%8&9CA>=|Lu7ps{p9BlT%P9CCb5(2gp8mR|eEr1HMBic|#lcF9hVUW{<> z@!*IMG>9FyY_&<7@}%_~WfytV^-ge@?Y91a+f8I9FV5ExV;YvzX4)^c86*5x=%6dbjn+tUxvysD3# z^{hBjgrB)RcQ&JQ4GJu_l`O5|R5R2S*z4pDYDGCJg{aOAl=ZQ=DF&?Sh)qSRu4~g3 zW#2NrK@TdE?|U@bR-D_Zm1#w=6x)#v;u!<&w>9e-_f~U6cYu}1{?UFM4@z zCCcts>u812n$|a5&_24>wmXv`_B=O1!;#4KjjntDXDv9^NBT9aj(a+!1BolES!e~%cELCn`m!4!=B^5=B9=hg*j~>*b6Dp8!c6fXKBvl~fO9ObQ z?2|>g{_VP&Gx1?1pjN|kx1yJhZccj{{>Z{;wx$3cn^c$m`0^3)6Y& z1!yVo0w35?^yM0meOnJ^TueP7o=SeUK{THj1cG!a%3LL!s!MhiN^gsP7YxZ@zC#_T z7WylHK8PglibLSd$F1>!0sk;4=WU2DO}` z3)P7JouUi31B#!A8V|S6z+&ktqYE0h zotJth`Eses1_i@W6bO+ltS*}gl2=hy5@6j`*7L`=%NHTj zP&qHfgfg;4*yQGbhJ!|87T2;O;tPXsdO+mCn`< zZ4<3b4DSP4Xi$)5sr)%pO`brpEoz$&tS*PzAaJb$sDt3?nHf5MTH#+Qh^29GS#Kk2 zo5(l-fq(3n60|BO`pXIuXc8Hq2eRwgN9(t;~*<6PwJ2 zXGF&Xc`iLE0e36r|>hx&FqTQM)}7T{1$*MzhzS6G$ZDLInv1E4%8k(KKTk3=6QE+3B{ zknHjMg1ug4$CF)wCaRFfyQ5)0|&t*7iDX!ArF2LCWe&v#gTmvCohR^x{SOWGkJB;6r~kL_h%gG zp2adL0Xs62xuj7S*T%0IW%en*%;mqU!usiGfW#0A3E!izNHLoM4~5G-P1n<1L7Aw++#*diU9mxj{Dep3y!jk}3H4_kF=-2V(Ypz15$LA`m;T1#}dX zk+CzU1K1}w7|;5?GNcz9XkSPa2;7O>U|SZUI8c#pQ=xP;KRRJ}(BCR?6ZJmwbNtRu z%EIEj3yU2pSCt{q!ak2t2rq>s;_W>UWZeSoGQOzTWX=66Gmocam568bgI@{GluDtu z^+PWXqG;S4`pOn+Q58@uqhC)^;wBcKPf<+r<`#%Uy>>#846A&uDtl~A;_-4~Jt^#H z+X7M>*Auwqs@%(d;hk5zCjwst1>LO%|7AvH``V6Ud?pUlqI^e!ADQ#(ys9`ss%4 zwAwaTf8X~39!~yj1A0H(zup`+r!&o1vbw)KkCb{jdw2YKf801mHb1@mzduF=?0az#2mtAl$y?4Vswkex=N_iBjE2uNfta#=6< zSzwwiD3sArAHv)tcm8uZ-$NRB|0)k5!~2DHq#Q^%5ssl`VbKHfxTtUi@RL)vA#A)@ zVN~r|M7{kM5~Wx5tzZjIHv&+s$dI{wr0yLj=CZaD0uAy?R%=qj5le|$j(Uk14e>!N zoUh?0ntwZ0j!Ou%;vADr=B9Hj2}u)lnS0-m6|iIdo;-t+0-`1uCn3r6*gQ$%A*?Cl z7HIHsW;NG-t_VC!n3Vc-LF?nFwN%N}mm6F)fi#2*3I&;nQ*B3h3a$YiTlQr^kM3#3 z?%qXFKuK7TM{llBcdTFLNDAbWdv}FPbX~X>0-f|qxKTJ)34et(;Xv%dk!bMUQYqAJ zAjWAiglRE@rWmsOWV-EW)mOiZjS1A!S z*!p+vo2fR=5S*d--us!mdH6;9vg<;@Vkj*8TiH6+h4+B{7{Vw&ZLYj-Qmr3I=<70^ ze}t2U_h{cB9a6KQ6%Ai#`F_r)Aa@xE1zHy-s<05>L{QYELCBT8OuBefr16l9cdu~;r?od;Ys*%Lpm<0OEL+L(+|v4< zUu67)aB}GA2_8k3X3^yufZmG=RFBI?+{xbOnHha&kr84hYfiRtaTAO^{FBQY)}(PV z&QO0>l7@Ym~A`N`XQn|cPSQb%NIgjH+>vV)1C9E+fxIwNI5p+ zmaI9a@QP;>kUh|rz z$!W^4e9Qe#xa(+jXQ4>M2sp#I;}jcrcl9Ckb20Ntj10kE4zLa;*FxQ2lhPXA+}3xT zjBW(p{o~@_a%{XU)2%^60FS{Pi`83 z7bw9ytAXd<^>4J>=*;B~<}ZuDfNu^x&f|O#(VKJx7LYLFwVgd3KYqc;XzLB1T?|M| z!jN**E|m%KuF^}YNNDfV__J|6>ofEiA8a(>(!Sj|WJ}Y3{@_kTU(jy+0}yzvFx=qC z6K1PKPmQ-xs$*`J0EjZQ&l*RZ>6(vW=Zwxp%8H9SqZH`pYN4$Z!-MKEakONE;jnhm zuaC=SADzh|1o{mVsea4gZ>-hH%Bir^E7&>p2Z=$kdfVlu1-7;n#B`fSjUL~u&s#$W zlK}H3Pg$hfNaW&sG)3Q7Ouq_i!t`YL6)>vv{r3I+eTJ2&Mfgn8C!&*h-e9ax@6d>v zyLNQsN?sPZC^GbZnJ(-4=|->r)wm8&wy-{mi$=NH>r_>1A^AXZSZ8w#%Y=djt85G&T*Hi6 z{B)blPg{j>gL%ogpM*4aT8XyYs5}$_3(b%Akz;pg-q4_7GVyr9Q!6z2H*8pN?`3zHr-l8u?Q&LRCXSei zP9wB~Vum=qn{RyWCOHW4yW4OypjGQOv}gh+L&CW0jd}o*Hz^|&d}v_Do5-1YJfb?F zKC_vScw7G-^1R=DEOl_rUF?rtmavHdwCR9YBBGlZ^m^)g;Hay21woDDw>Anof3c56 zgJ@c=1P?PGxe4*YB67NAn_+M3SK*`V7a5e2ks3p?zgy^EgZW8H|E8A=7h+R%Qt`&! z{XuW!*aelw1l_}PsEnvPnWcQuDB{8Tx-koh(_G$vEqL6cHq@}uhpA*x`ybOdERdVh z4fZvy;ySl4Lh=o6>c(h^k+2(jk zuq%X=;x6kQ)J17qZaui#{$ijPQyLbjQOAJ>;tHdgK(RrVFxJ=hPt|9hCdDcq0$0UY z4d+AHsG~{R7%jvM~pb$MsSm#Dt_1zhQoEFania&IMrm|=vVV&;jV>!kx zL4gOeGqtoW-AKy&>#^tbSfVGMdXz;*S;*kZ12Wrb`oRQEg6(3+d>W8{y&{Y@)Ub!Y z?y%>LxfboF)te=|twK5L3z$BdBI;+;Cxx;tnOL0wtaJOyLF1A!A@*D(HV&J>Q0lT+ z8O@p&I_{&(VcGGe9lLhx#(5ve8Eho54hp5sxCE!g&~9bCp^vr9DoWjKBslC5hZ@cV za|_JOFY^^mZ4H;%+(g7ZFU`Kcic8`R5syeDU>z#X?2~FyHDjHj{{f55op-_SR*-c*%-qw!kTIDdNOIAh6q8(5n;)`PS?2tqYT z5bS}E2ODo&C0VZ7VH%#?=Z23nALuUE0o5LdX;JA7VE>)w`dmf2lh5kN+2~eXLm2hz zGfD$MRXURsn`KBA{mR`zay;4o&iBP#3q>-y`m4RtKxO4UU(K}YLYHR|;Ho|SLDERt zYLfZzY+Dp(wQEg0bh$Reip*C+sZ)TgE%9Kw+6FA4J@;e3Fj1TU5$m(~?PqSvXLSiv zd_TR`YTLr};s~y5Sz5j++}aNzDk_-(0l2PUSh4n!FJs%&cHEMYhcRIKu4sBd;p!sF6W+>(48i15J@8428 zeMJ)q*7#UI%Y9%v5m}k^u$F1`k~+dD!x=1%)MkB9QmWLRiIktQnpA-SQ@VEloB-x0 zp*j(z%41c=>qVNi8nV-ULc>Qox+ekWne25M$FK=RHC)x%PJMYF`45q49jr8Q|TEFXaB}G)$W-BY1cFH-J z-aAPj*~6^SxS#0NXRgLqjk~zoJS%&vgcOhEmYBV*Sor@TS!?n`7)tn#wNes;JuYedzL-uWO@HoZTY&0f1g6JJeCv{3zCG{>A*$=8R4H|Y_X zCZLHJXvvgJiRB7|Cl33rG%M29K!_Zf00gj&RH$a)M)08NbZV=iu?xHvSf|bxR{QR) z9)>|mNc3K%pI@C@y$m1)f=90rWnYvZKItjX*^{7yhOHUFZfe6StwmG`JpwW=4ahr{ zVRCy(yMLRcVR=h_M^`#HqzjA+=ZW<)vS_*83J6>p^m5xj&Z_F_PQ_U|2hjbfX$UZ) z{Qh;E_xqjTU;;epzs$_+{}Z->m4%h-KXY9fhr|DeZ8$|p-}?Z<9 z`18`}vetbGKrj$%TvP5OQ&}+HZP1ZJj~@2+RVyq%dx?}=`Y}n`OPY_<{48OA}Tinwqy(@Be8MM|B}~ z&1xK_|L!&Gx+t1HO!k_Xo=q;@p2}*`##D^8Jfs-5mg=6B{w1xv&lXh@_H>>PWgX$qWDj`+O|vGUOncNAdJxz?^?UKr; z-YkH07=gVd-@9#pmqS*yh^VRw5%_-LSmC z)r)I?w*Ez;zE*%l+4++i9PK7?43p`tx0{2w^fGJI_S`pU!P`!fX2M9$Ng=C?x5v3RF~ot<0|1pSsXatwF|h!2ejoSEp$JwIlz z7Yj%0!QN@aWOr3UH-abiKJYtkz9)hs8S}W&E8N^3@r{kcK31V7!_Y<4eFM|btJ&BF z-ShLSWxFC3>tpphkns^}9l+T!aaBTC^WaHobp8oMRyURi{u>u%Rbq&y90yjl<7gT& zN9s49VPKiKD?*%R5DL1X-{jyt63jWcB>b!zE-cc*Rq-k!NIVA?dVRiNy(OCs41Ad8 zJk8=f7=%bRk5)#$ZM}8|Ct3)AE6E59f;^(w$4aFFkrsPkB1&ZE#Hp0M-#?zE1?oB0 zc8>gLV9Q;ZoKo(xNY)EwjB<6Th9vV$A>|Ax9UfJ;!h)3bi8ult9yLXMAXl;J!|pBJ zx-zKMYzI5FZHRqy5S}rqF&gO3mG*MR$Ak$10>oi70@j~kau4eeju80;H}wVB`*Q3L zFqPwGB}pAbLU^X2#E$I<)h|w_{<^}Q*a(;IM%1zOw_hG(JFzj65*zQqK1MuPpoD6d zbYVa??FY@a4me0h8Q3r{RVy^MK)E>sJp={yNAhbu*gCuC{QRwi^M0)8`TLC!2A!dt zc9Q%WMzN#=5pviz*$783j2F%kBfy&5S|&LpBWv9Qt@&~7+q%`eQH(SrfxtxNe@5?J zVsm7We5p}WCp)?1^pe1BeU6Q4dOT-Ju0{noW#~Ry6JT@4m5p2&t~;g|QazrC&oM+s z|Bd=yqaPpYWVDf}srzoX(+ZL)?g>&-LG`j*<*MY{Mq*1`y)hG}_tT4h$qlNT5|aKt zD@_}slYWb4d_Rer()>-)!l^N4N<|-t-Uy_0zy`;<$$1`a18_p4#P3x8Q=E6NM-#6fuN9hs{)#}wJHb2 z^bqI?;hLW$z>57~3sK|a+b|6TwVT^&z=~1WT2bTGX>92TjY9d_1DdNwR)81i`CHNB z-RIYo1+^b{bzmedsBNhTYgYdq4`BN^0$CZv(t#E04Y*SgUKQ521h7J)E&(r4V1E$O z-Fl_&+o|9BTYi;e`M;WsmIyA*IBBL(2s8rb_$jNxx>GH+XAhT3Ttg1;_}%M{eg)Fr zvhs^+(rPW*Sc24}-{@EDBoS=LRDq zF?ASh>ql5zQ^v)vY{20dAR!MMeAm{@jKm6Vt2sC#KufXlvIy|wr@m-D4Bu|3Hp}6< zzQIRY4f52<0YU4`qaSMiqq#37YgAii7?nDlL?|{mpcPS=GC(aj?~eP20`UpRv9QDg zJyVnB9GX0y4KIdlBx9U}vLTusDA97-mNy==xDrevMs>M{v2f2w0`<sivbWPi7*er`!y7Enm3A|ef68OhH!viD>+|07nl(74+T*~YIqYNXyPC>Y@oOQ z-YqQUE3r2P-f&Pl<_#}QW_m;X{IYJb?jUp#*)c+9|1+Im68_;c81Ze zDL?B}drq?%#H5srcF^}ZTFq0K5REp`00qta?o7Sfj_`(O=f|6!9ng5e0WYcx> z?M9=kva6jYCrvxCo+gUUX57Jpi>RNV|IPx>JFIR*IUK^lf&02x6sdI)hyuI;c9-+1x0|Bsm%P7#^C}Pa?>4&|&(tDf#hsV92n3qF z{*~vrr^(OBv+`L4ub;%g$>XHkR{By2+U)agj3zv@^pB8X+sHo#vQzJF+s61lxl)d2 zvN!e_SCoTvO=SGnYe<^^PL+pCIHO0FBdCauA@J-lm>>|WOI$muG#qsAW&tROv(*;! z_S|T6Irl?y{biNkxN!6szSzH*zhXw6_Kq6jxYh5`0b8Ivv~BXT)mch-{<`lvJCtZ? zZ5TwJaXFvw&%`CLLSH`Igj-w6JnN6q!-G1f6#9!4M!P7#U&_xiH^RR66SYGIV&+TK zsCago7%X>no>BVd4NJ2;IAo)Ga6I11)n2tFZ~7;AcpkHkI&4ub(2Do=Q~G`&#%OiX z>Ig$`sm3VBn42RXI!o^1egax`ySg25X0;g7?qwo^4GZHbY5$J zROTNWz}xxuTravg^y;tj@(91NR{mOfQMFpVabSpAa2#eouzrAM@ke2;!kNN+WpbAX zZt5cJM(EPSff3Ov`zQBqykAhCOp-k+0DBFrZW1aYgSj$_3__PF75UK7&TqHu`XZO5 zY*vT@Mis_ld56pBf%+YegVZ9{^cX!dmHoqGitTAFt*WB-FNk6c-VrgA*VD$o>+=ht z7+Ic*z>WyeFOhn@1~LExT6J)1y)$i^>v2MQbAvStpk&$L1nVuFV{TEtjRbH-p59Hw z)E@sWo2&F-OZWpR5X2KXhU-jp zMXLtpPgz;l3WW-!LFpPP6V>Qmp%UJLl+iLifY{GRxICq9)dg@wjNIBHE)Qu(eJYQ} z&LHYmi`4L+FOSj9&a_Px{Hj>%ar(79JNzpae8vVucY=60gEz<_NqKPZkwvi?s&P5MpveYmMf>+f4j|bnAP0I6T+#a(*?%8se;p#x^{W@ z{Y?E%<&V85Pa+rw@>_>09K_J5enZwi!4)%FnWL5N5?PHx`yhcx^RKP5(FP`TKLr~S zz(E}K?`2fEnZJqC=Ieh{giL+Q%If(Un1)OE91mG-ArRtposIRp>MSEHkl3fOwM^xX zsnn(tF~nL`Y?x$WLNM~pu7NzkEYTji+@wwA>O{|=>j*VC=CF1h?J@`j3Ff0;Pj&@! zR5cNAiM1f~qeM@Fd1Ke!yTPmSkv@wM9@b}-eDWgyQ3ie?+tDw4FTE)BknU~gE&YD$O^p{&8-y-TC-_GZOU(d)VeT6>0aWl zGXAwM{KQ1h26_S6tI{}6N>eCwBUUM7vA_XjcX)Q6S=+a--m8=D{R^aFjZoigk9DjJ z8X|ga3V2ye%?rHKxkkV!(`FHr@fDQsLs-NP#cF#2brCIc)Rq&uL_Yc9GR!Vp_zZCU*~YYEO>-JH-6$(u{f14-b&Of8LKc#++*X7NuuE4+5GG+}RFmo*-XdEXWC zna`^#bs0BLT=rCp`L9XTTCXIR2 z{_`iYN)nx+fo$4mHo8AwXPb7#uTkNLFC(c`zy;b7n!h4l9`G%K@GbuH!{7D&?Ee1r z;s{*R1>xcSQCwz$k*sj`=>ByQy~5s|%k*z&;Ti4Kx~E%PM5FFZz$&(H_7r=vTj9v> zw$9>$Z+nkN2A@-v*PA9V6O(18{ zTsRu2^5BbB`Gauet&tbl4g3J)S;-C+aCf>v~FF6>d1 zwAU;#PJ&&@^rUoGbx+dU&y&Z2xCn4FG)m&6sSsz*dE@%l*w|Q8OS)Ey^ok<2Gdc)L z>{OQry~LpC>9g?TG8)gtn0fY7QmLMp4X36%RNXOA9lKgXJFixJI(s8VXsG2wla&<2pem-?%e+q{K|?V%uwFx%gy>6B0!@PB^p z=}fOv9ig-0d4YYh5Rl=}j z70ILtzp@;zjYL^5I?$grs-Q>?d7_apbT#6hrUou8)6V)C_J-(?bI$e4EGUg|N%JMI zpk>NMmCsVC;IoF6=%#`h?lAnGUF9>I=4D%HUDpW+?Ye_H+>!fj`uXH9b84ZWwUQ03 z22@iJJxNBSZL~-a-z!bui$jpm1`p#b-WYw88e?RGf8Xn={r@D28WWoqTQRQxcYv%EvG ze&QEqz5z$XF}UdDUgB1C5I;;3?Kd-nn(v}4qFeEf6;e=@O4U|i(QYU#&3|t_>P+s_ z3a$lHAVj%T1KXCiUE_qc396NiB~H~dqS|%%GU!r7p8a$Y39^@s5^>4DXt82CRK+sn z3w4MRIRoW5>n(FMJG_U%Br1Is5y(z#QV83yadc+5MNvzL0*fkn4n8)-`53oX4f9Cd zE7*-)s1+?@1)pn36qb8dK=0TJXe?l4j=m=PsuBN* z?I|eBbfvqQBaJRka2A{I>d86;5JP=qT(wu%vRZy(GcPPwR&)v6~sJ3i_DZJ9{0@*avK4p#WiR~c7P&sH}N+wJm64~dH3VNz<)h< zQBVxfvZ#Fm#syE;G)OgaDejf5UP<#Owu42Nj}YLi7zWX^rxGuy{vGE&3G5bz%7PA` z+D~6m$&{buo>_dtxpo`7$39~v4CxhB1Hd8yYYeC#j!@z{_>F7g^VstM-AJ<-Hcw}p z7O+5pVdLq=ez^*K<4?u%EKMg~U9DY23yQyAWf*)q?}Pwf-NH*3L>pE__4n);Od05E z8oc_xb=sXJlk-frY44E7KjXkh5G_OSpkh5vj)KQn5$GFNyN|!0hp>XvpMl>%*KG6y zsfSbkGj9OH+_(1bCC1(gqG}LfjO9$^h4bM}46^?8Nrto00-Y;NARbRi%Tw4a)%}fl zhCoB>Q{OjwVkS(1iK^uX;KyL=MQbz$2nof{WOwDPoAWJ8jTQ>!BYKI!0;b$0c8w`? zS>%v))LCwe9Svknf5%$iR!z$T^B>^?JG&bG9bxzPg8hq25p(zL@uZgIz7%=pM2+lo z<-UzF+X?2LEu&7Uy~PFzwJTSl_mj z({TW<$IPJyPl`UN+`%(zE=^5MuTDwQYZO!!|&BbJ;^0+Jn>DAGDMQ#G871R`PPu zCjo1;d45^A=dwdR=vlEb zQT?kBsv_EYEj!!4P-s@IEM zg!r%`{mq`J4Vw%B!@);TmhXU!e~_W@w)axrx!{Y56NKSVf+no8CY$cKyXexY**_3Y zv5(Jwf|UhNE`<4bSg}k0-2ctYh8R2UZ_9z5S*jIxW%s~Z=HjNLyWF}{6KBgX+8!Vycqn9$9wCMEl%ECHwb5|b7|@b_T)tu1E9(0PaLV{O|4 z1jse;e|@Br$NA6-M%_V-@Y1%q>o~5^%UBrarOU>Up%m-ulCIdf*TJrs?SP1Vd>#GU z_!yCpDCAkOxliQwFQy)U_h7+y=%1&z4eCgxFusC!;p{8InUs~ ziqfB^aBd@fMU+Q`HNErVnzoYEbFxnT`409;)i1rYo&nssFp#NfDQJQsOJ66>T##`v z@l3iT4vLX}u6~w=2kZBCXGXC`J5563zmc}B?UPss{(%_|s1}8-cBVLkTVltBWF|(v zZ)ujwr0rEBs!<}k8?drKW=KKV-D(YXoJV)`)s3vc5bCVCkQiwEAdF-@C+n+-pIVDM zB1a{MtDzAhOf&;`c0iD;cudhrQp6M$K;mpdC3uUAFK$qPlET01i8s{_yo_w2!4Z9I z3K_$oVaZrJW1?(^i?sJLEZUBiqi!k%1o==l^uKD&zASW!2r{D4G)-bi5lCv%+9RD%s)*SzcSIZmD21c|#S4*69T%)aV%yKev+q~~qp+_xk6n|Q+ z?@To-4TV#nObVlg(A^ND5D0<6&yo!hM3`$@rhq=_r|EN6J;Zc6#wb(Mcyo%4!cG&V6u`8COVu zt%<`nRsl%Hg6{T=(mM#N$iSSbC*4hs)5v%jx50MapATkGRpX_j0GuWhXKi4pYuG3y zOoB2cMWI`<@8|JKq711-Cr4v7C~!|rtKX6(3Hb0W}_ zRxOf~&U`g*Wzv}=WIv;Q4VRALV@;1BPfcu^qVIX?c>iufiJ^}|8F{z(G^Fwocy&87 z%s*-}zYQL*X+ELVpb7BukdSCjk86f`UumMYxxV9`9I>0#v?(a|n_v;&MhB{S5hYYx z4RkU87_KfLs8Z^`7$YA~k z>uAD?>x;j2niad7ZxMb}_4g|3F(s&ZU<`cV%1vXAGHu0Y?#9FG zTkjJtVeJ+h~%FczL8k|^sAFt%3#RRmFHQz4g}BQqrW6P|+H{V+>AoUvY&)Mx0OAfmW50GEq{pSI2_^xpOtE zlAYT$9w`?#Oy~Urrbp<<8DDdufuEmD_IeXhnsJtBOI7Kup$gm?%B9DbW+NISHi?3N zt!rA89OhRX3Ir8Znnfq6RTjMP0E^!WBDAAKr}%0Jg0uL2)byeb6T>Eyx+vl%x||Z; z;i5zFLB!BX)-foSQ~($Ibq_FPFx=9|P8hbYI0nv}9EDWv6_lV%!VqUr7n(!*1Pche z+@jF6j!|6m6Md>-3KxWd=}i6vvQbyRjCK+ckowucLn)d2t_Zc6@01};kK%ZVmqvN1+4m7QXJ-*V7a3!|>0vCc%W#!zgdBt# z6%hgVIEY_bT@q;Nj>jT-1w_)fp1ySenOan#U>zmfAPmG)VA%q-)inMPQ_VshU$HW0 zS@y^u349sqQkKNjC)88!7J=U%=Jszb3@GtIjloM5zF#R1CD?X2o{;OOF!_9PG!({s z3}vcjGLx%Zd71)s#eY*6RU=2HY1SXY>qRJ#ehA5_J!}QiG_|*uoWiW^#E6Lm7*b~n z`q?39pCszLL_}bLWgqpZxg)D)-!4=O3;1WFcA^7x=9>$7eacFzJ7(S@L3wJ<(&oe1^n?`_C{R~7{ou%n{Q0#__=;T#J`aQUn6}U&K2ld| zs|_CI)mz+Z_1Gok&*Zka0rlwKOFhqPeE7$gTLUf6_q;o{kF#&>d{tgv_&Me6kR$~? zeb07eix-NIGa*e!f0;W!zkR3eohGJ%@EluxNNwVuDM1IRlco73PHXgFyQ8rp-y4!6 z>~9Q=Pm4`5=P#)6HwAK?+7W2@gu+ZBuYsudqD^Dxo9>R8J_RX-_<@tV(XqO%P*qf#{tRjVRTuHVei$H6{2yB%kVKtYO z!Rv5N${`j}<;VLO{_BoDO{h2ucef2ZvrGM_YX&{l-j%aufn_nL4p2b{S`}&ou{xBb z#+M#Y`YRY=IzdI5Xfee#@FIBd0k+Enu0-}0%{mqrK9d8`QcKp;MR!!t!94U28%fmE zwUK^eY39h#vgfB9T1y*fLk10GzXXPBO%8js7Gu;sR2WAxUXD4eU zbTddKFzcGPU>ujl*9=5Y?xelkjS691g=r^8d)^{$LWk;ox zqAFQvvn12v{P^u2`ZF5Iyar3>16$}hp?`x5uCgOL@dEPWz6Lh!piq=05=esrAA|j* zhmEXgv5u%}#oT{L5gmGqDY;}64!W|z*3CggI z@KP|jK1W2vza;2BTp1|y^(2_RiPq)injl`P$P?-%?4ly~2Ddt7(oD&UhH!iZQij%# zH^p~#e;@zXqenGoUp$@qYJ4mn+{!DnlQs(TMm-CeRv${yAG$v4>F@!SKSYw+!wTNE z)B<@YMFWj7hC`2usv_TZnYBQld7p*DZUL>BBMNwN^GFZXfl>Y9T(n86k^_o9Cp|+b zdlGyIp#H6jKcBYU#)aRNT~duynF~dIw0!=!01fhH$ermS&mbgv)mCd!kg1^2l)Bp3 z^-tN;bivV<&1ZaD`!PN#$7HaMdLhU3gPS#{WAB83aSWj36-PiAoN4gJkUG&=<1+H| zeB9+A#(S5splXP>P4btaIP&eJ+s;o4$^9#$6~fGAx1IcMz1m*@8QR#@dfeh7PbQQg zJxhPY$i0Y~m<0Ytum7F0saNWTpYf+^JTCRl9=o@8>;EuzPTiS?-Ik8+RBYQ$#kNtg zZQHhOCl%YalQ*_)JL%eeut)FF`{4Tp_sKKHGv``!T~mzO?PQ6HKVfsf|MJxSfjF4q zw|)1!0;=-&HL%VV@Re_Dz@4vL=ty+~*}qF>z4y&ux&NvooTzR)Jc)|%FmzvS@_q?) zqnW>AaIoOmsPHP9ktk+k`(<|Gj+cq4rrQd;ycET*RC~Kg*1kb~;nDScb^MhgNIPqh zJ(YfLr@&E_tAmTctq#>9IcEj^xz%{+45;lve&x&MaM%^8yRI94DgiG6@IAU!ySOv1 z?RMXC{xrpV9Jx2bRKxQYSi3VzE0}7b&~&!ET(k0o!y!-YFCT{TC<7}U3ADG3NiGqz zEfzX(z&T{L_TFw>3q-r|erQSKuB-d-zl_`QTHf^|k$|OIyZ-99rcFz6;TY&Vm}yv; z_oFVquf0gF5c&0_qBq2KiNkiZcDulrn@osfYaZ$coa06;W(k##$vu>Z4#mIkG;Ef$ zy}qEj)Qxi%Q{g4orFhS?3C$qT3%|=S*8$(7)Seu0-GecyNwfIxEJ>>M86lW-B_Aif zAJG&@gdeKMl(DuIAw6xTVa55hXe}`wY+Vc0`=#>-hz07`?*HONIsc;zNM?2x_W$8U zwWQ;4+W)JB>yZFS7=5Qt9|4#h_SMwbHWaZap;;haM_>N!qk>q&+gVvjI#)8f@0OLc zKB{VElsJl(!H?cD;Z>dvAN{5f%E99U565@-q;>jaM>ni zzvD%t;N$vQ?#*9ofMX>PChLY`D_u^q~FyoGDbI z{_?B@MMUW$zm_yDncKzZ&#BAYsxjxev6HU#I*WMCw3n=-%;R2)3g&3al?+-itnMYf`LgxmST3p{KW+<&|6mFWK3O~Dp}YzvZZoIq`&ErAN9{8bMsECQ!aTn? zSg_>y>ez)Znb?YMhRD zJ98sbBQYro<#AQPCe8}y)zGUp7u4E1scg7h0`g31QYHy&e-loD98@dCH|b4A=Yc$w zI3O-#W0}&Lv(yyTlu8Y=_Sct4XsdCwo^EQ3B5>V+LHH2cQnt$y%h4B%CPS{AC!QAon$K8*?>7kxxFmX)zB-w>>d{W$U0G&bQ4Cm)m+B8m4Pp z#`e_djs4>kp%>5eYu_x=fy;`j;Z1OqeNdaBIikzp9R7LfrN9?s=sM+%KM^7^m`fJO6ugjy!sN{)3b+WG zx6S)X!zYQ03W!H?SkHn5%=G{@QG-we!{myHpzTNSEWaW;Fg^7j0Zuf1qS1qqkw4Od z>CS%xVgc!^bFOe4JuUYhR<#J9HP3vD*He26f4U0B%5COfAy*f$;vN=g+ln5Pru!p* zt!Fd|YEH(_G!-MbU4_~b8h}DL7Bw={LSU#?z;pd&+gC}PVP}kY8v8~=OJR=G*Pi3w zvtQ!?1GPc7ANcctgkAiUzGZl9G|1sS^ZNROz>Uxb5D=hzJmn-bEq(x80Yf1R*XjQQ zNsx;mXhI)c1z|#$?vpYo;yXFx%@9N;2PLXW#6?t+eOMhpQ@1Ht0X_GCLi4HwhNgd- zREwcsvGnGv;vcD1G$QQoQ8?Govd_R)o4e7oV&4#*c2UdTTBxI^3Z+PM&#^5I`UPKT%C7tD7Omk#yP$iIQ*_1HNN>Q%mM@^EWl&xMo=9Re&3JrRmjCns;a z+@#_Il%wl<%8OyGK)$Sf6VDOm)LGk*5p$fJOnE|&&8A<~5Em1(kX-w~$XMBS!6z@> zX3VX0ge94r=jOn>Knoi|zK&agSAPYbuE-<%#wzS4yT)kXc-2`xUXKv>~s8F7xjOpu% zs4YXG8Z4bbM)?)mmJ3DI0itjT**T2nYaxA%@xs*ngHua<<6vSWfTeRQ}K z#wt%?+CtG!OO|kx#pulEMpo|Wk+xWO76hTWBGjZ& zQ4UZWsq2}X^=a!OT~OXP5|Xax+^HC54fx3Du`RZK`e464%A|FWxmoA*!2?-}HGWU9 zrRA}7LD2?cK9@;B`2O=4kO_3086}ZystTdxj^7#iYev6~un=n|B|9PN_n$pj(PY6B zxQfc<3J+zvIUQSt7dE*nP+Fa^dp_|Sw&V?~0&Wy^|wiN}~l!&&{3bp)f zPxhed`}|I8w%am!5-nAD^=tb$jbS;{JmB$zidJe?&}4(WkP?`Db^7>mBc)K7aa11^ z#L;aqS|h6hLyFPyAF2y=cIS%@8dt??f2qR7bG*DnqtTJwbF9(}+y)3&h;IdwG>C^e z*$5Y%+%Utk&uRu9=@gIXA`<1zd&z342kk!_udLoB6Xl?x8i1iA!*a38FK>10RHAI4DHp-- z)^;UhOn-16tZb}8L-n|mC|R8xBHp;GH>@txnlCPF1}^BJcD-(~jT&n)X#;aq0|$9B zPyz@I>{IuWEJY!j)@z7*wNr!EJtzP}#dQ`+O;axSCKlFk2^+VINN$^7vr^5Zz7F$L zD+IfWoHTogG|kw>2pbF2@?=M&uKT3Mu8WtHi|g7TxokB4S2OMGyp{_vP00?LA7#GC zf6+;g;#4GM%))7Wh#w9`w-#Sjj18zd7lg%js@&NwAWqoR?kTMF$UR9`bowrhq)};P zx0v-|Am$+OO(l(XQZO;t-c6bruV5^+&S*ahv^E^~haqsKJqze&h1cx;<}%66b)#=! zesdWg$ho?L>0!L+m@ZRcx6agWsI@7#^6zv0zQp^ipexkKXp3c!@cknwC9NYTZM~Cj zNKwNIw{%ig-_m_Ee&KYt$!(!g{aY>Pwm(~f>K{jItpd%2846RFN7*5&0BjwH(&kv^ zfxI_M2jq~7+HD&M$P}k^3kcT<*^~Q&@wEa9v;m{S%&*K`5%wRqNPOK3%V^mvwaX^& zIKK(Iocwaa9W_>;F?!`^x{=CIE(zUoDu9P2uiD45+}Y&BOu&W6pnGu2=Yi6G#n{RR zQrty)@Q4gVhs6F(13@dEo*-Pi2e z4|9S?=|%I6I??O-3QzIYfusdJ=UCi>xpne|2`KWUczDnhK1O$v^p^8EPSj4)td^Qh zpq~}$JV|Pa%nj!>EGFyu{L(VEn8dS7KWaFp3B#yziYS6Fda1`7T;Y3ijZ*R;=V7Ij z!Z}gar0inuxmBt>QGPATX_BdmlP&HiHASkl$e#!y%5i+5Aj(kVgYOg2u+@|>Y-DDx z*I55lzouhEb*%8Dn-ug>gdH-aa4}TZUG2MGVFtJcgDchRz|LM+rv$KK2S321g00v( zJL0WjCT|?*UW{j=huWl>#L*4cS8dMFmGIre9a&X{@MaGwSK+mRN^*Kd*rH46@UTZW zOiME3N*210>H+wm4WQRz!^`KTNkQZvcA+Q~$a!$6fGILWN|Ks^z}jKq{2O*}GgCp= zNMkP0C9pq|%M$rcq|jsJX%~oB$l3p-^s7jgk&l$q{#Z?8yVrw*Mr722b|arRlQ>(5 z!7y)TrqUZYJM2jl^ho@kFjS`|iYvrAW2X&7B6n?NZi`8VAZuH_uVBqW#;0U>qoRTZ z2md&dRG@W){kj`pN?yU2{;3?pq-6O4K~61S?KhuZ53}y(GrEl?j@jkWyLj z(|K}Z;5J{K3pbTnNn~jV474c2W|43T0Xm;D@|q#1n1KWNb>AU?;;-#1&0pL?p_Vg* zoPD|rN1g>3yV|^YGI!GZ3+OU#ixe0(b3hlANVJV@tQgI>l16HG`rHtp`PaCL1zI1Y zPwPQue4!~`FR(z`d?~vS8ZZf(s`>IApvJaKEy#3|P$Qu!9-j#bWn-;rS72|gpNiUH zcDiKTw#rQYlo?DLJvm2-%VqGmcE{3Yy4_Z@wSHRcu^l|Q?nIXV)b&tkBN2lX$@NDz zfc$|N$rF1lNTi4ieBfF%M6aV&0!*@!kT(iq?9JMLPHHPrxL?t-xf^AOvkdGJ3f(>& z1!ukx=YFDnQ}DNB3ZRhLF@T%O2`xTjYY)8|{3!w8>WF!P(#YK9G+zQGf9Hp)amMRG ztWGj^tX%C^jW6lAs(z57StXv<-vb^!MWbw**QffT7bS~TVRNG8)f91QGtyl#kG@GF zw5d7EOcDb_IX^{<0xmY>$*`K^&0-`VeOz~_k^q?p9q31boEFN>S2h#CO-3e^KivGQ zxLr((3YT*Uk*=K-c~4!WI|b_rs5{wTUJ2#YPBIvMN~%#xggLTYbUh~j;teLzp|>nw zJKaAHX5w_ZG+;$mOCMp{a-+wgxv*g=HI!Com(_xX`p;MGCF3a}R_$!2dM9^V)5i?R zc5{&QHK7tk@KewW9(wUFPFL`$@JsowH70Q{JCK#8N=pFX8 zI+=@v8N?a)oE29<^8-(w(ys>%f3weK?1M)^Xr4@yj#Ioi3Gd4v7h(G8OqxB0iJ1JE zTnizLuevDeS&!q}c8ZVrr3GDflcZ69fcFW=q=aJpOs*6_&4Vu}%n@a8s&jANxn*w6RZQ0j^Fq z6BpD~TXxP8S-M1NB>Z(ZhnjK`clNzfNR;1@ayL zbwyf4+DS<%dhf><>KnC^9Xu$2>Mssy)@U*-AhAN&&fmhq9%z8Mq)MlU;cyGOa;|sM z5U67I}b*B6?!350+DMDK7T@D60G1RVkW-#?`Zkh!jy zT4+Az6roFuW%!u?xIVAt;XEP$ghuNt7KZv}ZSPP8n5e#J&$gd5ptJo@5V5BzwxE(G!uB=p zMgwP3iCH!ek&}(GZE(^{U+a(VM|K=QP+rF!j;8zokGa}y0QA5<<%uq9!d~_4H!`{a z#$16iqlI%0Wc(3qO~B=*RZ2G2NA~zMxOL`z4b0SckhIvG{G45i$Qsu62Rw~S#J6s{ zsk7#&*sjv#+5=!?{Og=mP=xHl?CZrQVEHIf&{d|#LxTuI{K^xy3zD$+37Ka~!U;}a z6c2@&1lZM_+oJ?4Q#~HlA=ay`l$n9n6)=P%*ZI*mUVr#=4q8wLt+29;-1o|FV=?hL zBXqmCPzJ3kQ+IvfQXh%sV|I!ld1L=}z(L=}$Loq($|$qF(zC z`HPMD^DgKk>i6;#@$g(hH^nUyuj#+D6Wc&|=R~KN z^+!PtGgh^xzh~M}=TKlcu-k;iaHaCAH(&nRljp0>e^;>QfvD@mx74c*6HH1QA+Sl4sBux*+Qra zjWJ{q9kNG9cqgNu{B;!TN+pw3ioygPu}esL+PrFO5(&EY-l;>IMQ{|*7&ryl_Qatp zj>$Y9(9P#KIgiY#x+!jHU7B#hc4*^x(%jL**|AJIo5`rQb+s<8F2pvQnbxHYikI_t zi7V+0cDqRYnM&}Nkzru-C762~mI;i;I5P17Wb6Lv5aqEi?s;Kfod$58rXy0gDYBObA zp=Q|ue6~jmHZwoy6@}S8Zd!7C0}J*X5Mjfznm{aKf0qyvT%fqaqnFzh|JD2wlXQCQ>2t%K%=EX+Q9S0o_`87&Ax&DG zqQ^WAsP%(lbGbm9_qp$-<4PRNBHA<;B?QeDH2QSL3%-3}wFGbsdbS#*<~zFq@%FH9Wrf^8_o+&VblOaNwA6I#r;|DZ;{=#<8%< zWm|nk+srlv%P(0yX1!437mE#!ot<5>oLL~7RV;>)KxM!m-la$r$N5d1b5IuB+wslu z@N^b#g`NNz*Hxq85C>sSJE#bLtANVrQ(JP;o%C&lqHF3H=g%S2MYf|nq|s#-u6~wF zJTt&6nr-40>Mpu3PRM3{_|g@&;P!Ls#Tj(wbLsuQ4!zMHO44Q^<`oQ+YAG=)k*P5n zqdVCWmoUfnfKZ=A^@E$RBY$VqT_gjvx#v!0JL1!cJoIp)KH-|$gsR0-@NrXpXcn=- zN05}KTnD$?kn%~J7HLaSqRC>Ux^Y?^ZK-9Zf{4QgM~Z8iJoz$bKSs1Rfh4Zg!9iv* z7{x~3ndUYniM#KctISJ)?VDYsIg6$UZ{t!EIE8ya$y|B!wcYjP1{j+ z$6and2i#JLv+7wXM{rXfA2>jl#p2!~%2S#Gj4zKd{NgcS z4=dd)Ihuv@n=|0{LIZw>r!oNwJ<>}iyH(@Z{#)zB=CuIB*|FSivU$E1Wslm9%Q_BM z_?CuUqh=1z()dwx@b(;KtH+U>v11wnDNCIH2rs#mi<^3lX#boL8ZbZeu6uhuo%#qN zyYk5E;BY6h#w*oiM{Kj>4>$UtA{KSyoU>ZzK?&619=JH{@wSBcT9wT{A28A&~dF4wi0G~OEic$-*@oxYb zv^9kIEFj`$8u+(-t$7BHeW}l@zuSc^IetDOBips3W%Y8*gEsT9q&*%3I<#_%U&C?uo9VJs;k7!~d`JpK&|JRY<*(P4c|34OBW@P?P#sbW2%xwSf zrfN%TJofSb_DOt#lq67Ef?~Ts#e=19=)bd%6;!5aGly{7&VTgu!t%cHA;?7I1>tM;KskZs5Gh&T z_nr<~F{tJxD+Hx*W+A!3{!l!DKI z+5`d0p^}8p4WC1j7)ZL&xdpV0k#uQ8sSKQ-Fwf$C)^*BnU%r4^PB9+f$?Rf++wH?y z=okUEYyp_CzxHPj-by09z{PQ;ssX;;dt`pFw*|@Fb3e07yhYwo!y{18q0h+d`s-r7 z8|;$HFhPvj$>{hG`s1ttMn3TY90iD|p?4D>nT#FpEu^tG)3s-^fj&s#EpfZd&wF4= zlorJ~-*!kBfpZfs$WbDN`0n}R!4rsyEnB*qu$2vm_rJbOGOdzgwDfAbE74ikJWn;f zW!r2mcG#Ad#zC_KFF9L)x#7JJ+B?CQoosc_ia~5ZGkfAiEqaxvLL9e>%JCvCY}KZ~ z4O~fOc4RQ$Fj>DeuVSUu{nFG1H7mE2-Alu5$(Hg4NpIPc<`M(DFWDpDH3gxauf;UI zKIyh64{?N=T!mbvUMw`drZFn{q2+UT%XkAA6}+U@49j~G3Miw!1?;T`ECK}&?TK@B z2hPYQn;M|yUmBwkR=`eJAwpm-U90V>57BbCy}l9&S-?V7kmDyELv9LYcehHcNn?!i zZB(#8)3RfX^Jjaptcs41sm&PD`#piLxyvBALEV2}kNfL%l4~U|9h!M1qOT-0=|}dt z01Q9hf;DHH>d?uCBoSSSgIO4`N(LuRPCs8oKZQC*vCD|MB*N-CUe=~cljBM0H5R|R zjg@SaC>U(uO%LNqE1CSh*u^PDs=oXOt%eu8!;J<50mSdH-20yYkcvSHS7#EZs9^80^j2ga-j@yH#Q;# zx9o}8m@o6T$f(mmR34X~=~kBG?T#i8%jVA!e8vE-|F+>N%)>*j(W7C1d-hK5RF8d8 z_TGWI|5ZVn^SH*zfZ-6!|Bl4N444euYNb3!fHQ9d6KTUz#&eWZY=Hw}*9M^K%nBCY zW2QCzIG=0%`t;B}I4)D>U$4sx!EC|bGM}g&aFVrd94jwDnOM~}rd2a*kG@TT39N`9 zLWk5Owb-v_YfV!ubyU-tv5mJ(nNvOqBDINnn*8fk*r=O<1K)Cyf^X7G*3H*NjC5oS9v148n8FmSGhO0 zd4iU6Yg;oSlg@NJ!4h*d10nM6IoiY2Wu5YE0h8&f>e=|LHvw2X{C@T`WvtoXq{Pth`lbiNShwoh67$=Ul4?XQ;Z`A z*CgL#@+b_4lup_&ZHKtH`h7X6mr+9JThmv>46N!&a9~;BNhGMB?hfNBAhb|F#9oA6 z+GEDzgAa)p3z&-X)TNSXs-~!C&a6a+>e4wNrBE!BgAyzg7Suv>bxA$I9}w3z%aelv zPCr8|US7`wNDET%D7G?FtDx)!f0_q{G|c?m?-JcpT!zkG1voIjfREbc)4TX3mDdw30rS& zWh$JBLJoyY2n2~zyxnPR)voaJ$m82|9X4;PB=<}rG3vbcbN?- z(&3og?012Z4 zJ@7Ci3OiE?#~*5Y{xgkykT2TYC25crVxuBz5wWITiu${|pN{h}W60?J;#Mg95Ex$3 zuAt(mRI_Hao={yDWJY(Eh~Cul`)^Jq>N>zgEsPKVjbcHu>3Q=ew&7rY%e0XQob(vW z$qg~lb<|&$>o?KTe7rV!?ds~9kT4`lev{?;)9d~eZ3pK)dCoOZ_Xq973gRX#@v|!+ zFOjd)BT%qlpi8tzthZkgw%8 znAD%aMX7$5bvLeQ**PoF!dJzHY06j{Wwyr04+8fhNd1<@{eW0S7U({l@Du;!DM?5+ zhxL%}l;-dD@-fH+GrhU0{fAhW#OwNjNN!Wp0-HDh8Fn^;-u=^C`vmJZi^W|xkMujJ z$tD|J8OethynR`%!zmey%4W2lAev5n75F77-IOtR7Q$Ul5d*QCbLC@Odn*g$eC04* z!Hw$M`^^*gWlt{0l`1G#iW?_4ey-J~y`Ki_hQruq8|LwS{9oid#&E}O!*6FZ+N{&( z=PTQ=3j>Ly@|i2;p=>bPuyQ|B+gQb&vZ#{X9%{@3bgvkmQE zn&~thcZg``00z@VA|9)c!^oTEcy8$mn-CN7mdcO+#vwrhtwf1#%LoqJwV;El#_sKv z{pr?6A*lGjb>ahu{go!^7>utbu|O7}nzL8!P3naLYN6W&*xm?>E8{pG3gx zpj{q6!q0aX)30oxuqy=yvfScD0scV)5im>9_i5aUBT=a*nH{1h#>gJ0tmjRf3JzSv zUA|(Eebimu1#SAchchFU^Q%lWV5dqtx_8dnQI-Lw8)n*nlU?V#SN^Xm87IRMQTxnO z7+Oykz5L&!#wvQW`#1N zO$OdFyX&%3s?3f&#bZW@anRi3qnv+yuG(t>|E3@`eHG33@$C1HM@n4t^)hroh&San zMcY{Y$)NdfV~y+22_4j%6qn6Iua6fsFkvs0)Sms+TjP!o3Xf*ra&ErdbTQZ?A{3{r z)MB;?go91R{gp1UZcXt%35r=4#UKo#U;`0TS#%-`xbaPO6i0O5jc8l9B35`v{%A49 zEKNt(kbBaN-KDMKyrI&gwynd+?ogU#SepTS1u!pQx;ZEeHf0#R&$n%YU=&^n5|I3hONT7+-1)7oDH5`jeE6?9nRRjjuRt8i z{H}P2n>NfDLj4fW;6}0UGveHN!|PSZD88R+1sW_Vn##@bMeXjgMcM#E~S0C1?S`s?$gg8IL8Tyc*at}zBDHcPl*`4-Acf9uZ z820yU4HSfk9wJAwQ%Spru}xNVkQC}h&qY0mAVD01KM>W5n3bjz-j!LTZ$_rCMz1cf zO_&GPp0)}PNW#1(OHF*iT~SRFJfv(n@C68BnWkn=%H544G%CLRj`5)_Dt~HpN=KP| z!skfdC7%0!720V(ac;Da!@;1Z!S=1x&{GPLfeycU0{#S%YoxyaLMXE3jZV`PT_dX^ zc*v)46;Q{e0;$TXp0bdNcafJ*6G{IZ9j|8Z%90RAZQCOC30Da%rkEFu_3=@oOb4SRLurL*nXxNf9#KC5Okunt5^`kl3o1Oi#Uh z_#(fWFmF5(i=U|t55IxU7lHw>tK=LzS=^>W*j$3EVjIki;qpPMYQ4(#hFQND-l`S8 zE@hPs=1nWL=&J2wjhjt~lg+>kQMGo)%qQ2)~C*kSY{7r_SvabYQ z$7II|BXHS`jCfz%-va|lH&(d90WEq<(cpmCLs==`B!N|N47p{;7YUw7MMi$ zf?+fI4BfKnOMX=I_;kDQD#qOc5w;9?Bi!n+B(t0CMY zS%pn7rJguVZERT0Km!)~M3D4Sth#(S%{A9ARRsUg3@K8eylFP@ciTsoqn zX<9+gDTQk=L30ze=g-yi*5YEBBQ!;8G_i=(hL!7QuT^incz^IErQz$ejEbPT66E1K zeJo!*`I;e0tB0MH$btz)7FI^>;w0An6+^b>ww4zY zG`D%4x>CAqJkKzWsz|*T-s%R0QfPB}(0p=5%uv-=LzOPJL|51T4&jw=b-%cKsJ<@i zJD9LRG?O3n39HC^^ zqYZN;Fdf;%>CsUpg)^1sp80z^UR`{!-3Wz2i{FW!hPZOF#%j6Or)L94M8quJ#!f1~ z-1AVUCteqnhE+o!jJAI^_*K>`?_`&>i>I_IF%Pd~o^yM6Un{X^B~e5|iNGJo+7U)L zAxEVm^m9i28p*M6b&vO;!e`oa?RMaGYa9H6m@hYd;&KMzSp0qN-J@yeYFgHO!mQH9 z_uJ-mg^J!mw>OfDTD{PQ32>Z*22*CzU`}(Oa#X)Tt3kn{?W$@L8e`nJTwCh#*1k|9 z_mEn;MAQ^1T`42%xL|48w!XHwcv&TH@;H!@F+qluxgashb)I7xaAJOZNuq%`IH$ZIGnqKINuW`XdScsxRDRx)4~zVD64X*;qEY@D{yH@x`Zl=?BF z>7xh3lyRpCbgW5uAS9)MODArvJHe?HN1{A(SpK;4^Ay+9db5e!;(NwrewdMvs49(W zcU(-Rob5t<7W5v^!|_yboY)cHNa^T53h)vQN@aRvR+zj*kXk1{pvu`CuTa@-`wi)< zwxpj;F_dE&DCcy|9*K4n0H%tgd}QasA*vrVm*O{LZ(@Iy+)u9z)W4XYJc|dN2W+XK zZ%6*G9>-B0M&rR-yg>}y(PJ?Y^EDa$@UfvX>A;~_XS({^Qi_ zA66g}`3iT@n}N$WTxeOTH$l4V`gfA*9UrHlQ>y}Flaz*0nORc&ga+gaI`q3;K-;hR zrBXt+v>d12+;XtJCtB)|W7P>a3Op8X4+_=+;>>0Ot^=F&<_LAezo|HkR?C2n2vJH^ z6J4q*uUz<)djPV3fmhH4fNd@%|81-2MmRVo94Cl26qFhQE^7P7L=^lE!1II{f!J*-7`s04f@Ot__mDsQ4yGW$Rt&X>jr9jmQc`JGYvD<-11MHf5b7oS!P;B9s*}|jc zXYQ;cnlDFiSNP6Ld^g7=NpJ=&6QlZ`o9s(2Bg0m3rNbw+?i6QF7zT^y)?m~&tz9{Y z+2l?UNOz-l$cfh&ALuf#@y);YsO|r~r<(89r>c87&>HKeAU|dcj2EBJ_`KO<)V#|BQm1g{7@#qBqhOni+@m zL8vq3j1(Y6tD|RfB-PrS`R1_?$*0Ji(#6{*VNQzj$^tQ3R{(%)VrYxMHnKl(C`p|z zJ{2m-v%U=`xZMjolB!QANMj`C?X@d5rcg_RAqLaIa*DsJq~P0ms$_HQes)md2J_RKA3wKLJ3si zh%hag)%^(ft1?mdH_XlKh)%fGdNm(`)$#*k?sH@_9MYF_eoo6^tx&z+H-3OU!yuOb zH-q#aq6gTS|A#^PSISKCU)egUcW{xUVLyGQFrfN?ZmhM9fv}AE2?3;k_NX?G`kQUd zuys{w*3SCA#!vfnrjN1H~EXx2We#^C05)QfQu@@5jBz`)FGA zM71fQ>;i~4?CjSg%dMu8L}|YvuOy=NFi=bNR#~y=>$n0}i|uRF@oOhKrI*;%w#0yM zq~?jzUF?;Pnu`tF?gBI|i>M;qg{kg8p5i0fm1Ry(jS@Ba9FtA=IU6-*XP_lc0ynYE zcT5K*!(pU0N@lTb`>UX=e}@$jb|q#%m=D?+ezDxH)YEurflvc{#FQ+Uw24=$k~bwQ zk~h*(Lx^(YV>Z{Qqf+*S5pRhTHh&tHM!Stk1H4xYDqNEmCPR^e&xX5_75OLNavdx$ z$GI*HjRAr0$oGCdzQ3? zj+i9lB3oC{+DNm)06dhSsXL|&;MQ%{<(?wRZGy7zNcSjpvX1<<#KPu7Lcmz5@v{3s z)t(rK5g$DE4%IcSr+aqw(mS0J{q;RW{d0lJ>96a7V~#+| zKed#7M-Wrz@>nt7lPU<711DG|duKHDlM}@fP!KQ)q2M8U%0c{=(rP+5i(puCs3rfR zkl?#ys{marrvOB$+P8}|*VsaM%{If4L*N_#&bR(CfoCg6{01TJ2u`a%OEq$$6r&%x zxL+%1r{zg7V(U7=GS`hNFqvoNG=qLD76;u;yqu+?MH+xH*q8AvEBldC$^OaNKRBb| zxwq0#u~zSSqs-%z*Yg{!W#RjR_4U13^aR;Ue-bzzvBRRFva!_eH;;n%H$;c@yqwdW z{@sjQz@@1?6lMlHDryeeU3m-|&&t0*nZS0q1RfMw*qd@RT(#Ii-u?ZR`AzdvLy$DV za!t@=Q z>U)PtUjiNJwe($j=bfbBa_Iv)T{Gx|*2FH|T7vqMzz%}b5A>8i>Di2Xz)ZjBKU=eo z$ft~v#G~*5(i)V13HerK77m;@T`vbq4%FhqF3o|uzx6O$&yr^>x2l6GVafj%oqEdD zK=w0k^>elbT)ncv+bC&tmbGUm;)!2I0${1bzw@X~B^jZTvnF(nSy(|$Q2(i9<}0$UwlSpdldo$?m)=(A(pbBfTk=;*i=hs^U+TkBYvxD{yA9I zO>5ac;m^6>nOG>hcemY3&U6=Vu3xD*;U75PWQwiNXc2&M*bu$y!s}Ebria?3S=sAe zGf~Iw0FJ@uX0?HA&q=g{4>%xY^akS4oF1-x6)>3Yaso^Z$a_~E2xCTM8a$3pXZd^G z6|}Xar6s`=oqz0sQ*dwoN=K)Ajao*yzygAelo)o<=BfYJ4C4_x;t59$O}>sSL;qS& z0FzLgWNdC1B-bECqy8ynC(i{6O9|N*3}R+fM>YKDo8qK6E5;*|9-R9sO@c7MUsg12 ze_&sD()QiQWO*GFANJXTs6s}YagX*j>Sc%Hpf&Z-XgY)fc89tW%Sdcz-;v%^Lq7ez)k z?~q|<4RtG!xHiP6M(UjA!3@{U?^ZUswL37ARikn4HoDqK(@9J1IOWfP*8IzC>^h!h zmZV@ttvvitD6XYTk&wUEeR#uK>6r0|IxM67XepItMb`?~y~2rj?1(*Po2~30S+A%5M?qwI7IdTeCo@DK%4O z!*Y*HwcNj4S_Q9{K_^miH$9#>QE&UGzF<4aYLOigk;+Q2bP@eM=a0Hc>W~w72eqtl zYF7@e2GFlW$YZ#?RC{fLW6Ub>c@Fmjgbjbx1IJIX4AoIZTEE{t_CvH_T_Yol_!a^cyP0AgE2H(2o$OE zA7Xi&R8Dj%^W-4I%8}p<~qV3|;`EQICYJc+zm09VF zXz&`}%8`k$;<%;S1|Mm$^V`~bP@eua#oPll4_9Y-&w+Pq_D~$xuIm}IPQCKY?RLw> zG47FZvLykwm_Fy$Mp>|))eeYw*!Yz<;({;Q89E1CjK;JIOhw#XuSovEa2;j7GvPZA z?-Uh(pY@gRT`?|d!{kHJEaTtg!wcG%v90aANF9oTymZMNNA>M(+$sKBy* zFQFxm_uE^(9yflZbvX(IrXj+~1&&f{Ll#cM#Yb{!fS6A#xwW9j0isF1{ubnM`{7w& zS%1A3`9PL+e962ucyuZUmm%aFHZ|NM_xuVwl3{~GB{4n+=G0Kg2|kD7=oI)VRwiuu>CUS4G9^n&AVf5nn(?8>pB2hQuC_BQ7)X zBLLpApMBJf0J&ZrC;ctqh7mPZSJJTH*-@#l#Km94Ntt|grIQa?4Y<$FXuZyKs|E4i zU2z3`QLq6eFmO}tEq`R)#4hON$0*vJyv#i&x2vB>r<~1??uVbjL22PWvvP5q8sAYPxdj28PMV&HByeJ&SGgI2u9~jrGj0HydsLx`) z(>O$-gKUHE7n=|ZP(?4(Z@H} z##xB#PbAYOaJ`O|2>YZ+NMUP~svDE@A-vO^H%Xz4udo?!<8Nmc$G#M+=s)h(jDKOT$P+kTL)EIe+f3PA5m#9F6svggnNUpZ9x6K%v(}PkiThN0>lr(I@ z&*5b%g|Q4F#!jX9V*n9?EjW9MV0wI2RZ;tf0l6b~;o?Z&V<(O{c?Vs{S_pyV35Mfdht3u+=l`dp5K$hTu-G+{~|Blq_D z?<`pZou-0W0%)$U5t=6LGZR{JJ({%_y05hs*isgyJMKE=*zfB+T^%5B7FXO-o1FN! zG?eySNgyShfqN1`n>hG}?_&d#nPRj68`PzhLhIp+vM|M6WfxYOHA%jF#{)6xxz3{{ zI3A;h$;Mps$ETb5?bpHxHW3mA#P=~;rVw1m{)XT)zX#sEG>$GbW8L9}9PDUW%;&$S zX*jOCJ&P9Rktf!qj>FZx$0oWpV>!!0{w2NY?^QptTJ2alY^pW~?p|$h@sgsAYwaUj z?*;uH|A`R-?6TjOQyf2QMTvDE)SQGY=L6i2`%+oPWKf_PL0MQb)cilMk zW?Uu^2b=v({J4{6#Lj>tMR|3IwWBjngl;zgmvh4qm$+54*^J~gM~2MZdjVSOCh947 z&KAoJt7{LJ2)?~kSt1DpRN!Q#4rsCC#OdoPr##+%SFB>Jq}%xlNA47HfWz)%OMtGk zR#u{h6qAkxHSJNOtw|&6K7gj?+wgF@zS7~gEek!!EE9wJ6RDlHl2X?c!~QYkh?3eN zPHaNe!mK8LxK1pcu!Kb+5?8G!~NprmgirxQ_K+zcIVA56hvJms%qAPupZ zO-QzCJmqNH3Z`}*W_t*7$ENt-FeFC>rT$!~Lii&|v73EjtnNytNNBn7;u2>xe9DUe zM<=s23V~%rx%^V+yUZccx)nEwgc}rAF#3u%ls0BAE;U=ObXZ7q`szogEysruIOO|Q zUiy~3y|<&Vv82tI|HIfjLT*qT3wI;OF^*iW*BkP2+KHdGytCTYfRpZKE)a@YT5DP?B=Uz}Ymj2!>>)lPT9j)WblcTW8n z9%Y8K126~e%h+yS~0(?$5nxIf!LuOBLl%hk1Dg#l4S`lv30%5Iv!&*4Ngg!ks)nv~D_R zlwYT`>bF46k>5 z>Bv`5xDGv~zbf!5R`&X&GzXZ_37b=8UTHC0=Cah&He=)VzdP*j|Ay&j{kJPv{U1>Nes?Hd$lHuu zIRcDJdNf9Li$)=MWUKJcr@s!x>ZUveGg8c?IzHXwY#NHt-=f!ux*>W$VsC29PKcmc zOYAq=$EW3kb^%VhO{>z??b%&7KlT@UU(J4y9OhW5j`7=TraS^SSO?VC0o&-UdsObJ zdtLkbd0$BU?oW_Np;$AISybS}m?xSbyW@v@;oNcqjCSGu~!Mw?py zZemfqL*Tlbv{xPxPS=#TxO%dz>g>5F{WctDh3{OggFE!3 z@}-16bgxGYgOF~3DYW)Z^%ABohBEIi)U(yOi|znfD|>!uq~e4PCZI#34^(Tj*Fn~s z_U0jR9swzRCdzv_z+8;07!pJEGGNQn+21Qy*TN$QiP9?9KxhlQ5Ku=O=XdDNefL3V zh>7q!{vs?1zR@t@5o)JFgmkttTkrgsR1I`8wI^R;3vXXx7wtJ_S0bPT+nVF^!_IDk z$(pwVj3R&|aTIO<#F+}MPlS%g{dLQfiU;b7%2bCCyeH^N@vNTQs@x_8r z=>W%bWSs2DK8V=bu^)YqvtA-%*;-0g!jCs17FaX43O#{^oYA&^;~xrosw~ion}^3sLt^cox&omwV&1 zo^yDJ1}WyNnHgN%I;g3Vbf&~G2*ap-4>uxE;!d%gb`nyoKIh1_Pm6+m+$dag3!g==>ik`F; z!F|Ph9fD_OKCqSMfHl%dJC!6*vs7U`iTP5W@K02px9AUC1ml6~;wiNhNa|XBNy!Rz zhM@CKi;bL>)@pdzV2_qsNs~-T6AagKf@r$SWPb7sWjOXy^#TVYTIk$$waVeJYC5Ld zqIr!8nUDU3vfB?|DO+!lJIH-7KUsK3~8G-knQEw;`nd7lL)qzNMLCxeT z(8Ez?sh{jL3kjMg9kfy*bZGxRL2M+l}uJ(W< zGjZENK8DYSPb^2}{Dm(!iWW_s4@yD{;#?uR0Xl3+MyzbQ2L zv}y28zEvO{o>FJ-I>RP!9arX_Ip%2J+eLEJhmLvk&b4Z4a+L|-ZFjWrx`Tj%v{#c) zT1|t-D{i|5^F%r2jV#4Og1V5I8Q?i{JdV&zrL8eQjo<~$M+GuoH=NRlNPRRY6Cgd4YFU?TmU$`593@=JFyJx@ zWU@+BsW>b%%||+TWtXuhRFOU28Bim(7CZ^(hl5>Xd1aRtB zo{7S1w2s^NH>=31S3-D=C$lwc#43+PFPVKjO|zP>1_6{}EsPgWN?zKXjXX1K!OmW_hR4e*O+P1`0a4I&d=@9hV)6>EUffQ*MAZF_7uvS_g>C>XXE?w2N`2+$MspX5E|GT5^1MEyW+; z**gI@;SI}}5bf}WIXGC646`ysG~G5OL%hsDI+9zbXgtnRsWJYsy+`m_(r*o|6sXEC zT(EsM!bAnfg#AvS(9|3n@yRa1u!H~}a@mTc*T%J&*tpCAuv!@6a`eMHV#o{7#NMTuz6-&eJjSYpL-bfnwt0qbJU4> z3|NVOB(^?7Z!Nha9T|&_xY^b-*-BfpT&!w%5U8W2vl6)xIjh3s5`iR$0=fPkl67^m zLm6H9rJY&Wy{n6)Os=a)=G!MKPz`0&(xO>?UX7(x^n0!%@Tith+$$T=; zp*N5_nJ8Md%}l3N7Whip!O8+$JtA*@l>N)VYJDM%?AkqqZoNyrYU&6ZOY+Mkqa_mE zcOl&_nI?HrzMRWE!Zx-wgU^n3i3On~&OAx+#TsHOY$dK&`mncf$*#IT>riUgz+bh# z+pN1gLVPSme^Y>r4N5FBlmt^-MpF&xxw8)Hv*wOo$oGMNE#YSUh$o;g=8 zsyG)liMguAhwIYHrjBc=m0Rg@<#Osq>SP`DGjxabfi`M~6-*H>5ngIx(1LeW0Cz3Y8dj1<`prGuz` zWtXIa$xNRJ-;h1f;4Am@_To~$1^(S6o_w$ zK$!QPQV$~~zU&+Y%6YNG{X}_K$@)A;tNHrXJ1?^B4>IPMQ8zuZPe)jB-4OV~PHUn3 zhac7iI1a)ljkV}B^k6$!)Q%%Skq_0Ps+A{SNs!f_(U}mzC=-dTKjrMjF=&k~ijUg@Z()CBP~d}vgMv?mzz;{Xc2%d3STLk)hAz%!_=Sm#NhS{tMfp_BHlMZ zu-Sc@x4bI)U8e(ik6V?VW7j5;FaO9@KAj{eTY-4ah=?(vuk02V>ruiNQJ3f0=Wd^~t*71XW34f5V{BqSVd9dHWdepmWhl1;dot2X=oF{)ez2B{QkdoSjaj3&$BVU2N zn!-ZA9{OYr-~1~v=YKy`e0+o)Sdk-HjnlClCJ{P+zed$nvmk+O(%Kj4g_*E@lUfZ6 zWlPWG9hh4!xa7S4dzg1E^79ObNh$eC)Ilw{;{vM&xk;_4`#ILol1#X6|Amp}RBfz5 z9}LsS9IeOM1u|^7?TaAOr|<-g@r!Mp5iw=*1qEr0IUV z9O2M~;s`g!r|{zW$BLXx*YK7W4miwMe%t3#`1N)Z z-tdunh0bh$wS&Rrb9lD8`C@4R4!Zh5_3Sq-u(D%_z)q2%EfrgB;oS{2w-{-Zg+vqz zSI??qW%wiMLg{;nmGvNmKH(IFj_}Ksb#PNhONl-2`NM)0_miK-Wq*rwN;l$Bon{a4 zQHWhN?{j9Teicx5;S}3gqSA4`GEPCa9*unLTurQ6Rc3L8UiBvT2i_CB^#B(vM%yz- zXA7S3Ci(|qImg`OZ4M69G5NzqUd89A`Hb)vE|KbWu})I zyu#_3**~CF7jqMNg2$LdMp0I7JKzv6L-fl%6K$>e!@a@@qc0%}jVR#U*<^*}scUt> z-p`9a!ylB`{~}GWGW;*n1QRpU{|}Ei6?fbPyK_eU1zajY@(cvl`Y&`genZp?-E>}; zH%sR3sQ&()kffSsyP@W)>S`7g9cb7t4Igz#2yZ!aw`Bk}^EWfW;3_f}(A4K#6Eut^lhq7(y8wT_avQkKPXCJh@uD`8C2l(z^utxDID>KN#npOC(y2kGDdf`; z9U-h8kUkObyVU?q??OZC+j8-A_}8Ir>t6Ih?$?X2u=kawgSNIT2$GS|{)DxfNza6; ztq}tcVDKO{lO4ysuJ`Y6%K`2Ho~VW}c-?9uSGc7Z;+grdM7;*PSMCX4Kq8`TY_>7( zpK_O;%CIRGsrrE%wqgs2>9sLNVu6vT@D)oGOD`#dp9c6ddT38gXH?F@b{X-I<%ERH zb{}^~Nn@(TCY@^YqM;B4dxe0}pcvJ;RYcStFT644QHHw|1ZN9`D-anl)C#fSu`lm@d z8j~w-PR-#R{KcAScNVYiN^~f<;yb&yPN64uUv}5&YH$REOD+P*h-JoMW|n<(U~+?H zE-%#_gTN9pTc55ToZ^#SuROYT|9;SO41^#6dSrJxMzgiy?<@ok`_j-^nicZfJmjHzM+Mrcfr)TSKSe{Rw z*>$X5O}9N@#f@y^r3%UR7*Dn=W%d#~p3(OqhQ1yg>q>oZCU<7OfCsjKDE1Sotw}K_ z%g>Wfp0H>{`Z%%wX+d6qUS>C_udDCWs)W|uGy%qRjO(*CO2rKU-+=?DSDq^= z1@SHwy=Ke;)VogE&KxgT%~L0WE4fUlam_r1pv!YbA~uJ|YfiID zAYF>4CW`l)kJ9*5~GU(g90X5z#3~TB#i_J>piV`f;BJ`d7 zmr1J=-t4Ng;<*xp)GcHewBEjC_T z?Te-}=6V4{ZFo6?GDOvkZdUS-l0UBxWU$lfD_JP2b`?M}v+wbaLnI5UCnoqIi92<^ zb_xp$2fwt`YHI%r$w0Ekc^=7fa!p3hH1$Q^mL3YgnEs|ji`QAV)s2NCkfQ(ZVHt{> z){Zuv1{sY)bCdaux2-(T`iOXL+pl?Yz{R4dq>h6(MkQy^QIih>wD5{GO$ z6;c%XsvRy@wv(vn=>RL3*|*zFZJlxiHQkrw4dfN^h{Q5c>$dB4rD&>H`_e(d6H4B2 zgH7sKMg(zI40JfySY}Xs;nY4yNd2|!sYc+0{Z_kTNa2(cTX{F2^!}~h29Ts5uq0WA z)-Y>QOt@z-TM`R1zB75!BFKu$e2dw=HQ#dLj|k;q5+k zPD2*;%FIE7sOuy8H|dJ(wRfdmL=qfd#JSfCRINgXq)V^S-#r1B!C|-}@A?{To^*sw z9`;*d_&MFY4vi7YF>4mwnxz@r#EQxFbKlADs6WRf&9eDG)kD!#34}&{18_|ATbw!z zRKCm%HXbzO)qL12&|KiNnH)u0zXWBEnn+EZ%8b4Nw_DY@wNhE@M>qs|J(Kcvm%3gq zH7Z@Ct_JKDGr%-9DBZfSs>6u^hNp$%tge5eHYOHr^^}tBJuCIQeXu4%_pkvqK^H;jew)lVJW)o+B=(7HH*v*?jLw))STD{#}Pw~t;jKE z7_s=><|)7qRXY57a;fHnfEjzOU7Jxzg6XGe<3#nS?45O6zgCR2kK`-0b4OY%1heoa z%ZHvDG{rngSE_XqaXkz8;%TMElGqF@zl3fYr5c(%`cy_IvlT;nOQLp?n-=6)Mwmbw zFBnjyW13~8U|?NoM2WaRWA`*1dGbsGf$kr)tJr8iM;qbCyJII8Dg&{I+4ejxOOW3@*NS#Q%8ydQ^KZb;93>8pC$l`HB_Q<`9ijhykMNZp z8~DwKr~Z>s*w1R)P7kvJqsMkWQ5jS9W9rE~974OnTI}N2jLb&uAc?2=Gw`v&ZH6nf zTFGUJix|nmgTCQJAnT^#L2I___s+I0;-IBoV!amSa|Js-c1hj~yN!i@{=)VGpS;nZ zdxg1P)j`YQFE5Jd5L9BbPB{H83;OY0*0wO(j)_;-P5zP z*vvj{Vc1zO1O*-D8X0GoVji6Qt|PE{7x8Z3qQPJ8Fnf*;$QxJOZnjbl<4<$D*L?j} znF-HI-%2p1st8gq3$BYh`4bnOFr{VBx%;lw!vWjjL6Iy&AND+Xghq;Xs&%ygd_9E! z0!@*mjsKV7itT?&Yca90aQ+`NqRvFzaR*}WC-oC>(F8=DKrtMc4R9aqHv6CO$r?I+ zo^a0hS6rQ-5)!J?>8i_0OBS$5N<|$b&&C9!r>CtFGRfb{iNRwV1U{KH{mO&er_Z_5 zU;lTm?{|AcrT?V0o}N>+S_Q7l>*;?#h)Ug*h$JlkEY-voqJ0YSN654Fm6I3e4J_=z zb-?R5LHC_5+;5ESw#_2F(as$o_At%PRFABFrI<5z)j>I)Y??ExU;0k8R9W93j$y3C z3#V(>_wQ z^~_SdM~l0m4CF7?N$BjNXZlu zb46hA( zJuOjjFV9TW7{=n`K%q)(9W*JUnMNMAcZCU3(l3q)EfM2*Sib59yre8gc81)Ws~j_mDWw>@`)L^Y1ELE$h|;8`-l9R-2|Jdn1Nx24K8 zKm2|#8kmTGtQ&OY)S+cdC%oWRpg#=hn*Azw9xi{^qw>lNe^nFAtvZrlVCK|%UikGO_?b#PvG;Y9;U z2q7?eSg3uBhox-L5Rsz?2$jW~t?KviksgfMeV$>Ml7AJ-*L=VvG+* zhHdVM^7)&4mGup>Rc^GbruWyaRh5w(K20YRp4&u$ZNla;xkIZaHm%SfmJi+b@S}a0 zG+HT0)FmFRjX(G^MRo+INjL2#{3YW0op7#(zEE6jxv=>QqI-{kx_|wCU%14Gp+VIC zJ|No?`I|eVpob)0iqGF_?!?XF0At=)dYkTKz6Mj}PLWwVXfaaTiVC#%OsU*Tm1dhT z?SNr((c{t!)z%g7^xuloQzLy{9FHpsXxu{ipW{y5&jL=kVjYcfhj(rnKtPstyJXY> z^u^gd--Awikkb8Zg0B0hGV14T?S4^!GA;O@OI(Uo>UGfQ#|ItsqSw#LPm@lgU6l^@fkGj?XvFmAL<* z>U^$k&b!<}MwoRFk`uOozpX6{zHJkA7o)hHyRz%4Er$(ijK4hW7Nv71a$4A|$I0-^ z1_660|IKDO0S(i+tf9PcUXg`N~UA!=SFP}$cwSWX7-qsA{#39PV&3}aFcI&SBvAeg8{)7pK1+*aQ-k?K~Zt}@n5ei8o3%%j z18U|eBPbL;LsLC9=y6q*QYAXNkYg6el?(gz!sG6nWGBcn>jQ6$Zm$qW$Ia`{r z+BS^wcgh1RGIvg^m2L#-Pvl3F;Jid~ubo4qzr#QY%Gu!+h#6kt zF2VdmA4DEDGbCc6vjQ2^Le@8>Z4K6+=bV{~dz@*(UHz3zYl#Tj7$UsH5j@z%$2{tI zDhNt>P+OW-i|MI8SxU<-X6rcuDXTVV_26uyQ66OB;&5a-0Znf-4O&VI=IhSvFSld6 zEEw=`ROTxKz_L?Cw|}L)?id^i+gjF73Tfm$E-xh64aM0GkY(2FiDPxDdurEJKT=n1 zT(RZ{9qFIBvEHE{-yLJyaXvm+-Knb2+XK6KlmkShX$j53+~z(OmR#856?TeDpr}TJ zS~QsFj#7$4Iv;7NIU28R7FW|qKaZWN^X_X>>%GQ{d~Qr16f~oN+49l zK`Gxza~Bncv@(Cr?B~VdtXVzn2WJqeO<%PTR&zq*?La5*Mb+V#e-#AZ zF^MI6uvJ}Ba&E_=8<_SrwBdjSu5IsVV!TM*b)D#-*RBZjHn**g7XNEq>UiRkkmKgP zK5>wof)#!DhHGwtI<3{~%W}PM$lwv@Y1^(}F{Sc)vRKbjy3tg(MD2YNbG0LQ)s_HR zY5b+?t#WywY1dK1O*R9?O9t|`I%}EN#Zu1}$m*@t@$!P*a_GlMHC?be$Q(=6t$*RQ z{>_mb;RPOh4s%-TxZ0?%8`+Qs-QVajQsC{|Ch|_TQ{CMq0yhM-!dI^SobD$OB*X*Z zU|ZJ!i!!ti(*Jq#kE^fr{x9<>`~M{VF*C6LA79dmHfKC>H{$F!HOgk-+xQ_Y1oHYF z^ZxXJNf_|+^mroh@9*#kQM5R_wv}b?3jlm{V2K^xNW821^~D~!Ytoy1E>BKRG|}+V zSpVIi{@rbUcfP+5|Mx>Re;~?iAaC#9-NlC2fe}xy|Ias3DV)7IGO-`?<#o;7lBf^V z8)c~q{(Jl2p4!3L*_I}EeDQKnKTw>`gT=hPmR^@;f>@XIk13zyaO_zYb$#02Q0(aM z(RY10e}8<-SaK54WChZ-mN$HTRWZ$y-_#Qs)Pu6dF2Qy7ZpnAeh5SS@ zPl_VT+`krfC9ZNv*H-L&rubJ^eC|@x`t*c?R=#&jJ<+A+o}}m=W*S(+EWr1T4>~B( zk879%CA8SonvWWrA(Jd8(I#4nbQCCuo*-kV4{956&tVE!uh=|r5Y_}4Bj@w^>JQoj#|t!$5;yYzHha4o<~Oq1@w;quGH1Y0HH zbn?euOf?);Tnpa>{D*New9o<}oMgj4Du{2%OhVY;qLGwmA*yv&jVy@2cQ9&Xyd|nj z@-4DHLe9L)B9Q^-A`N*99jt`4H5hH?r{tUHIzm6fkd#W@T{5|Kl;4x#8H8D@Qp4t8 zhvf>6+e!5~C}dePgo~&;w=$1X7@e755~w~*wXc};`Dqwj%AEVE4AU^LQ}qO&JH!zI zY%&jZQ`xEMWNeoDdW6nIH-_JM)awqG-0W%u!2(xBRO2c!2omH28B!x~?NtqjXaKY+ zYcikegXIXG>Xdz|3W>inbtdbTCM=Z=bqEZ2vZQN3 zxsl)=Fe<@A*)d+QQbjpWnI_!RKVfDwGAc;j==30~)%_Q(FAQ1C+@8{^_+ zlK*LSr2Cnvg4XBrAA2s&Vg}GO4?(|f(z|#+GZiUz3Rs7= zV@6mkZx#A!l*GuKhxZS7?g6M@V~)Jd22#!yH{R+z@$qvC~KF+c9DCu*-AziSG4l&0u+Wk$e7n&Mbrh*3L_q$lW@!8t66DXY(l zo&AyOCnMp>E(-NcT(1f|iS}C#Xle=sb%=$xJZ0(ruGoiIz+)Js>ri2c?e>o2jB2LX z&ZdW(J6cml7I*a5WfTInfL|B)1erCA00E0B?{OrLEvphC-aTgOjtB0eiD z3+3sXvs8@uHR>-p7MSfeg_e9nJSGKr^SV#6P077;V|)iZ4wFG2 z`X~1&QKs56kvY4Wre;It&$ySV5a5R%9t>Xt6<$;6&iHIvnK7Do*P@G`_);h)D;p6W zo~aTCipQpi|FkJ=BJ=4o?6zu-V%#G04ki%TvE%l;nL8cE{D3zq+K5 zmkCUvz1~!kzGgiA$}L=8Ic3BqU0y!scfBaS{**ypU?UV9DaL}{I!N~pyJRj0Yf@HR zl|Qv#S!8%y9lb7s@gNs^)j)>5A&1!JVQ7N4z^lb-=PD4}cj5d=blZ*EH%6%e5Ui?Tx!o{A*(u zTuZBLg7(Ifv_$-6j0xOHTE{zg@4V6|G!BH5M~pODltt}YUPNEcu_t7G*#MV{MwEjs za%f2fI+J8i(3jToy0!A6S^G8TR*a=?$0CgKK84IFYg}Rg_wp&PG7whHFaLx;+0xGn z!4`~8+oB$z?tHPtJ)7g5cUS3A*EnMaS<{nx4G2sXP`XmTjEinHxuBl9wk~x`D~pN* z@M{&=IbWFd9O;m~latOQwaW)Df-0+#JDi%*9M93yVzmgzVv?@ln@GZ6=?ra3!h2Jt z{~CC$Lzj+m%&I1Uu}#Z&Df!eEt+4BOgqQj+k-;*k3v6v;3 z+GD4Yn58uv(TIM26JsQv3Xg^I6oH52y^bT-Vxz7&J*>p9yhExz{Q6DQwuNhig?^%Yf`uCU9%bM(%cSJ!jJ$`XroctEpvEY zl^|Lg(ak|;A-Tq@mE(Un(9#Etmn#*zQmEQwq0C%Ks`3lqq?ou~cV$MktV&?4dOQQW zEIpO1%BF1P3{r69XmoozsPj*G(oc?saTp-ARh5p#{A~L}gW!no)vlO4K-K3SR zk3ud^(iT_Q!2mDWmmArUsr6DQ-ULTSU3-<+biU?}GcC`Y4(75m?{fithi8d>zT_!T zR42nGUN3{SC`?6sjmR_QjGh*Zo_zGoXXJdnoa)+2U-Q;W&0vHG!QlZg=X(`}T`Q-GxpeChuXmTBm&_#tYA%xZZ2m3YKZ`1u4{3vedzRgO0HzR!^XO6B8Y;%r+SG)I2Q(dC{Vm*A1Jn z*1^KWaD*PTZuDv;`l8QHqljFGiX?`4soHokZ6Mn_&?w&mQUxW-ewskLjB&0&ET?e# zI?Zhw=<9pfzx$KrqtcK6L?9sk3c1>Jm$*no;RtZuQ@_1qLN*#Z@w?;N*>ef!pnhv} z+3$)xr0?vQPTtaz61Ruzfw)Y{l1ahv5BBqrpB{Z~ETxoxX|!d|yY_XdGnGQ#ndjGN z=3X1L4Y}#LBk&vllV9bZ8PITVXup=%sULK&{yxFI^d&)no@EARnQuE^efbvvzJ+Jj zos5r~{ef9s`8B^4xAt7>Z+{Tfes%K6yeffftS{?cyjkj!n^L`a!^_vp!w<u`<@joT*nK+pKugLumTT9&e z|B2iagqSdN0R_Q;@ql|UPcwIgDpc>s!N0$U|A{t?$e2o&V!n3FBUCYqf(1ABXh`7x zI4gil{w@z*1UC!5Ie7fC_r6j4{TqDnMQry4xFg>|(G z0VnOVV15g=}W{rgN!TG&`SYpK-h<= z9`f`W4+g-AU&PGbPOqGPvp^j=Ry2{s4t8wR+^6Aa2Hw|^qL(LiKOggnd8Y6uFCvmx8cP- z+p1i2n)c;RxiKFyKvwu^x8x76RuV#|vFP4a-Dz-esGFM8r$W!5p*v^>i>V{e8DlFMWtwOfFD85TEb0!a>S46xE2XF-VJ>Q#9Lgn3`eA#*RSwU^<8n@*@=jiP;; zs7*1L0nG47wyW4{o~n926NMAq@I}y=R>rj#pqrb-yR>+^(im(BY?!|MJ2x?svfC$`--gwy@Xra*^2yP9EjEnXDdDb+Skx~OxRzWvV9F27emGsaQS!eE-TMwh(9;b-uWTcz=(h(;7!2Jee)1$I=cnQ*$%8?txiQ+u+?XO*2ZK58T=%%4T zH<)&8GV4}kI9H#i@MRW@L^f-|EGjQ$b=}%6IBZne>IA<7tA+)a+GnMri*oGV6EH1Q z4X=c&0r9qcJHHLZum0Q)$=@lBEIv;!OEO`}h8n?SKQm!(TZEtk%e_MLX(vg9t_Lcpoao(7e+qgC?915N%~+gPUoI1VfF z0_(=I7I9()#@C0K5gS)JxrvjVIWgjwd!}N()`w-0q3gWk6s(S9mj24*MKP?Q)#aXxoo0Int!N(Yb6)MfA zj3C0I&ey^atFkNjvfKwc%7Z#C^qyq%s&c#;A2S&y*qznOCht5Vnv?4_TZ&o?LeHfm z4EowrF>f`qJkbc*LILC<2oT0!aD*!UBiAjS3HCe2Ljo}xf*zj9-1NMAioBH=?c)iI zUq2gCLcxlgjGvz!aH>f{V-Gma-3jR}*8nOPDU!19v6ms0lCD|a4?lc(3cj^I8uP7v zlb{_-Cb_ z*N%F4{azWGVlB%?*nYb%HBZ^GEWTv(I~l%IlnAi*{C3zyD+ooOmG$;!R#dn^yEWL} zV~UDxc#7$2x~k$l&{pvmh7L0Q3xla3QU_uN+;vwm+?gmva#h;66Q%cNa}UdSc{OY1;~Ga7>4*kx3v@3NY@hKr>C<4FXl1gE#fJ zfezQI#Vi&~DqdWCRVOGWZJmR>kqc$0O8?GZ`4|5NX@6u>^FarlozYms(96qtt3) z3XSNZ%zv>g>MWxmGIbjX@h4oetgbRyoy85u_wsK}{1YkHU6nN`-9{_qJWO7mwaG|Z z0mi}?b;>GSL0$QDhbF@;AW?8lS>%Z(&>`5e#jsn%eLrM-Ak1#%{=Ue$StUr3vbdFl z0WL~TM}fHm9xP#d6Tz8_09ESFYeLM{qwH-UImmr4BNaK(xOo?+`kB~l)-o2q zkvsi|u+EPLMeDbAB)T)i-zb}(yzX*hJsUeZ)TcT~(M__M{B&x^p0w4YGu!cWG<2l< zII4a0q-h7()E@F>FSCT(eyc)VZM0N)i8?_Cd`F1kVbPP;wWPEc0r+=+K84Cn_J>~P zKB1};`^la7`u2WruSA%~alh)tzEKj5fuHu^^>nqq+Sg2e zSD(#hC0Z074v>MshXJ*y2^})RZuh`*>cgChAsizqM0s&+O3c^!YxwKdz`oCi?wFZ_xDvlJYVK?I|&F z-$QgG9zsKvkURfshtfOMj{Z!3RGmZpeQ@(9G+|SI(+g>!qwmWwa4SQm9)ugs6{h-4Y02jSZOJ=7qJ{(Fp0r4R4PUhpFgvgRT)Ao^;d%oE(LlC=H&D}c z=SF1CORDJKzp|9?l;TpyB+kwYdN47PIGIV~!gxteukzrzY5eCnZnIz~!tP(%c3)I$ z`YXTuy>9$JNL=$&=KwobmB30O^NmC=J6B`)^ji2k2XkwCUHSTtV*~a1!sYXdFFBx{ zK|1(H{+$pf{dvc^^7ge(Y0QisJWtak`RlPjLxto~?nxFoeVuQzW87Da7mzq*;l<;` ziN_~cw@Z}Ta2YbVgVfRM&-wyspgkzz^#7NktU(jxvCs+-oHYk zo+ax-YxKZJr(uDdVl`?+3h}`)m0QV}BKCI0{0m)dfAYM*7~9fdlX*y&;E8pZrVU7Z z_zjkeF{EU$TqTMufr~MHzkCGP`B(=CS}zro_}6a`qFq zY3N>K_s(elZX#Hd8r|$D+@K+V92K6Td-j;rhT8_3nfBzenSoDpzwa~e@Yw z1@4oMv_Zq2rNmW?pJY9(dObO+=!hi@TwM`3xf_U6jJ(T7S*SM{r@WH=nGMRAbULxT zx)?oyVo+9jEa_?HUinancP(fczAv}<&VE|Ieqw#(7Cjx+6uYw5QEC7Hdkq6M15NVa z;h`~cst*UPhG9K)mkBtYtt<({3$Y*s14?>YmI)ad3+(qjyp8NWQ9iWGx*cAoC39yf z_x8YYy-VEbo&JDB)sicb-=rz&pS&>PZrF*3*g5(vcu)L;;%{r&SO1NNU&mD;t#(U_hdb#&FS)%Oi}3m zJXdVDytSu?9ciLTSI0y+X*rQNEmz%nBgEc#-G9%)kml5r=IQ7+5}U|*8q^=7!^tF^ zdbTI;#m{^fxq=Z@oOZwiX53y-SFuCg?doT*_wmZ(Oag5LQX{ldej$K7-QE;j5#5|T zor{~+?Me~5Qrqa1QjUYZaCxPIqG`d%d`stcsP?aW^sCf^%nLH^Gz)izcU5q0qrOdk zpi@zW*!C8-24psSvt&pVsSHgX4x5|D_}22nU&$5A_^PQ z3Yn(H5jNk-Zu%0^IHu;6Jh0zW#V;lrZpXi$L!BN~^n0A33)1XKO4<33Z2l7(O$ce+ z#js%QGKGd09r|!cjh5JNKNR;kPQ44S)`~rct)O?(a!Bj5>*2;`7tGWnTm&>~O-U7& zJpAaHYewp=t{@AkQVilLvf>cU+HjN7x-bYRW6RSJ-zU8(CnXYW_l&KWhiNb};i`|E z${2CPO2|YiamYc3%lS!39&~_bbwZ7$=qpM<6qE@=X(9iQv3Keg1&We$w{6?D&9iOW zwr$%!+qP}nwr$%vojjzI^u43s)<0NtRMl6-n)zWp*?0eCk;YzU*n?e%9<4DAMN$%$ zdFTX*9mvSy(jX{7kuhd!p(jgh1#UnRp;eX>Y{SOrf~sD)=4L6DNwoMk8R3Gb=@rKc zhBEJ=v0?50;WWA4f~MeL4bGIP_?46@Y;ZeAYTPM*-NnGkl^_o&X4R|qSSfIlUv0&vXyIEMfGggB$b+RBfcTl?)u!P8$$*@V!o!By@x9J++um! zBp#f6ob8$hEt)I@kgrg4OvI0ED$2e=akJCx80#s;!CK3{Yl8J`JiEe9p_Z3JzF$ww zs2cldpcS9(z1+UCiK}V}bmhv}oY=>>l#Wz(LdtBdxpZ~uO* zS6uC1nOn#jYChn{)_a$xW06MfA7#uE$p&@Yf4k5|IYujqjKec*%6^Q3Fy#q?1)&*s zTaLlz$*gW&b&brP2Hu$rU!w(TsZMETs}q1*e#!@y3W9q9Psz-^w6fjCe=I5=;`1lX zjC+vwXcm5{6K`AAH)?gR%OC|AL*5oZSY5W#0$y3SoE!y{B)3k2^jB0l6Xnffg1zCG z`*8w&Gp`xc6fwq(Ze+h4seRwOsI93z$;T_OBVXrBE)RV4 zwA?wS%DW&*M4IXy2L;-4g2Nxwh)YR~T|gB0hxAinwJ86^)TrX>?HnCsrf&Japr<$w zJpW%|i;?+%|G~;0_9palhL%dsHuSOtObiV4q85%$&IF7cEbRZD*3Kr5^rF@V&L+Yp zMs~&~^wK7_X3pjWEF4Vi|HlWdtz(BXn&LBCdnU&1Z&_jM10H~=5sL%pYW;V{5U?Mf zxIsjQC9A|NBjLHB*Jrl;{fsQEiKHS!8qKQjz=)|DY5T?MZvw= zE(Y}*BoSO1m;9Z39dJK_%^_2n>8g7bnGxg;OMwJ<6Ku~DnpDKwd0mw?)-Cou7{3s) zAkfO9_>ho~C5eH8df-0@@nYm6D^tJDeGXj0>VC_AnuCW$9~&=f2+4XbKjMvVV@>#q zX+MsUg{^c;zjMYP5AS^FfV?$agv@$;|0K8?gjOH01q_YUo+v;TYE83Gjz;1z4pWQi zjn}9=kRJBteg=YXk6xDo_=|FHUev4sbJad~-M_F6PWTO0)z%$W9X0qM@F@_u5EcZT zhXR`s1wMzSjl;q>$jWh#y(fZeKOhhn>I?&dLz6Gv%c)!(I`b5`diVymw_gVm9Sefb zRD3|-NdlQ2g|C+_-YGFWL=bJb?drepa`;I@wM=(Pp&B`z-0Nh(# z25oFwz<%AJn+!ocSfNe^&R7aUMpm29b}U^Eu1zpWDpYDNFjI!a&W5N0w_W>3k_{ZY zMSL~k^&tZ5(o&iTy?JE$C}$r@nriD*X$)J*HFeBY?nWVAoq&Je4;ec09mN_W_bqv< z^rQgxi(LulkIQ5L5|Sm(54u>)cmxxXPJ=+378T-9h?fZV#H6_;L~wpTZoYeUy#TKO z%(?=7n zl0e&11gtqT94tZAMW7{wL&oG%DT2B}G!q(+-G&lMj-!R)@5L8^lJ6-&gJRnXoSVY% zP`EN$1Qi7_a}&eo0ts~u%%AiVB4~-o5j|4Nh^YXGzGSuk^u4h!Zh$|KB5RG`AtPo` zI^E#G=d%+jmX!{$4&Xf^D}ZHg%~=Cz?X@fmW4>Cs2%`LibnGdWFfR^;g+ATE^UW)w zIBV4mqT#Ghm7-V!PKLz73QXtz@_2n56nXIK*>0?_?#}+~RMVeKt~Zv(q<`NX-hATw ze&O}z@YsAjt8jC_`}TN5L91O~oxY}BU)A6Bg~2y__2fBS(ZAYmWaTz~ zj;}`Ta%O#P{VvVu=>$I3Uq)9q@#%frjbL-#UVXurPOj0H5`Oj8_HTf~N-I@X@$;Ux z4WC_KTw3|8R_Q5?zbCKk8qpig=%-)OO53iDUu<5T*gsFA7TF&sdvvHDNmss+?eCB> zK&eYut_vrrOhrjVLkLnNCRh_^C}#Usq5?ySU*zlbQz&c&jOVM9qg&Dw16>3JQc-BA zr@|Y;!S{TVeu;yV7s!Pf1scS z*}2o1NY&9(X(?sb@e|=xPy9i*Q_&aCrMTG8Z!u!S)TC`(-0y+ce)C@dcmXCp_&S=~n|$e##wG3xIC zL6W9-)r^W)EY{8(y-{zYvmBPE<49p$T+TyaQ7!c%(GugHdXwiyMX>0gpvutBzDuyj zg>f*B1cn0#8J;mSF*I5Kuxel}sta-Wvv*AMM6rBQ-z(CxQK`i@YA0aK#@zC z+kiM%Ot{6%_E1)@itDsiuAr1<2^KXT*Jf#Y3o2Kd^ z0LfA4Zlc@_ zI?n5loD@L5{W<`<=t#ag_lmy*UPASCt`!B)E^7Ak*}3$g)zCJS$p7jo6kh{YfYAd9 z*iSo>PfyJrfejqh8i9antWhWYL~9-XwG`q!@|`Q8H&dJNs-*9Fm4f zLLC6l|J7zb!OV?B#)KdzO)&9Ur9Hk5rV<`1egW5EhR$!)KLE2+F|HJUU8=0oZ>aRD zXTzVZKs0E`3uF8x9^|ikZ-jUU#NvrF28RhD+^9($($JvP15{vNCpa?rT0tO8uCF$GX-%m0(ID_ax zg%+Mr*?5F`W($|Fo{iK~tMtC*lhs^{UOBAL-!BloA(0di`jO?@m1zxU8)Uhcx;LYGvN%Gz8$)ujE^AEsVt*dcj zgly^raPmI^4bhj0MJVH{2&=VL!Y3|nv_W-s0$-KJ6=zLc$$C*e3glaNxNFzo%hC6~ z!iO6}B2#iDbWT#k_{4drPI-l3MWTf6{Pv_0ZGITfrQc`mT5y8 z(}EMki84k!Odxriz{kyO&sBfB!Z|mt#Vg2H*sE)*I}Xp|MvMs<-G9i`7)V{@rPwy- z-_myaunrC4$PdD=FATe=>$lK~zC9xRbQ(N&ztssLmuUnGd}_#_Ayx>I>db%LEpvS{ z2Yita42o4?Tl|q9YiHAxlMOTjMzJ0Yp48Q*@Zm>tbF=WAKkyVIhwtH~ySWre;2?i( zN=bumalqD1;Sm+ODpgs@B<96Pc>T?`a*QGBHWVxqS;RYrWYwm7L}ntBlvNSL+Q-%@L4ND`j>$_Odw6eGq7shjavw7Baod_k`6Erakail+Q`mrJ9MFGGB9F(UCgM`-PxlnOvjd)pC z9Tn0pZyGjfT)%7c3&;U|6PRTfDP^HGq1zwb-Vo9(MI`*Zwq1B{Y)3&OlQpI(zY!;+ zf%=@*cn(sn@xmYR6aXe$7&vTKEA|00L;$jFzNaTCj9-hFi~~N^OF$8lP2CAIQ`}ys zb*6J3_rSblb^Zlw@KXBJ3aK&M~3K`>(j-g0o`mS zJwn(+F1na@RvDN54axOO-NeUlWnNQDx1Ohib@%#++CXyUFg!$CaX1&DY$~>&Rhu%s zy2(F>4vS%jbiU>v0`1d2nvVF=-O{CY_t^Zg))^paon<5ChbjJy;qZwzKT3P#!8l|9o?@sY%$6)vkF_n)|UEP z%rV+0>Mgt+7|rfSqN^&@da}YJBFR01ZFGfA=ffqr)TH;Tqm|reJ9rHd;0qfj_idvk0gpmMVR&c}vr#XGvRG$J=$GbmSRM^gKZ5Pt>fT|{Jljh(+U{nZ?MCVM@bz+N2 zVvXvs2S2o^&SRxP2-uE`aeN<#NuiA-@UQ^EhuSO%lpS4ip4X5=Y?I z66>1H)l=6%P3pO%h{Q&a&2ZtEJK`uC=C~Hpz+14-fn;37Ty59S>KwYuJsx6>Cb8O) z8(IfrLip}kJD=xJ&XC))A(b5F_?s-x%1R|q=bt?UQ21n?MYx1mK+YoIg%i<263R&@ zmu$mb!O}fcjW!7w4zHvob#fP=F-GOi^s9Hvymg7xog1cq9?q45`zO65y(oI07hUs~ zqs!_STNqDZaHZ~hm5H;M>_vwnY{ja4pE-Pvkj~KJZLn9(M5J0M3^6|GgEi_CsBg*(ehl%ky}*!*lKn$G|Q!r45dA!p{ROiE{F@DiAEgb~Q6RuNPTZ zKwTnP2q>h(SavEA!=zlt`%qnQe1BGzSi8Y1$Np*& zFFur?2D?}})c*P0U{}kIThS4R7$w=$zVDM_#Gh|}OEh{5d*e1q{++47tH1&Sk-4Wx zb^3e_Fq}5tl_(E;S8W9GHV8Aor{tLP_e8&Mr1+ZI{uy39M zMBXMSHF}9DYa+v>VJC4@;=oCl_H|04a#%9dD;0<;R!my@))0x&d|-vihrNVPymEx1 zx7<*wAq}=zNg3fev`>Pieic(FykMVIR1y(gn21)m%XBpe>|JP)TVe1<+xaA~#txP5 zElH&|eOk~9Ntn|ZGsxD>Tww`-Itqv)7eEAL8e!HXlhfI}+yV)`Mw|Bd?3L4n+rJvR z0Cl2~GsHewr);jonQPIU-j+Dh80bpDP+yp`FciWPmB$Z<3VE3Dc6dNf-lR-|UAk+eCl zE35Z&@qHNwJ-1u;%XOVr_1hd~ImNfMD10p92d-Q^wwMtktFkR{+oM$F8k zH1zbZ;(d2w{EQm5ANKW6Q|Fr8z;xPS2m!nT=QZ5?gFQ8QU@Nj{&&&I<)+}$}XO#;R zr+&-yYxK}HqO^KvuBU4=b%cYeEdy^Ybq=z#;Cc`n1Sok2e_PFY8AuUb;guI<)_=Or1$MZU6 z>j)6|7RC+_NX6i28MzY&-U5cn%-$muSdc@{c-&H%MrQCW(5f3-hGUcuz0L~xo zS+(y0Xb`+K;*Eg)s>?si{tp2S#&8^x z%le)?a$}TMA6j_7cgHanqZUG{OL8a|Qx-0q12QZUn`l10iN~uOu2D z2vw4lnJWM>@W4%b!U2fjuuGViS9pUj?GI3Qk7mMG;1JBfte%0((+(-(@WVUxsb^r~ z-_{L%=c{L8aY{-)6Cb#gl%U+vEVh$5f}T7wQfh0}yoFe*HFsnqGULhM{%Vlz0ZgQ} zv;iP~LYnVh(|hPrWhAUhW;uIeBunferXxDEEod(XZFSonNXCh4;T285Baq(_$fpvr zF*Vuc%Ez~pB7d<<{Jt0-zu)~0!xeSdt4^Qe?-)zc+k^?C-{gObJgP%_WY~nWzUm|d zfN45Z4F9EPq1saUf7LT)rvDaO!o%5k!;^hXoaWA2y0fMZZf&PyZ8ruI*ju z(>s5xjmq`&%=mdrW1yrAgt7GGlG}j1*8c-|R$AKX$0HsQ$!Di{(U_dK80NQX7x(M^ zfsH6%Qlekn2e2rCy}?6*CAw}>gN#P=piDfs4k=t`u`$WbB9W7fN=Ptoyb(hG{Nuhb z<5GSq@_7`YU{|`xbdRYQ-n7yL*~OPbW4C_}%o52$v5OZ`9A%&%%CdB6@khx%QK*4u z04(VxxY1(rM!;OoDFwMfTGyB!MiSG~_6_^pGaHg+0E>SJ1S*a}1-aOJX2?o|_S@9- zdnk!9u9P6j7K;X8{KUTD$&c4rba_gLbkXuMpLloUtQZmQOHv@o^yi(DGveVH=uQ>G z@XI*sjt;xMsdii;K6?le(h)~$qc4rcbdb1ChO?8X+YmG%7V{~zq26XQPbWBP1aXMR zqaL;);;r3qsK#c<(}@4M;}n{D7sKF^ArM`%diJ2176mX~2Y)z+kQyb`-Z=P8L8yla zlLD~`&yg5y+C`*u?mo19IOQNXRV-;*ob^KX1bN%SC{5EVVB{)5)sCFL51)4iXd1S# zwQ(T7lReM=ER=opwzZFn`XO+A|6sM0%Y`X2$~|{}{Gs)AoSqv5_*j0|8ZOu!xxy(Use7%edwwkh zT5lz9`L<0m2G33raO)h#uXDCd>9;4k?t#;()%2thcB{grFjCCj8>%tei-bX&ss`%; z4Q6d2H{FFzvI+?MA)PLK;?yw1WUt;h5W08iA_4UD(n}>Z#s(;|FZ+bmjKV z&3l1_EMf|kX7HZB9;Ag_%fS{8!0-*n{<5WA-ns+}qrxSc$`OF9O;v|^Zr0Xm5or-t zAFiALs=d5SBvX>4NFT(CWh1+1(%p<5%G2p;R31!Ay%6Z5OA$IH0t{x11&fB_R%^_; z0&6q4v52tH6})yQI~O~w9>2X2slILtBT2)SXNM@Fq;`oT|8qnFb!(qrU&Cfox&f0M z>=P91HqOjHZJn|@Fx*vU*GjBb+AskO z2#zX5kiCC>7}>s#E&xgSy}uoYGo3@7yL=Ze_)Be1{E6 zQf?qA{dm;2qt<^QgBd{g4XU;(O?O@+2;Nt`9#Lk~`--l1uyboNl>E zWDtub-L~xO1H_hvxDdUm{VaC*-LWZJ?Kit&YW;3&A4q~*HdVM#Y8>_WZuuWe&0-01 ztvsrH3|34F3kp~1ur)qf=xt2|z6m6s<+|e5n7(t?VsI-rjBDMaO0ZTW*Afkp;E>zJ zPl{K>NMgs~0!x8=r7j9Yo&)iTmUb`r5WQe(zu5X4V#Jmg~72Ib@yjdvJr zYGj+c8i}**@G}w#9P`?qpCDh}8J4rbn0A^Twb-os`wzirO=PCpXHtvuPNJK+2YF$I z(^pzk=y;krrsF8enxKYo6-ogJr@oPVm>*zveTNI+W=RaI?+t-0uX2IRXv@1fIGJD^4ekzZhKTwht|YAB3I z84`6sg=uPV4}>Xx?m}Evb8pFvyu|Dnh6vHHIoKpFQHhr4vYZpWDFZv{lOmNkiS9X5 zrqyHwifj|18)U=TUvI{n>K&jk>zlwcUUGrTbLZ|dZL)Bx=T=k3!KHoScd1XV?i}7A z)YP7wUdX7Pw{Aa?~=A9)&z6Gc6O`Gw&TLA8(dUVBYBj$esEZ!IWSaEEP!s zj!SvP8{cw7@6Vrkd~?_GWT`h$K#8c7tm-q8M)&bJWJ#KLbg_4CLpg%ZPDB-v$ze{$ z^h1QiGveF&1I}Pu^R-Zg8*C0CrYjz@rpaaBEru>sF;qqeP;MDgsVdfZk!CzxiYBzE z5ICnS<3`7m;cFO%qX~UpcT+huqi{j^e%xS=XtcbsewlefAG7iVh~=&!7pP-m{MW;l ze-eGncq!(t-uDB5h12{>OCHQxO3p??TkW33OrWOPK%W^R>a@LTd*e}D@d=y0F|Awt zedmeC*H_SPa9%<}PQ8$gV4!)9<$v zLD^*JdrJL*KRnN9l8G3_0y9r+FOB~T{oQ?j;=j5c|C9Op|Lw0bu`~Z40jOmy?zn$Y z!T%zY%^M=+^cezRH~kxf$eD4(3o*%i_K1Fc)b8hLTGpypu5R|DLl|fyjnV%hNf*Sg zPm|+WEZ@wf0Hu3Lk>^i8%&cEAe7`-PpQWvf_`eylqLoESoZUW(l`7_k=hrW@=+!oJ zSb|o$y0d4v&2QK~{=FU_raR?wM`+dA7Cw6uyJu-y@52k=e3#N4G0zd2j+YAqjccpS zLum`?^G4(C?w&2qt-bH;%lA8^QMw#=S)+;5rY+qmSMS$m{n$e9IA ztS>p6e2NFRIEly^8+f3xp>@fsfljxEtjuj%By!BhP*) zg&Jck+eHT?_89}|b9^jjgQp(5PEr9Op=Kbj?MpA5gs{O>>Ll{8APhzSgGl;E2Qt+3 z#yWNFp#K`x-Nm2=5eBN6;Z43d0XAo6kWT`ufl)bV)@B{@VIU;7Y*%a?mKKRRV%ej zg%?t!>g=#BB)ZdANJ*#pS>`(JWb8}I)tH7krH$ihqJj1j!`tIxR0e7D;H;*%#lwv_ zH@V!Rq$^!3|BU6bMbt(ID7>1M3tB*&k~D(PriE|o3#g=($ADhU2Mqo?=Z)n?A8t#o-G(q%VS9$Yze>n-)wa{?ae^^_LOf~hY*3Ca%K%RG@u z4*VPRbu76?E`6rMehTCUg>#exy*TE}}6@?U;nh zfW3fnF#m4@>Y){|dh#ZUJ=y#_t+oD$AQQ_Ht^s{wg0gxdwrk4ju?eS$XmfVyXJx{$Bb;uDi1neYH zaE0X9T*j5N&Lr*dw@RDe3WB(SN%ELK+N5pt9Dx&9`-v~n4Gw6DJI3JC7`PBAae9nd z;UOU30SI(DW?owz0VSL1Ldi&AQ3$Bu_S2Bumfc98{Ei6w zN*d#%U7F#VAiKWCpsGWQhJVY8`Pt+oKTe+0Eij-bULM5kIxpx+AP68eU9C+~n16$~ z!^oIM|TJCF#lXL(K4zwh$*8@GU!9RS?`<~VhVFyTf#->KfWxXls zI@NUZ7v`==VK{g_)T1=Y2)*c>HV_@ceN{oFjnY|_eE`d7^SG=1Q!KroaQxY0hdieo zaLy$sIFE(pZg80KcuKdAMM08rMW)s8ew>ujO+vrLNExYuJu>@qmBLZK8Z7tquzlzJ zrG8nynlX?)UwHj@2&ER31r|;a-K5E_G(wh(+XxqXP1qz_8DQh4r6p#U-3`!}NAe7f z4#QKX!X5Tzz!JAwl5nmm2v;_6?q2x|q4cC`>DFNVpHZ(f2;RwCpVcwQ#A`w#ueTL>uL0qZgx>%FOLS znrJyX=B=WR*j9-E@)hYk{5Hmp1B`oI&BStq)({7EG3^P78DOOFmi+Ri(hj&pN`}-x zjzL{_P=wYF=uDal$x!1#@r(P}pD>NQ*xu6lM!f=;)JEwdCAyG<%|mH^G~n z(v5u3vJO+)JN@+U{IAn6-K_QS6ydY7){Q?Nk~>FBP3r57UsBPcHl}PJXjonJ0j@_9 zJ7}eI!eR5uAAI7cs6x_G-$$GQPAY@r@92=C_jBw?F7Se%m#oW_&v-_JG*fT$I1~Qi z1!2f)Yh3prVwB6f#meGVk0`XI~9!UC2mBAXgo z^t2xFd(F8n#=k>C{Sax~1m|P82*Gw7SZn<|VK{1A5JB;?FS*1*nFq`j!|xUOKQegY(B*1INs+iQQDm7u+S7IJ(T%|c?OgpXsKj4#f0yrEP#5{2RhC8H&4Z%B?K zJ#q;uUX#f-wQhkKgHEu0j@TH#0<^M_TYiB7MdXC^2Fy=3dg8iJX*9leIL*+VMQy8e z=hC^-RccNf$w9=F1#1t@<4~wKY@dIXKDGlUz)O6=EeKY7&sBwDr~~QNOJvF(3Vcdz zARwTC*rLbtzl^Lha(!R<1(C&d|BIuS`M)QbGO;lKXUX(hd(!r?199h-@(IXrJe@EM z1c)BaUNf%~XdP9D#9=`N-RD=vjAFb)y@4*l`|1}Y08!+`geB{fUGlzn09DmjyI~)_kX3rsvoqEFxXf)urZeAhuh2vkd|948&n2=7b^mBN48l>Q`bx+Q z%W3E19F}x>`e`3;)h{Vl$qqfL;2ILXcv6fX*ajiWSVPfp}618`N7mb=O zc-L}kF!pl_9m}6~Cw-2lqEC0K^?E)Fl!e}8Z_<#b*lN6y-pS|o11bLxH%rlrpKXPk z!Vgt36Wg53=lDzR`VV(EpzZX>4lc=DfVv*+3~rBFJQHu*I9S8qwTGjO-{Pq8x-qHq zF2b^04e$Xqk!IO&dfMS>yDE!6!JZyR^Tf~N@ukrG$7M%{IK9n<>mV@6?Q)?u6p{>t z@0MV`!SgO6y1?k!0n771Wn04U;X}r{M~$nSc2B;T1c52m&&Lp$B*ww&Aiz5+QN4bK z+;f-6AyuqopeQHl811PVP)3HRGReh~3iR8ANtKQQX2(xwj{(dCR2|uNdOz)NBZZ+u z2*rH6Lw}=r)z0Ii$qgFp=~xSQab_OqGK#!tlH1*RZc`iRU_@;5JT&}0yOa*k|NKoW zHSRhUODtXH!E6;>eRw)4V+%QO2?{r&gr~=An^$xpn`$P>=W3_~pOik^T1yda4->>Qh;^bD%&{XnN*Gfgpb$brOoc&OI#9NUS?qUcwB2n)#EvKcoBVLd zUuBp?co5JZjb0?V?5>}R+QLZ}Uo!i~>P5sGPqU5NHO)Q`KXZfV#E9A)B|61gr(J;H zMccYo&lw`R*Yxv!RHvK48v=|E!uRo{@ab^vPl`?$?G9VGt4&a%mCvZcP69+8b6z>J z)Yi-Jmv}mn_etlWHXB;EMTYRWiIt}j#~{R#dcu$#pG{}r`-23#i98}fu5<~7mFX_4 zMwS=_3bZCe;s=WMrAt5p^uj)RGc-5&r+~b0d0s5PLYsi zu+v$Prf!5oSy)7ss_Qt=LR$4NsY&0zyl1fB6;xmHXj6-i@gy zoiIX3PML^iKIu->s~Bhe?fnlz1=?lN8Z8SQWoe?|rhX_bmu6<_V@zU3TxenF<$zP# z0+if=rW})|ij$^6^k9lzUlJTlMD0zVwcVJ~j!qGM{jce{Hx&AlmP0>hpoN@(tYa?3 zH$qHj{Oju6Rm+Knj16!)^)M_zO`iK1#y!{*-}0CXFw-vBe5aMYIcx`(8)%~)#>;|6 zg!x;0{-7A#ke@=1GHO!RqKnPDj5P#ou{*imMQM8w8Rt%FiL?SX#OKzzypos0oiV^4 zd_$dbvnOzJH*W--@9YN>T3WdUr-EpW`LSWv$dj1iIz{6%aS!r)%z}J=Hi)OAldt2@Sps7xGmyNU@=7_G0S{>ANnKuJY=BE^N z(HFU`J|_b42jKUZ);pN*JD~Q2WF{f3xV@-Bp>fz<%KfczTVFZb(BS(AA}XdM5q1=X zPbJ1IMR$u%zx_%Jl7!nGF>K=MfF=4Yq${2C+GkM;FiCGL*)PQ4r|?~CyzcN-;=Y2myCBEn9k zs)v!0W)s&H55gy=Wva<3Kf&Xrj_K7T52NT2k)^&B_dc;l^>z*hxfrvc`%%B2^=~sV zk4>Np6dedoWht_aCM925Ns^5sIE_G+H`&sufcqb)6v?Pf4SXhct*vt}`GJr4>)A@A z6>iHVnU1xh6?WEdI~wcw`F14colD)iZKrFh#2AlBC z`FA!FdZ$A(2&72jn?+sdA*SJeT}AMJ8N*8~+{KD*y~X6p$x$^IT*5{(x9lPX)oH+< z!Xg0ekb~+JU{0pgiNTPs9}~OA@C8^w){>LTD6xE83a?;5SMFb3`pZ5i4hhaJ{6EUf z<$guRu;4rNgAd2>66>Ae^RDXHe_TU}P7}HT`v=J&bHcZ9@**^Qu1*A{bTyv%Ip>mu zt>sn#zwZz?mEll~Ge%4@fag{8Rq@xRD@uB*hvJ@~o@Kk*MKNkOeMWfdnMvB$DwHxP zsgno1k^-P?f`iM!b_M$efPZ2gr!)81*~e=w-GH8B&vP7^keL*i;1*jVCpX40U(Rj&qHZd0o`AlYu@Yq!YvAEl7_ zdfkeCNes0DgGXklI)@NPOy(_;PnTK`1zQAti+&~Rd&piFE1%80Ee`PRx23PY^WJV& z-)@06)&hg1kMjWRLXjZv{%m9CA>!TO?hk+CEKfk(s!Oc14;?;IO@pnT632oVh->H20 zs4)1Y^YL3;TvZG3!Fkz`cDr0FFup&Y`?*CU^j};8`u&>x1(b9~5B#q#q5l^D$i&X@ zf31>8{geOxna65NjGW0t2}{uCZ*_u51g#<`Xh(CdZnvafYl}bM^0kS|s_VyiUL9@> z<`^xLp7KZJ55&bezL`rT?{YF|WL91FzFglE@IT|VdNVtIA57oR_`ZsY?&r%-$1%By z0*;GmX}>%Y7Fo$}BlH|odl9+j2c?O-sQeCJ0B>fG1Gi$nuleaSa*##JkwA)H>Yf3Xp}Vu?j$*lumzb z;Skg{f8Oo;XQP z0z)YbNX#h>f*VqoD4Uxf5ayLXgP&Dn1{mYgX%TwDUX1@hTVEm57%o(pfsnGKTd0oR z{!As()CVG#1@&2EEM*a3KapZ4?!MCdOeWWpF5#)7#gj0LHB%uk zXAF^j0;jSBV5_{_@PEwG+Hl6I%VJM#iJ=6{FMm|xSoX&d< zkGRs8n`!?t`q(w8adz!s8Yq*pGR4or$+~ z2#s0FPOJjZGFhSHBuwl(5dy15$FlCvoZfge%5>6lUOr+wt7LA6D-pTtzSnm6`!JLX zpxBvEMIrvFx|U7>uuu^cbQQ5^N|D3O+y5-8=Z~AGtuC-zb3bkdoua!$fmFwfu)>Ui zrhsk7f)%gBS0?IY%0n=_8PoQ5A9nMLwDiDEp`8C=$pNdzN_`FD!9A@X>_|O(`gQPr zHStJ_z$3N;ioq@zyvP)R3I;pulNX}QU?A^`^ZORroNd}=PXUW{0tPrU(7q*~gni2o z=76BVAnHZMh>heR_c#2}I&3xYp`i{#q~Xq9!=04p@O^$D7Zjs`yE$rzL+ur9E(=n9 zVEZaX;I?pcUs%8BfWRiPt*pZVd*Ys&16xw{(jNtTEfm95s##UtbVk%)mA%#l2iRq6 ziTRXFG_4s;XvqX6=*VPmm3HuqV&^l}fL&TtT5H3E=0tG=+Ma6tGO<0mLC8S?iV3l9 z#EfUpqDlr%c|=BL5c>+R2t%Q!{;-{g;if6raGiD$o-Jg!lXzksR@laZ3&hOkUs%(0 z4qe7h{sEJg9q1|$2RSjOE9^^&2#1upk)HBpfzj!`kM%VH0YMoW&g8+NRMnB}1odL0z;Ym|s3+1j_6> zoCn?YcC}nPvxKc&rxx5Oz1L?2#6}99z!upnn!Nc%% z9SS%9#(|xpUNkIOR$zODn2m}%Uqaq-Qf^Na-*qaSmU+>TpV(@joYez)j$6MHconJ} z1{1dt^26nFjpAUO)MP}jygK+?B(SEZ4Cf3&f;10d%aKVJOIg^oU#aI9 zdS>{1M~7PAmZ2y=BSpYR1RQbM9+Aa#Ox#8+qpZ|1WWFsmD~;Nn{sS!;R+RK?VRXqU zI%|sq*E3-RoI*84se19*>x=%Az5hElPBW+qB}6*Sziu#_W91)%c~?Q5F$JEuYebXE zkuWCs)l($=ZBdT6u@VkiDsP{*DhCuu(EP#Mf^iG#*wVZvdIgz0S-MxaGH-^fJGlS4 z)g+Crxxum@zT$`PGPix>Z9!PwbR%H|5q=&0#moA0L3%t$IxM@{!X^ZS> zL*uJNbUB>GS)j>^AscgLk1@@CA}T2Q>~v_=BJ3EqV3U(YK|c5X6Yo2I7N(L?wqNPu z-zHiDd)-b-&cK&LP~~{Pk7+;bf4-0_wfd(B86+MKmSl$(Z{YKg@Ra8hh-gba84q0e z-%iIJD&Rb&Y^N>F;wHCOh81JG2r7>bD0iyso_aEN+eM;%7bn+N`gA zTz%^r{0%!>X2>JytNlxo&mz{$szL@21Od7Hgf*_FPF`kA1s%qQ_bUs!0QA$vewdw$ zhY@5LL)+m8bO<-O&k)9+BKwTJ;PP^u(-{IIx-D0o>LoFJ_QKP)@c;wnrQE~(M^bK| zh1Xb-6X2rz!TPrI)SH-5`;V#0(yQJr?)%5(dr&)K=k{@Sn2JO>ttiQu)%~c-!w+@s= z3YENkRPOC9dnq#~R{fR9l@yzNIXcG!yk4cA^yeJr&c2N9F3M~)eikS&!&d^WHzoC` zDROFyPal>W6&bS94jHcOI#oR^-It|)i-&%Aj=|ec-^Y=Uor>r;qQJy5igys1E8x7z-*^|bZu*0vK4ED*P}(7 zeMi}skhyi?n6dUQrnUHxU0N5A?NyW^pdaFQKCjk`f0~Zy(11HNqIZKub+<#f59qXQ zz0&6K0BYnMZUXRyZI?&0ytLoYf%bTo`aivY3JztiH1hjyNARA5_;&+&2kW7qS3IWS zuTZaeo4$B~cFFGigCaJcd#O>eD+gqqoJ>D&U=xf9)9p2aKW0gg265rnuue|-zws># zQl$Tj!>39?rc?=7Jp`TI&7^4E5W4zg_;# z&FSp@;dS{Bk?%4`4!4}}SQbX=Do5}4dsy?;u)0fAszPEbQPZwU#3s~C!uQ7{s+k{e?EO|#TRs&f>Rbb3t3hhDDf#HRt z8BFXIBPKfihO7(UzQX6eLzBJt&b~v~zD0AMVw=9j<-VlmzDX2YV0^7YkgqmUe$vWYG08~9kSIzN~~FAC%ca-W0;Z#7dpxZW!hbt3K!1G zqFfPwS4KA{&=T0mzM-6F!9Ka zKfT;m^qGy4;q6y66Ag&|2V>_DB}lY2>n_{2ZQJUyZQHi(>auOywr$%sU;S_Na0hpq zlgvS$wc_j@@ddDp@OtjIXr){%9Ei**`@Z3z=-;%mg_24s*`i-+7|Pb_Zw9&m+a6ob zVQr`(@#^rxYqgER0JC(DX9lL;T0d|uZIIpVHpOSuw2$k8c8;x1JV0K$qn=_zA-(S- zL8t2izqzol?@9cc8g4sQM|7ZL7o1PLVIpjowY+nx3;iT}&L4h_f0MT487fy_1~igJ zM24-G(R8CDIBq3(f-aY;TiTtpH`oP+ow3~w)ozo2u1JbyZv^Ugz`rjm>Tc$r=jK=z zTM<>jaPv>tf}boo8Blu9%RC>V=Mn#i{pN0d zTcs4{wVEbLn;$yV9K`cKU8g_^2UjIT{S)!|rN!nKC{f*dDbtzm!vwgvT&@EWKGW>x zAj}5KCJ&^U972qty4?;`@JI9<@223v0h{6PfR1fiAoWbBNo7wS-d*MrjOQ;?aS!TTPJ&Is~3zILY634Kqk>oUZOLFbQ zkRa8gkiju-He{zsXESU^9Q*OUN9(IiIavJpcI>D_sqiG@8Z7!la>IrK)PG2UqN#j6ym+t8S#ntRm(G3Lf} z_%Ub3j#m0RSG((WEn2Dailk;9sRgpWFnO`7Ek^hrpaqAY;tZ6WCcBuneayZzIl@Z2 z;h`+ou-gZ^Cj8J^tuA*SCyEI$?O@({8}eVSRL+|(WBjXOsI>Ll6*dg|o1w{^tRRDJ zYaF=+bLdplsuQlb;+v!>kiogNu%)ekbDH}Fe167-T2_UhU23A+W*7_A$q09#7%5x> zP$WOAT0e#W!#B0%-!urfguR_i6v47JUKaSZkgo2U3C8j6F+J49st^QFfI;2>SZhJ2 zp1l$tKn6c@OLD2}Ved(Lg-h$S*3}{Jw7ujTy``FsCyeNPq|B?z;T(7pB!`AIQh4d# zT>v3o*6A+Ig}^cLi8~yq&!GWYWMwKBBHBliSK)x#O*NV3xfk@Nd8c*pg;6$!0Q|LX zdADJJes7DCAb$+T;-p>6Rd=wr&wci;#M=LD>?d)}H6!sSJ$|YGv%VktSYp@RPI0rW zyyq;1(kpG#V}d8rNq$l#cHQO4xaRH57|WQEKff9Kf)En>dgUmT1@@ z@#D^DrgS4f`Vyk-JXVB5w2O;+)QaSj{6`VZLacmVfh;joE-8p9!7<{L-uX;XTUQPY zoLpL-2m)rkR4L^cWIn7}gnN`+E$3h|%4{R5iG6b&Vu8k2^gaBYac(dk*5S-h#810( z3+fzFwNXbaO3e-G%kspoy~cl8Lvdgiq;D`NVsqb{zNPkuS2rmpqWV^A+N+gzsd%Gk zo%ctk=KV|nRnBHDbYiD5*Vg&y4aJkQqO6UkPPAaMnkO{h`Sx;U+AgB|115K*TOyzR z7&HGmrCekQ9J}+!`RClH8$CbohnK&R0oWzdda02eI1>0W7nhM)8)hu!czGpAnue+W z`iFVGAHcXAaSwVlg+kSDoEHA3$ zjX?HqxOjBAbN(W*(mfM{bs zy9Rd#(P-1U+rG#CJ$ENN9Xr0?4sUy6o&bmu&^p~-w`Q*!+TEK!Z-hk-3Krj~8yCuw zV?-goWpLlS7s?nDM8KbI4`6R)vOBlaJJpl3os0Y)7Q{c(REyC+tj@_2vM4nrw>Tzk z+*H-oWZg|X{o=28?=^J3J)ch#VJSU+$T}W>-L&Vx!TAVHAkJ5)JiZd}q0~gM>7&x= zBOow4StcKAr}wEq!;qWfnd$g($!A?6R(F6JxhE#cDm*B+SXYy@?>Ff&OXFR_dW`&e z1UBvDnhV~lV(zget)(|H7SaGVLS)rStkhFp*9}#kRaa{??rb&%wivCMR)|pjyMNE+ zueDt@G`!irW0GG^@ZSt{CPY;jrTR0}#? zdQSN{E)Hkr#ERKz!adV!wOl;nC&>usVQ3H_Ot2PyzN#b(m|A6q?&W7el%in)fBPn) z1dI+M%!eS6)3)M-+aP^jk5s883c%XaT+W;uqNE6sTp>;2_VcX-PF4P@ouJ~3-R@SM zX{O6Rl4P;h7GKLXR*ipwe%JpaUB-H;&%$lPpJ2F>>nZR$8>_otdTPGzIo$L6H{Kbh znUTHE{s;BMIG$1vu}692pYX*X#KU=ix=dW>tXbq+a~f&4jSn4rknVFfh*c(0#_VG; zHQyG#3VHnTlL2ESjf#LqonqCcYycCK`N1DnkTBWwDS`$dn=b}H<}lk#srYg5EY3LCsKCm zWR**uzM?`mWz4jOdFYBo)?$8Dhu+#7D?Bmj{9FY7CQ^GU>_|AwM%}i5lsvy_>>E7| z?4U){NllUN(UnLN1N17KfH?%-e=C7B{8gr?ejCWGF>Iy}NvIl&By8Bk1Ww{Uqm^o9E+ZSE9sDoFsP%CS z&Hq4VOL%-gu>`pZ7!Yeh3r|)!VS8xCPf_VBk!Zq8wz#L^J|pk|(x9GNAj^D^O0XLk*K;%#y9!au+>lKs8?Z@O zQTAB?uns`knUsZ4%Y7-7F(MP>fZs)w-|5xw+_l_MagWuG^DBnF;OukqUNRI|86jsL zDW!qyGF22B*fZ1pX>MKbHi9H{x3XjGc#Ae8up` zOO|-p{`^2+T7+jMsWk}>h!1G=)HqhJvNNimQknwnETUuo2KI@=FoSkU=}a%^7u_!H zZApY(7G^c(;u0jd%b+ONmouA9!+n!uNhn|0rf;4nH$qX*VY2|EKUW_xW z77IpgUks-EyYK%=QpI4y*7K0RU`T}>t+o+Z<5#o06)z$&kTm5hYWz|VznKb6_l!ht z?|k4lZ$jZO!A`RF(j6xXovU2cF0`}S{fINL+zHKED{mjk1J=GE|; z%$;b;VW&SmH@+DXm8si!7SQ-4${=1dd`PDXz<>Y3DyrRF>ympl6amt61{KR`#HB6l z{8n5p(51YiLDSkRLiqt)TC!Gr(|+>`5U7QN zs#Dz7qCm(q2~*`4o?+_cF-vmrSvJiuJJg@+XVRnMDenRnybNqG|ar-K7_2H|t%(@Jb$ z?GHvQ*(Q4((p?}P9OHlup(P8#w1zf|I?=t@U9Ytgr}8a$Lpq_&LwJxF@`Q}ID-Ujk zwqG)fGTsL_9eVw#YKnlH!4CvY7vclgBUFgh3zunmv#aJ>KeP0Oq+-Dbq%p|D-x4|U z2Kh3TaNDXh;~cstw(QDH)(k+2x)w;Ed8l3kFQEyQBT#sP$E6=l%lBYNJCAls%M!AR z2I;LPC&~5A?gR0b<*P}#!@(xrGY_h=Xf%`YaGj#D`4Z@&wUoUZ5~e;zXB!Fm`kT^e z=@}P?pre9|j*$BGjpn&E6$94zA_2^@Hk;HFP?d74v&lDbG?TYS9_u71xuqCo9D$`K zVrBEWL9yUI%9asJE;8OC{cCxy-{Z!F4rziKwBXG*GTX;k#nGAPu5Nb9{0KW^Y)>DANsJ;Zq<%EkBM2twuO1--C9ysW_kn=U2L>5ukF;rc6D$Na@*>$wYR}E;D)!c z?Z~BpQlO(@AymV=MSW_k{8()F``KwK!L&y%!rgU_lSosFbiqu|ZO3ItQLrY1hPn({KJ7K7ncmnidSE&*VEY0G&Y>|icV}f2 zylT}bBH_^&*=AUPoc>k7t7Kmn2?Qsfvku=5n%1pF&vS;U)q{z;YeQlextZZzjb&$b z{c{@wRE)-=i^*mLOxOMi6Cdv8-*HABAH+vd$C)y4YozMqcNGqtV)=zmF}e?{fv^P- zQ|B_J9vdk7#9Ky1t6@r1RZPz{%~kaJynbHIopq{SjudG*nAMbS>+-Fs^u>rF)9|8D zWuGeXh~p<3Q`{Lq5KJ9~1fYX4PYzZG*V^us-+-5s40f`_m&BbuR?@w;4^K`GPXc&U z6+9a0b~7vjEg4~pJQqy_tDBiXA7hz(Nedz%<|91(J;dTE&*y(8}XhG=t=S8<5Eogday>Uc&|0tTtsGAWby zW{q3RkIfyzBaW?#aEa<}NN!iK^Kg9m*jgwQ1l}DP^^g?LA4T|@%4*3}h?(zj#<+#l zeZHR)IVvCYZ5`UnOJR0BJ<}8rh6sYeJo!ni!iL9dqgqH^&2l$mv%DD%Rf*V_p_*>7 zIE`G$e_9xb2R;*mUj%F+^(WQ|jLTo-?wsRAv$~0K*nFTJNK63Vx>qWwEg{pO+D+_H z^qo1p#SjO+#3{6!{v9_zLgL$%Mx}$=Q<=~xay3I@Cqd~_-I(_KN-RGo_y44R^<3fU zvw)qN@Rqmh$^%1kE0^eZXsB5Q#O%2AOpFF3c-nJ_8b&7VSAD{ z)yJ4_DGKg}&mLMFKmySS(FT{ilS&ZEczF^Tl@}gyh)7*Q4!O0h;b*GKuvdEapCy7l z#-9UDm1i8|mC??&sA@lE;##;BwkyC>C$b4X{&nX7g*RfUKt=cgm@&GAIFbp5gW^vZ zVA=NNG%Fg2PR@cYagbXxdL%nxM&@9@-XGGf$h};P(xohAEYSt6yB7ypN*`V+d1Zd7 zce^0C-h3f~M$Mtc8x+l`&{I?ziH)gc*>2(Kfnb3L zUH|IZT77npvaUUO)!rAF2DIw5z-%f6H>J}X$Pn|s$)nRk7OK&iP62p}TiwOpIS98o zOcr|D!wJ`8zWnCGAaY~}=QlnU@^PGJ1H1x`(+%HIHh-}eq24TTz3#|kVV#fm`sGxZ z={rTW+SatQ#^fiBF(oG-7eWJLK)Eh3!(7Ueng1obb+z8jB0r);-2LpdkM>{JY>bFT)*z5!Suo}yCjO^_6W%bgQL^Lky~+Cf$;t7ow~-ewzg z=2&Wz+2q}?KJuLxm~#DP0+m&}vGHirFw{MvaAKp=)KYsMxcU~MzFyP)$L(T2nmx`^ zXcXFTD1(l1)3SNRV>R_gr>VI-C1Y6B-0)z;CG`Hj&T}lOhxvm%r-F<-XC`S$2=r{v zN@n+niNzSsQHx==xT#_pdBb#pM_Q8ZYkB{5?q^w!3A!rAg|+pc?C@f7y;=#e9W|&h z#L~G{dX4!F$>}u)R+M>+*HSL(&z8#ow#dl9+>UPIWmuMShU1Bp( zrxQt%hoj!&%NxyP0bu}0o)AnQJE9Dp$j@2U;(f^DoHNe!a(FR~CiBaL2>HyxPZzwW zsCDl2XB$?XN?b$AkJh*So4JO8w1-V5gybqt$VP*+nJWaI0W-AZ{j3Ru?5x6z-%>n4 z?a|K$)3Qw14CAvyQ>I7D#q9Wt@`8It&i5_fT2FD?f4D%h{#Vf|CPw!EE0}+!B^is= zhVbjHcx2!RBZ#!sqYnih1N3BCZW+R*HaGFt!_kv{`zRw+_i9{Ku%z~M0T@__8$52< zeu{s*|HwxT|5@DEzoU(SPgyXfeg(+UrQ`j%vw!>OImj;zV=O;9pi0KflUC!+_Vr0n zz$tQ)%Wg;n_5F=B-*)iw;zcbgT?p?$`z+{4RMb`%wrfd{tUu79-K|jZ_L7_v7qPXO zmUk>6#uT}xkG)}dokgz)4%hc~ohxyzqIp*CQtgOFKfQprS_?=syFK#%#J4xa>(Q4$-7Zyznrc{d-< z&Wvy~l!Yn?ynxA>HC|At+uH-`O}LI>w)LhUqcyHQ*JyV;G3V{y17)(jH;m%60`U9QoGevvXN`Cac$wXrfGU0NXxpF4Vf ztiUL%7m{EqaT%|^Nqol3D(-8Q0UT@50d(IV>0!S%~B{sk|$E}eQ2U) z!bx_izxu751UwTkf%o6is)F?pAOilfL`Q1~;z0pDCoJMW(-4XH(#V_$oVU)IIWUYo z`a$#$XZ>RCgPLN>UY1A!;vy?lV9xf2@l``smv*KdY3E2i>vm}r=y^67^SMUTS~A6} zv0rh%E|hcK%0tc$pS$QWE3vnOmSqbG(J^C7PR$bB<;z2`8A%RO(z;tQJYnSMdC73_QveNO9PloSq7!^&uz*$M?@+Ds9@Eg z4B5;yGMNE3R~M)4f>9jx3a2nWU1X;xCQuCKLh({U3a)4HivFWxLsFYabEsidY}Lg1 z7XHxd)}is&Q;u&24K|46aCGnsE_ZM;DD`-r`VjeT*`zotTK~lq!9nu}ZN=6ZZ&G-_ z`^-UiqTZnwhC{uVKO9wxdZLd==$}^lt;&X>lGL`t1Rc$L!MO&-2VqdD`XO2>m`I@) z6Vwk(^6-r!AnLiujL7C_z`!p}T4QF*zXCS{>50RRRs%$9^5Jn?F<^r0+<2KKbaYG_ z0f@WnjUnu{)X#%E4xM&jX)>Bd`bXsX%mQOs?%BSkWo<@D60^Xa8P$`RP9w>ltTl;d@|WV38*1swQ?=R> zi=_^*#RZr|US{!GQHp!?;ocp_Lit^ZW*Lc&gP8R(@Gszb&4Aj|hQahC0S-x9GajIH ziIrEC^{X*ay<`OwjSC7&%t|4W@`W)XBemIVa_0ySq!0JxUp|k0?@ePO3qUgCAB{z~ zH@O99nElL=A!MTY5wX34x;*wq8bHDvOdp2L+{IxJ{EjdfN^i+PkMvE7(=P^Mjnzw? zc9=Z$%MPt_v71q}s$AKVoop1uMLty~`e}63Kr_@peo0H{ZYM47q5s00@2Y{=1VPz2 z!*VCOEa<23$@PNvnD626!DEXrA2D`FLzB7J2{}fK48FMzkB^90-sG}&pQdYAlO|#( zW_or3(%siDIw~(^BQzD2tYyMt=#SPI|cifue7S zwg3a84XLrYg|(Pjt_@s|7LTu-akf|)F97UO-o>jZ!T2L`!P^9sDaEhS<)w=Rm`o~Ask&`3exqno1`MTu^ByT5 zcH6Mnw^O@0IZ9CqUcDva{powlRgQv0g_p@wBod9#i*8zsz1vL&Lew$b6&uF+Dy{;` zTCV`=si=Z$;)t~)7s^Cz@2l|fh08-GO+lzar6rg&u4#LUq%fL;I;TBrCxA}5&t>Sl z11-`O0azwmETt0J662+UkR}Wh7!0JuG_=Mkh}bFGk6`IH8Y2p~^HDf!i3k?h8aSl{ z*{74px?Dj)YRv8P$mgzK&BH5mAwo>|tC{09Se_Rbr%$dY(r=27U{CJ3g<>T32L@2b z$cNeyIgTKh>vwy^5KxP1?ir0M97hFGm0D4R#ESb9x8FyQ;g(6fx8tkoV-3kK^d~QR z|1+@#DdsFyU}NRVZy2z!usJoN!vi(n1SgKEtI^fTXt2>Jrap@qo$a&JtNFQ1KLaNl zLVpzUVtKU|W$nt&sSW?c*NZlP!`izm+H~5*1e+Q0tXleO%fiKz5yG7djoXFnyWAOG zU;yXUvUtX?$0vQi20bpFezzt{yf}QjU;82Z1KJfvA4*QjdON7YVsA35mZ}^KRGbQO zJ3zZ2?iw<+MO3@%1*_Cj=e!KjBD(!}-kMNbNV}jjxE-^;*cW#Zo&?F~+`5}@gu)ph{Z2%LN@yOl%6@T@P=^m8H zi16P_TsOS)xraMiYSM@=`{X*!C2XoQ@i|TEQ=}UG#SxF*vOkb*u=-7bi=l$uDbSTn zrt{)%i^Qj)@{>k_VIveL_Ohb1@q#M>WXT&y^{j&Ah`|ktS-CNeo zCbY<)3S28jAr!~2a)WyuQ*TwFd(up2i@!Dpm3w^&jcBGUIuHYG<2>va(y6n9VE}O& z{#wwT$CLEcdIC7E+2JpusfRP60yc*6Ec!ZFc+HhFP>$4NHMcdV{Mf zOSK+V?ert{V}03aqe$moHo#A=r98>>y&6ileF?Vcs|(&h8;ITy>G8`OklrA1PC;XK zRfugt2b)HDcF}ABy$4ZPR<1 zol&GVcx^EchqC`*7(~{wfoMC)c{P*$*}^%#79B;N7>=vRQui5Tm`3RgYjC3o%S)_- z7cX*p8wCdF4YfK`?4~T5^`Ok4zdLhs3Xrfl$RYq)p>S*2$@5k2P_(-A?Beo&XfrQn zFbh`z&U+)kB;5%Py_(`1WKSf*r#7HBgu<%??G9gOWU8#67$5F$ET6ywFp>V76F)E| zK0F~PEaXxotx~=!CJDX1Z}e>XWSoIhw2>ojXjYkLd+NT7l}X7fEE<4y3TM3DS66ie zlchI6g&_VbW$$ZLe93_1iBV!2r8ok0y-m-mic!*4yFAUo1}dmR4oTCVKEF<|qowTz zXBIR%!d{OS;z}e-^Mw1Ondafl=B|CyY^#mM?08D4%CqqX01^ep00(}Yd~5Zp$R8RZ z1XHiq9UM^o_E`j3zTit;D!P-Eq5}p7qoWTy3`l?yI4EJ_x$-! z_ae6c%9_K>!uWqK)~+<9ZJB;O=P#^o+}=frMqDheUWjys3f3e2(CD;Jjt2us3}2122znD?>j$ow(nh zEl%_rBw3StPf}GXdC{RO3w+s4!?{gN8lGSGL1Bvq+fB_SXyA|7pA&q#zPT7tmLUfui&a7*Dt^GI5n0R}L-Khbk3wO>)_%Y;?uNn~x9Qvv*hBwc~S_?Cw9{GO= z7F&1|_NN~K=U-pE-Ypnh9v0;9zRcD$fvbA>9%jX$Yy=WeSzO4>M(hnt0G z#|=w;MuRM!Z$4Cd2-Kqi?;(0vpwfLuYVC^p`g-!}(yEnGFLj+K#znSdmEhC%GP|&htG2Apykmn< zz`PpBp89(5y2Q1+u6Ntv{ajGI;Z`UJe+e^bHm*U`m;u7?{ps__5qlyum#Mz}wNOI{ zHcs>5O?olEDbpg(R&K^aAo)HkZ}Gjkr|OjOZ=kcaK!`K%HcJQtCU6z~AV}YfJ^tjb z-)~KU;0e8YjoM;cE1lQB4@?k*lTEg__>cG68&oXA0(pWoR%~wfjA(RJB3L4#v!ylV z8Y|9iMOZa;oR|TObaK-XU0~`Ig=mx1$%bZAz65#<$iEdqy=1XnAZQY6_BLk$Ud` z#xwHE_m%;VxOdyL@?C<5le( zmYLZE)5N+IcTvZ6!{`I}UH>ku3Y0>SAPb5?j*irR7tqA8X_3W%%5_SdTLPmYb0cj^ zBVuvm-Nt&@EmS{bmIPP+ZmT&hO0YG!`{6bi_JQgCzUyP~mH5m=JYds8y) zPGw*J-9hM+4v*Uat2vwH6sTaGD~K!e4CSL{i85v^2IFYg)IWxEK2guE5GZ_a-gP_Z zDL-bX5)pInAVFqw+2N8Y7bTzpA6{W9-zjX< zUx!Du$S?tIw`xgt7Xr5mj*4q{GyVFBR5i6qvIlBde2&Y=3FsAdlVY7Vk$b)CzJl9U zLfvY7M_V15Q&P0&dX4E$=QPVSpk(_cj1={MQAl6|=YGgG$?oITLK#;l4BecRu}9wt zU$SMIj>i0ZTpE2TCL)~V>JIO=huG0%SHIjjDXEQcI*f8yUyNaTn_D((iE};sNowW4 zsdphD2%fT~I=?{V=Aym7q2bK=`S9JtSs=%u@fdOduRdgX8{*ARfI5Ko7aw_GRrR`V za$JURF}TZ`SzTP1rb`-ZrrB{QdJ_j=pFYVbx`fteNE}luqU~Z?xr(qY2)J&;p zX()JTYi`@xes2EqVX)`hsWPx0@t3*h%a66fgmU~~g*E~1ov0XfMa=yq3N-J%7oIZ; zEBqDfFrEj-agK~h>71bERIu^I!Vwx3cwy!ANNP@@!D~pIziq~OQENX;S~AZm!UBz_ zQ&Bv`Lkb#Mbh`ARb2xYb%_;N$aM4XWtVq!QTI-85J&r{0-0AoX|b?VB2C$E1?ky>niF9;n}}#U>E@8ygVo2i`sH&b%gFsFi5$U%#`Zmjamx`1 zxxFLWvxY37L}`Q1gR5@baVuk1&3N}2Wwlz-dm(Fe`TF&fg_RBY(7=oMu61U&YyJ+_ zP^eoVo1S&2sLYJr%3W~jv11IEe(e!XIfF~o?KDPSaY@+TdAydF!U*$wh5mA76`H(M z^oPWGR&_ANmZJ{T|9qd_9^eNekv*3au!+$GCt8UTJ2-Gxh5O-LgqgR$U{P z?gigxvKS(<^hW|?1ar{3O<(O?T*#G01QZfS*`4=0DHk;ZT z(&fjfPlkkCdZN~=h9P&j^Wxd5K6PGwmKKZyp01+W;MVzZcyA~lS?FtFU(1da1UIqZ ziuoGM+oSFEb7lW_!8ed!2+mk~beAM5Z}vEG@R0H^@w8A$RzV|IHg`uy!W55tmdnjY ztx4F!;r35VHw$+q{3}Gxo9cTnRqVUsdSB^1)U^AOWwuz4JGS-O5N}CV+;+O-`xMi} zH3B912Zl(&_1?t+S-*H1F2xZ9#SM5{Sh9Svv}3_AUQxg!mikEr*-vDd@ZI>h>K!B|uKDuG{5S{{ z*BaqI=7PA2%G|5{%fG+>1DntYlN(6`=z|2etawNHZV(Y*wFFdP-Y-A1v@i3JZIPNZ zVVHQ&l!vbqzD@34(gTn*GoD&nG^M0By- zv#e103&!#XFVv%67oapZY>m(>BDl~JsS5tGC*5wx5~@^%FLTzIGUUdCha3LQm#_gg zvcQW%n~qlqBse(n@JP3OB)(49b`;#4V-@zSXCcEv5fnRB=hTLT9(t_5^>ZBA4GU2O zO`lMN?vgJl9TTm)4WKoEjw3A|6N7Jr=wlfr-awK<0l02Fm-`ZJwkkIyH2d4kBpW3G zj6_l%S_OGZUUAk3SwMICkXMRskiGy$ul_LUN>2l1v>;5OYx>?snE+eQR$wJjl71ld zoE4ml_QKlFTgY+8S@S>uda=2$(3O3y?4=3|JYIfs9W8ZHNnK3fEoQji@-euub}drG zWA@VPH{0I+Z~&-h1NA5Wc31{P4+$7uWsS9l2nQK08=NQF05o97;V9f_M9Wa&0~{%~bLO=gtZ<_;;4Z zf`olK$L@&$LTr|>Ps)y|1a`JzhEO5q)vH z8H;L`-!phA1@%{WMc8@V!wGU8oo>v(hF&g77X|%ekSt;#ie?*1>171V%5Cn2cZ;0O z*;Im@*&F&k|KxfS@J-FFg-enWZ_g2hS9`dGJ^`?d2pElV`CB(lVdAd zs9YQ55Os{2L_%DL&E!#2ckekr-zjUy0^~~(A;?Y+S4!%hn4GUaeC}OT;0D z6e_Vc4mx4EaZ7O?kM1(EG3eQ{|D5TJpsDEuwYe{`-sRXx?J1Px0}736s2`i_*Nla? zBD&CFAxgdAh&T2ZWoSm%)C#g!0%|SuPgnZ0*X`L)1S@6RVmX~5Hj^^TjK$J)%4QUp z@_e~z`B3wKhK_&K;VC8zjR!Juyl+DJ$q}!1Qgl;hGFTG5hF{W&gOkz4&lg~>=pgD$ znW)8u&?LzrON7&qR;Cs}w*v`>@?6%oW93a^*sYpz$J0ytK6751G~;hw*85aeXADWCv!r?EAY z(z4i-8c34DjQB`X6EzCe8Q(>7doSmN=ULk5lqFZdbEj!(RF&9?&jqV_dtxFz2shE+ zmLn6?L%H(%_ZB;`5^3v;Qn?#RGujL!GBaAsqqk^|-U)?+lIMa?T^}@}i_mjb(QR-H zKV4xfLSh$TyQ_DaKdm!!K`PKFS(h^x-{2%S)oB=hHv1TQS(7OLb@<1@lGw~F{`lYx z1c?bvlqiBN!D1RzTf><*$s1IKWYwOcP(dwGq=zZto1e2{ z`SGTgdI#w=#rVd-Jk}XMG9R05Iy0_X1*L&8W!Z3WBUze7Xhz|)zK5Y+Tgbc4{>f>e zD_mY+OdQ>Trf(H%H!hBzo!8$`4f#0OSkhmSiW-ZtLDbev%{y!ov>v#Kd0#gAiFy&=ooXIjs6dXC{o<18@vYK~Iw6tI9b((%j%7&K`V8%LIVV zw)%z11?x+qo^GUW0WYu(U91CJtblq2EzY*B5DSuM!!#aUK-d-F=mwZx{nL|=pKHUtMOsA zGYJ8AOC3%#0pv;E1&wrk|F4J9&Z5`uk8Sn|4)3W4;hBTzBA#ww&-HbGu%Vc1rO*L1 zN45Ye%c_UF5&2bYyHW6s7Ej^_(^eN`i*HSSAl=@c>mB>LIbl*W<>o0f2tbx}M-nGx zg4=?N6IU12TB7@DoiTO^D}9@9;Syxa_0L~f7pa(Q8>8R}Rv!;X4D=Us%#WW(r;#L@ z*+h}&mk{!c#pP&`z!R%|hy4o4s@@jCfSo3L;)QCsw>-D^gek4I45WuKhj0Y)xu!(< znxJeuqnGUNg^g4F{77}9u^YG6&nk2G?+8g=)fy-7hYHD~d-J#Zr0#6w2my z(pftojrdB#^#a^67!DDD5P|z^Czt+{DnD75w?DmasIrTNUi!@P?7^HFA7~j58Eogq zpscWrjxGL8a1+o2GjG3JBQ4Qq#$p>H=ND2-F$Ih5vB))Ayk00|MpDlfHG6w6BN6$D zz{Tu6JHOw(QLwt|X>7Sy&8ctYG$o@N>^9;1(I-{DZ_c1=*wy{+YzWeC#oepn zk1wO%xBUN~;_MCztPQnu$V$-nlTKf3dfE z_b|p}yzJu}S{g26l0Y9IvfytcZMB43ATWz{Anav5B3$F4pOl${Q*rjgqE6M3wszO@ z(NPc!-W{@~H^{HCV?&M{ItZPzAU#rl<#RP4u5flBgZMhcZLnul+l}FD$bTQ)Hd9hst|HS#1V4b}Myh5^seIaM){8l_38El= z1M4WSQxD>9(se%*ZuuuMjtVg!;;T_wP;8kk!!oM>NL`I*ufX9&+IQ!QjH6#WSk6tX~RN2;$EkjPFOmU_k3xP!$i27jnil$69p*fd>W$R zBba-$Zko&#wI_w)x{nl1@Jm_(-_I9agL&W|vwQC|(*2{kTN7S{aUbL&wSVLEkc^m- zuju|K%gscrRlyI@=orVAh^0?=Bx7_qa|P27#HlW`yciSf7GM8HpoNZJQ>G9LlK~eU zND8UsPX?Tn3)jJckdsKv#L2mhsbxlm$TF?T1&56asV->ca~Z9Z2am&Q+@{F~JXjK) zOIxae;DZ?RbjO0u`Bzzz%y4Cp>|Z%?5=0wCTM)LivdlEFLnbv6&GD{uu=fl7oo3VI z(-=?ENsE_?U4|(#h>KDct*qv$(=6X$$r@n1^@&rqw-_BI_e@J3-XL4pwWLl_O6#yWyl&3ZhKm?5abxlm5aBjSXpU4%84S4m%+W`gGOldLq_!qO z)9jwxp6_3^U@)Y!MrEw|&lGFb*Cn4N-&@;-#E5T1sxR%7^~pwV+l2mC=x}jc0*d}QbCMS7up<*)9AKC?^nZr2#dgF1tecg06cws%gj+CX zjGx7TKCg*Zd9+SU?wuFs8wUvqHO>3C>Q(!VgZptSC&;zU8x;SN4*yzwD~G)@2O#R! zXp(CUC{T`zHztu8v3AM{Mxe~^B{tYCYdBis-+L%7_redjn-=3o>cIjGM-%PoO)Y$S z&Ct~sPQ;VkrnkJ*AK;(qOaz9b+m-u=)P9q zQs|w$O?Rpd;!*%^n|weX2z#8;#irswoFwrE!CMC6`isCAW08B(OL?po>Nz$Mu6kL! zi}*an&>Oc8Ql=V(bP4QOgc>75$|$sMA2*x?t`Vj3_Z%{2Kx^JAA7@trA8mHUEcBuP z=c!N<=xQg3@z5>*bDrE96MP&hmkAuN5a0g%v(j~$xbQ?z@FKm;CD?*a4DejtOQbs^ zp{Kip$QRSFUH|G zTRr4a?s#@^;A(@&mWG0z5zgw$A9#SRq)z>Or%|l*uR8fThM3NarQJ-%S@{d12*=b- zCEVphe)8myYEpe$cB%l+jbV8u%i%$JEK`x6y zDeZSZjEyx^QS=gau&u>=kFYF{KASi$t17*-or=E}9QlOtgpfLZ;OmV4I{oCXE+%Oi#`alJ zPKH+;77s1UWJ+H#l3}yLq8VrmL$hKqZH|^wD718nZdy*fqQs=M*^df{fK#O!l+qI@ zq+i+AJx$LPcGHPvnfgiRC7OQ_0VH)*I$k#U~r5-EWdFE%)mPDqQs2OmQx=-bLyL>gw>Nqw^96@gRYaEN*QhBnoC2g}QYy#yeksA+Jm-? z6;>t&r=^Wzu)Jt)^bV~p8kA};iUxSV?{_qg-L6QL?&^Mhzmh97soRmOJ*hi_chnzF z#o4KlZp%8X`2sef%8OdE4OLB&=X>YY?cir2u8?i8biR_>+exP12Djim6^J-5Vx^>X zM2g9;i8XBHGHJA8<#I(ahvgMI3}Qx3=tFR_W8sU&_(x|qgRl=W4uC~f*!{K+cAQ>% zyL7!-6I6t!s}9z3#+CdMtv#+vg`r4lm}}FV^pc4$@ZT1g?1+zQ1vWiqELK-Y#-5;8 zOUSFtM}876&%qENpS4hN4eK@FaDuI%>Cf^54*f@c-T~IHbksAv-cm*<;3Oh87}?Tw za7QN0Zb%!4&XBb3=S4UE6v2c5pDdLFS7V+eKQRP>Pb$rRa z2tX$d(MRdM zedTMlF8-8mAs0Tj_+7HCwB7LRMsa2KVB_88G-{^TT3mh-XW^(^;BCmTTKFvJ>iFlN zt(QEuq+=${arO_f%Zxu}_gc7|z>J?(SdNg6JW!xD-wuR#`X?OWqDDhGc)vS>jUv%v z-qEpYY{Df_IV@QTKnBVXs=uFT_19T-0+BY)l=#0SoTzL88BCl#EZA{t=a$H;#?{g- z>FAo-$rrR5c634!Jr>qD%z|lM+C30IIo!s2K-tTol7N8^ZFoKn+OovY z8T|xIm~E~!oRIbQD0<@_oyn*V?n3W%02bwTR#o6azmG~epG-h;J1s;L+0U#1Rh%`% z*3hd@L|i6ow0(^PWb$H$TopWF^UJ+3fjy!ds!Hr#f@p!tRUw~8g(?{;Q6@~4AfF|# zt-A6T`PK08%%NX7PI{x~Az)O|6@fc44eJ4{_2`ZWQB|?L_G8Pw%OYCwPL?ulUP|)n zSl!?RZCI;SqiwPjFO$Qlk%H*K+6PJ03eGLCYz%C+Thanw__NNSN=jmBJ?WTAfHQbJ z5)MiAWa0{ssFhq{{8_zfjB@PptU24uk}rsFnEb=Gce#QG=fkgCt0yC1bh54-ECU!ywt z+o&%=bY%2ZUnznGjoMk}`IdTtC}DOSeY}dRyk^n`uTpvuC~N~{erz^ zx>JZkEL~?gk_EzmeFBICAq2Qxh(-;$Z60YB<)N)RZZg!NfL=(_k-tjtbw25iZhZM& z$TV@H+2Y6!FRpumBA{n<^En0)m>u7Vg`uzPpq_XFg~8^|@GZpY8zd^j zloS(Z`MrqY=5T?kGu{cC1AOYT$W3$##FV)l_m{)z>^4Y5b_|He&-M&Z7~IHK*&sn@ zI6d`&4_sow`)?@)mnF#t23HYrTc(9da?y}Emv5p9js|}>_z1Cji?SQJv7qLM9QwH# z3svuL^mWM+)}G>@iLCj-#gClpm^X*Al8mAWi1e z(9h6EIubqH_kV1qM;zOc|Bx1N{8wxxW;SN_|5f195sag$`2W)amMBJy_}tTYimt`o z+()}A-s$J*Y7|rA8%jTZHWU;U<((B?Ui+lBqBkjJ*#N*V;OLkP-zV0w!Y)GXU4USKbuKH=x10R0ls!N<8eXTi1u1y7}?4drQN5qA7|T&7cP4rgG3)8 zzC~X&!{?i~@LJa@5G_4)I;qxTqk!2!_-pI#-B8%Ph*0o^ZWZ+b?OpGijWxazA5jLO zhxK0~kz@Tcjc?dS_W7r%gc~HTD!T*0R7l6WJe_NfRmpABJ#6Nd^Qpo86!_>e8B|_o z;zrPFtq`>!#F+M|#BA_PhSdqT=^i>K56X=>g9=cPoXOvHGZ@R7Y>&BOv}`M-&tWR^ z!WW!r5*@kBqRun|nr5^?2?>T}!UUowCbyrqQUX#EnazV3+s}EDiBrGAbiBWkqI~N2 zIVC==#ks!OzMmPtJkAII^Q8oy0m!KKHDCAJZ8_T7)g)5`287(~ZYR$y*V$b1``_8l zQhKzN+lAMnm3Nitdcp}}PVts?cOXmT`2X4W%>Locd^r@(_4J@XQd@1=Ep|rcp87t2 zo5N2AiX6iLXgp96cM1GiL%bjangFih0A2pvA@-|!>%ZB6@0su8_fzBE^IS>mVXGLl z-(ZpZoMMMb2_M4^3e~U-Q;SJg_@=JWWHnRiBHK@De2}{jA zr^w<~^q!FC$JCcn0Aa=yNsumSQXbgEBhO5D1uF}F%4wxJirPqaZY4W*vQ*$*RRZ7Q zUU9&n?szQb9CxPod;5v5Rieo$R>w2Sc!|d9vlAHIY0&ai4H_2A?SHhSD!?5VjqEU7 zPIE_VF_=$rUwW`cCQH2=rl6Bg7>J~)63wF70y*m~V64oPux0LOgc@wq4vGaZcb}_( za08Lxv0-E=*$orQb_b3{XS?h!Nbrdt3fwjg`Y$#Lrvk8^p^-kEA?3KS-aIWF;Pk+@ z*O~bM44Gjirb6Ofr*^Ox7Mi?D{*#(`TOJOHr4~@%2Gp|#GFTPxubeu!g-J3#JZ7~T zpur>oLm>_WcPNIn3ses^mBTLRanw$c*8HzxR58mOu%e`vnlfavNkM-SgyPCpXBewN z`~$G{+KsHibY41+)0Gx@xQnX7cOOd6U{!6idjvzZyZfj%&xk7x6<;BjJxmc_LoZ*W zNOQAGfgL0x)c-doR!c!N>vgOe+uCllpgS2}XVrQ*ehTY7ePGsqvdSR%q1Xk_r|;Kj z^!K-CQ&ZQK=)UsAUFf0*0;BGk$VEkjSI#crkQs6UAx8&#!`03V+1-&Cb;#wRGoFs@ z;m~Xx&9!@fK{I-*27hd}mX^^YN|3jsCwKLElM5g2-ct820@lyLHe&b zOwqR);;kVK?#pLp!8=)MT)Fp5$9?h7RO>mXi_`O7J_1W~o zBv^ad9hL=Yy)$5HE!I15j@A?+X3pC%H}+W+_RY4}p#T&Ggsrc`TEP)(tBImRPLd_t+-+(w?J6|;4XZwJ$ zuQ}Alc@H%xo4fKOQh(-vlT~h17l?15Obti#1Z$XNHGMb^ua$J$9+;Q1aM>m`ZZj3Wh@gu_~{^f5Q9;?fmSFB`Qh_=2NOHV8(F_NYp zjLZ1QE1E8jT^bm-RC&7mij1jnlnN&oxX(KQ;PzV=p<==Od2zD0^wqab$L(06ec@vo zVRRJW^D~SL6A3G$#~l3F=S2k-%gZeno{mPP_79`bl#Uk22KQW1uLIGnmVK+w;i3Yp^AD7kEP3Lc4WvH zTBjGtJ<0c^>OraH$R(<=f09)m=ls5=!aH&JwF-yWfW|SJSmo^;p{TJIjCJ8s-I>Al zGSi2nosG}n7{+^8S!*_1GGYdxz+y2OMvj|fhn^-6h`u%wI_zMT?=R+iDV`YnYZ{Dj znUY8wAukKdtjM?WPr0$N-W7v2p-!EbL(_SC_TA$fQs=|cQJpF1QHujyZ3E^Q@n6kNBu!k`NXT>4QhGaQ@IJ1*P zZP$50c2g=|tK^rTXef7^ymb=UU-x*VrWn(}Y9yhjbN4_ijA>TlW-)x-ks+yju9;3l z9CS-oby?&j3BX9v*G4L0jvZWQI;4e=t`PU*Dziw&vCUCBtr7g>3aNQIBFUe?cn(mZ zmNj`is>TQLcxI9;lbq-GJH`3@;h~y0_7Cr-Q`{>4rZW18ODj)Mi_;YF71uJiZY>`tF+e4%x5 z0j}~jqHPkCxja#U!A<*eN3)jgEw|v~$+~ySz6<-rjESUM?sCLp zUhy{Z;hff+bw(FfVdOeFx;m-~?7VfdhixBGISqZAH!)l5ikW=jF69i)ohwc2GR?G( zOg*~VNH4*+lC!*VdYHFY=H$1dr4qkbW?Q=+HtQy_RN@M+)3xdL!DK|9azpM$N$}Ei zNov*%wq}IuB641oL?m~WS!<~#`$Nl(+ILDrV+8N&Ly4BXeF1C>BiLDPKHG$$jT~h- zeW)q|e9z@W~lo|2&F zH*-#>8@~swJWhih|!`{j8{yb+nNF zwGca++!*Y}i{qVSm)$oJr(kI; zSC-q`Rm}(1wuJ~x2_UR5LM(Qf`pqO@(wlkUM|72Mvndm)e3B?X0?R5;<~{8?IJI_R z%B{3ehpw9&`bDLLwB?!6sM<}{Qq26g*bTnYw3j|8)S<^{}l8xk%Fn^jzuJ{!DM3u!Y1Ad@hmm z#|FF*JoJ}#*8YY$OvYJmA_a?`**4hfCdFF!P?$tV|b?V|fnc|Xv|aSZSOVfN(wuhd@xbz*v_bK<`-c%u|n4gsc zBO7)w?BF{C%(vvMuIiVc7oPtI35--UUJ!Q9o~07hil0aS$31b8f^q@(*ZU{tlu}t< zg@6SkbB;O1$tv?CShUI`5mBxKP_&-v#+~bn$KJIPc@ZYeDwpNQeIDx~i45ymRLY%L z%Rlc(khkQ{!E&iI1>hzW*uQ=h6=`k^*y4*s|2cvWaGtE$U$X3>|ESJmn?fG`kwe}y zq6{Y)={fL6+pu1s*geL%S#0uX!1EJ8AdVOBo)XAn8CzCRA6F(!@0|CJ53$L3#};G? zo;YQ^JkAA`GJ_{=Tw-bM?p;EO++^3wXm@xVx7x7{=U5Az)#V^R8Vzt+#?x}6qZ}~D zzZ&B_F;GiWY%$vyWN)L?3WFY|y}Gq|+caCB#d(o&K2hF)*AZ*9VGz{gfRIlncWT76 zv;5B>cAxac;Q*``pjv*21w&(x`^YP6@Y{w_afEhfl_H0AZ_DlLZA~&7+&wW}tpF7D z-!=x&oh>Qa@#wpDS}0k(g3cRSwv+r~WG(_9h~e+9TD-c9X#0SCC4bU;mS|?EsVNtv z#r}&+ENp?tQDXHpe=a2G&U{pZWx9_Fvs=JL>H`_{@o3r3ftkl*l4b9|xdtyN(3r@E zJ7OzjDsMqpB%qX5z{^I0J7`Sxu`u<@L#4QMQC_aa(C}7<61;5(6IML3$s49LI(dNv z&1xgulE#PCd3nnDQVr@o734vu&;3HAG!-6N#!Y$43SJVQzEZ|)IEZAw8n3wv1uaov zRt+r;8)?yX7qpk(YF#LKi+~%r+C)P_AEP3eDLKwKrcBXt$C#&aXZ5ctgWH>H+!V`8 zS&l3|(u9s!8LdZi9#ax2GE0AUJqxW#N5Lgi)0n~;$NQSw(I}`!6UR@?L3+EJt8?qhZ`qTaon}&Z`J@GH&(^+1e%DBrm=4g|wikYqld6 zqpqRuFLVq77f)y*Mt91mCl@e0d;wkh;_r1|HMRjBOAC*uBppiD#EHgeRQ+>{t#3@B zBGr~T^wp`KkBi3Yj8gO@w5dd-PvZEivIgV(VCv^AK5De?GbPBoB*zl}=0zgtgUz~6 z-_P~)4F zlVR9Zs3pe;Gf!&a?gu?^7|X(XS5z=ce9Ms5sOT6WJgB6rM;bMJx*Fw1pVVt2R;u(! zy+ul^PVfFZIY|^Gq4w&1nL>=eY)-t1sc}8UwngX1R+wi79S#_8F0bbe`l*@dl#nvi z!p#^@R0lBe?f6XTG#)IMLT-NXO-!kX{;nPny)wn-Dp{tQq}{B_^zphey3atyorqjL z0!;W=E8XZ4&@woOi+p!z$coA9=Zu-By`M9)UVt1g7-?_n+b$s7t5Dqh5CqOrjvQ-W zEG0j_E!$%)-`rQ2H~r?7=V@S1vZy|Xa`Ey#^Lt*4KHFP>jZtv(SE^}MEQ@c6;Zc#o zK_X@2|HvdHYJY)L$L199c;d;w^&*;vL`|t zTw@=^;S`O>o5i1mepMgDygq@8fB0zFcda(+u>oY_W?GxugAR$t|M}`5La${p2p(B- zPwDF@zl$IwoSTe1S($s1g7?U+WA3M<5BF~6Vvxn+Qd26(?^rUO-3e-1H-I05_SvH@8lg;D3RT++QF6(`EZ# zA#jsB6e&f{PDO52?qNZN&L zQ+?tX7QP)LWKk{NFOECk_C;)ozslIq*#D!3YWkam|DDC}hx7dv*EX~Fd%`XSMc=d8 z?enO-@AiFa`#l$x4ED|}1&Lp0@L~V$jf+6|eK@4ARB8ME^SRfy*G^V)RoRR<3Akqd z@!P=1erq%_03~0KS((?o=uE1H!Gdzh05o8y;9jKE5r^A~jXaw%qmbfV7PkfnpqJcu zSJR0K6~ZQA*e!Rrzsh3WHmJF&0$Q@^c*1sRf~^mTptZHKTbcEyra!N}wxW#`>#(5B z*$X$BuF&x>@sWo;vO}Zh{7O zpSmAaBctsn8L6)wOT8b!FFe<^s(@0{Yl01BZ7D65iGY%He{PeK*~!%vITmn2k_(GF zWJ9ykuqM`UC;+2O0*8+c8U~+F3vAwsI%YkgZcTD)IdeJJ|AS>PnRdSZaT8|%4nL8$ z96|4(*}ILJ^rxujF;HVdzPS(UMlzoXx)~lY=ehx=6!jXMHhLuuX<{d0_%L`y*R|F` z@&*tYgA!(+IG&Q?mV^rt!r>Bn;R1?HzUN$oJu<8bdwA!#C&`&|EU%xAqI2XJ>q}6W zr@F9;-z*BlWndKdDrV?~C7&sUsB&bv2ihjGk`YWC8QlO^`XfB|*7bmw@meBcoi>Zit9= zv8P)%_k7{zu76I{4>`khm`epAg&o3js!W$ipspSgxYe7&ry#2+pPPBigQzhHPfW3O z)_BLE>Q8;~mQxT=l+BN35W%V5yDueB7FT>)_h-HG@iP#xdY^mm%S!d)fn^SJP@4Q7 z&WG0-^N$a`Cg}bwzQSN_iBwF3M4Z&kSQ|Ynm#& zIjC_4pswsu;H^>?AKKM4Qoba{S_id1;?-;h-a9~jFO~jkv3^w)qvT`ugoo9RrXuTX zwYnv$uMsJ`2x=A3yPI4AZ(}v$I|Wk+k4w z4`;p8hd9r=%7AZZWfu-E0yF$frm5;EPAbYGbSmR!7tR+Splek3E1#NNyI`?X=vV4# zSYZs{^*yC+@1P6$=RT=yl^7Q+_mQN3(3U`GK{QfgVrmk=v{>~mr}1twZgh5Jn897VfLNeo z)5>;i)Uy3YQQ@(&eU?Vj=$Y0HORp?KHEqOCF}>xIVl)fol3G9$rYl@BeWz%bD{F$z*oUpvQ{fr4E}dG9Sro-aV3ep!6oAp4-e(1$?c-F%zb#;@nC=1NgG*20XeFaE;s$hsC*06%B!8X={ub*h{#XKzrb#m zpE2U}czbRQT!q{%)PRRIlRK-nP%qfgq>TqZw!Eg)#>HT+{#G75%0||jdg8fZD{mSA#YE(T z!zk1;Aut4|DE^*tH6Sw?29$( z_fOj|Fb3#^#sB+2V_{(Wul8*jSpK)ZQ+FcvUmDVLM*R$2Tdy$!Yw=9@Pjb`--~;V+ zK9Zvh_wg$osby0^E46H-dCLfvd9f;_H1cL;tf>60ZcuOxk0ysc3wB@N{;MwcO*h7m z{`>Q&^!=?(p&+OL7?mc^IVEr%l@`~Rn{1SPBux3Y0_EZ|oc}8BtWW>vA1t65f0Tef z^H2Z^L3jtOC+&?W@K7k|sk3vRKlUUfD5$@aqnQqqoO<)rhWWeap-d2L= zm|?#c^$^G2$E5unc+CrPq1TNyHe|dGP6%wNXXvi2{S{1Zg~d+!^4Jq#O-xLY%h16x zAu0DVnnG9x?qWloB#@|zyT`|8$&9(Z7aESSqs7j;ggB(j30Oo4oz}TkLGGGi-slPqt z{$5Ws_*DCPs{NAQe?_V{ZXWg1olvHQ;d!3>m3RdZ)iKQ?I|*_NxVr7T8>=bZ;O_|M zyvB*#F3!7T#P^5|R33{5z`cN7)3Q?$p$F6^$;`-++omy1mBqmsUU#E!ljm*jrWuONR{ltLjgsNmKAz|jA?DZnl>}Or1Zq>H7#7_Ofby@O>(>Gl@b`)}}!ii(`-Jk3(4 zzilM;MS6&PVoi#vYDtYqfT~9u(TnZ5n2HcuwOMs%lSV$6ti#x8D;y#myZ_ytq<<#v z_^Yk>1^&9Nyo@K#-@=1p8?eK48|NG%v47=MUYG-Fy+bUNdpNyX6;uc5=>GV$-G?la zB;#VlaflylzbOq5YUjQF?o`bMJ~Sc%Jj<8j6TY;4zY=weWAt@93E{ zXu;LmQk7-zpt{_e7l9typ-jPz=aGdXq3j>5d}(_L+>71(jsc1mcrzn}JSTy~YOjXb zdF>24f*kA3;33MJe+Csi*P^>Ev76sc?y`#zHPU{nDX1K=dQqE$PqTqHO&gs-+#{A! z5m@esHie?L!yxwrpoGC1(4*tdH$*7wLL`?jqzDtz19l2_yg?VDz(W63pCcgEz2VP4}wTX4@O8&z70NbUg7OwtavN6N`-9_jm=8V z?J}0!J*19K~F)CF@ zCDF>{{d*0U`H-__#ifmysa4yBiD{+4(Adp>=A>qB1^pWJ%X#uw_VilzM^izv%qVECB^aKSnQBgsxmubsVaKRLi|u8cW{F z5Q701ZOoCWA}Mp770?aa#bS+cTLWpjr2z|+0#1XXbWsK=Qo4e%pOTrF3QL~Lc;#gE z)-zqdM^&?H7mZ3((v`VL=haQu#wO@(jkauW77=#P2}fo!uwL;ZIxYnmX@zu zt)qO*7)Aq4J6k|mIl`+!Ol}p_TaA#}sn41cVZ*EQimf`alnIO5FcB(pl!Y%3trPW| zAuerVi=s?=5?1{ag2M+;6t7Q%>Gf2?snWl?@_nd}wJolm)!-imgK=-*M_7BVnVtFP zlJwr|39Jk@H|N1ew%{3bG+cB#%uIl4*V9ESAmnqy=-wbkEx@~Ya_YxA0>}z$b{QF(L$~}sFm(yFFps#WC`HfHNqs+1)Ug1=pVs@ zlfxu+W6)!%jvQBo8Lw*sM6Y3K)alABPt?Y-SJ{g7p_To_s+z5(767U6-r=taEWe2o z2O=Hsq$EsH!s+H2Tshc?X7~>hGEpL$KOG8g1~4aQqF8VuG*zE?Ln{NllZlsYm)_mn zKYFImS>%WI$C=+3@4uM+4?#PQEB%ly&z7h$#mq&@Gv6OezYN4BME~g#!S>%gBA6K& z{;!m0CKj6$uJ=xP8Crun;S)5FkEWhmz;5850zBTX3|vD7ZQN4dk6)^?QKgnDZRhsc zU|s^dRdpHvBLPK}YiMo&2J3ek!Qy{_Y@ucN7Vofidvm+L4<7GdeKI)FYLev4-o9c@ zsy0XWAMYnYt3Q&~Uc*t%r~kNY7EA9x8k^pp2Ed*B_`SYA9N$mQm`p9io>j-n+%~sT z@Ze^N_Go*ti$uVwWq^B_chAvliWDEh1@UE#B%aBBFe(-yK$Heyx(o zc_7{{K zVC2TI*#XGvWg0P`UY0hi?r!>O&)MNm^=80KD$X!Y_3%_Tr8jWceA}9tl)HFd!E>p&$B3%fBpG9HW>b(U9mIBVQReao;^g6IGC}0K>Oxh?2HU|3v@!wt!Z2U2d zXdLMyl_C7DF=RRk$6>6}Ao*;Kaa0qjk#pd{djU+ca0f@I4L|q@W#@rkP)l_-yGD+i zls5mjMJ5gg(CJ^sZ?AWjD`anve`y4r9QCT~k`+4rHI#1JrpqcQ$UnKQsj_lgFjq;(}+AU4-aQ{=!rIdPMxA z&?9+phn#vt%+&ON6H+Ca!K&(|98HBS0t&mo~cAp|3hn55zR_QMBGqf^V%96!8 zEnCXj{OeI-E4P8GL5g>a&8>$cLmfenurRqA2%g+1>V;*dj2(@w^cu7p;J_Cdvvt$N zi^THcs43e`vzSC8KhDU@yOp}^^Nujf1_T?J^a{8<{FA8Y1@7l=BWaEtnFpEeF!4RF zBM=*cQ#}rrZIFwYB_8$pQya4~Y3nTx!m#SIFH%n}yNb}SPOcinI4bfXeLno>saO`z zE{o~PzGoRq8Fh{0yA9;z4f4$Ny*n~%hCz>A;8;`>kFZUHSLe*(m}RQfkEv}V;YPOi zEY;5X^+Tb2^Q1J)IM={U{Px>loJKA)ADm|k;S!H;?&RASS~t#&*_#3OuFHd?`xENj z*z>>GdVTcKP@3!B)NT&NEM-jNEM-CB)8I^u2?MLJK3Hh#<2cDF1)i7GZyhX?xUZ16 zpd4Jhy8~zeD02%JZyVny;fqy{`?v1Pm5!n#mOfWeTAP<;pZ1^H=b^-;+?Bbj)8iKfJMLRDMm(L#nU0SPlm=i*OWS_@*1q@yzhgV^$!ztJHNp zvJg0=#1W_i1~M^zFyXi*Ws2#=y~oTF87GlGL?bo?-%Q>!EJPu3?tjJYz{kl&o*{l< z3l$TJB4-chBLZv)2w=R;X~BU&y4;y&o?Sd$F!E%3;FaGTLxpn=DZ#ssO80(r$ji8n zz_T82=82v&rBgnTq-0!K)B~=7&}R1mAcXUGhZ?Ey9S_lXWMT|jUN%|X5iY_3$PAjB z`G)uR02@rh5~VPv32tM5)I`qJMMb2ffRqUat5Ae`2e?>o1w^F3V#A@s89GJ0M~#@D znM6#C%Bq`sx3??|qW9n1`(!+5k1>?!8gVY86=SohXGsSjxGIR#wbpv118EJNU~jlx zS9hcpLLXl$58s7;nTBFjcSrOia)OdgG2RjL$0lK6H?AX$6fBk{na~1|cX?^zjU}Q9 zC}uTr&2Th8uN{ogXzMx1uTVCMveah5Y#tbVG4LhKi-<)pu6f9P!?r_#rK61lar2kh z4`jP6TA=6P!<-_lrjxvMbwt7JTg1_^RfipE%yb$|vTVe(6%Z3B=J5jR&t+ySI4Asw ze~{6j%Z@y0}j&)KNob)>pH ze2|&RFOt%b=vozOGy)~2?^4}VGdkCjBxZ|YK!XWgFFiy}MJrf)UNDh5mhL>-_y}e8 z48VT4Sk?pLd|E%W#72IYJv0F>U9@Jy`8z}Brqb?v}MrWGxLd7O& zSSxARSOGMD)heoFp>wrBnxdgK#=>|a^P-f=k)}VhG~B}OsEn&9kvbEd-HwyPG)~XN z5FYS2q5)52uI)bSR3-IYxm%W<{P)PGaYtKPx0##)vihs!)ksHjQ;kv6Dm&m-8dnO= z6~}xU3%$+p6450~x5mSQc}kdm5`*0Cu_)U4#Yb^~t&eWQLa{ZIGtQh7Xs+dPxk-p4m%x}`sZx4L8-7|Gl zb-Q4y=Yg(Wz4-+xI|mnLD8iHdgcknODykgzimZQ&(ArvsofTN0_@AU$O@26~{pW3P6votIB_n1%yAW*iI;4)YLe{KK z`HI;|f1g{RgZeUnzmb#DdWT~bkmLs#j;reuL+r)7+zwZDDL(DgvxRD4Wj=$Pd>uO* zVQ4m^IQG&eHNw`Z<4%H%L}Xae|JuT692)S{wzTNs?jq-~cuEcvhdDCwp1%)6?*hK+ z69GBTupNPCxCB`t+)6K@Z4ROba`v&G%jCUJN|!ss-bDl*ZkI(jYhh^BkpY?$^H7mM zn9MCTXto*^$D%y!NWDWAxMHhRl#T+$mUh4kF1UYOoWz#{q;4I0H^v@y;W8BkUZd5= zZ$1o|7RMli&)oRQ8CJ13^dUzjsI-WGg+-3u@NET`l-%InsXH!Xxe{ z4XnY@&?kk^eu*1AG9(Nj+-b_E`pRG9p7f#R7l!wK;2G~Y(Er1j!T4Wgm5l5h|9i~% zXJo%(L)dxymsJ{_ji4jAE9TSA>jqp$(j~r^R?&U_X2FR{rJ_uf+MJAbKmZZ5$v!ah zFrQ6J*!@`71O6QvRX);XA!MWfwHmtn{5+fa)yK=q^NWHFj6i7c@Lo}4q$%*=`FR1@ zhxFG66!~3x3iuZO^tQ;jAZ!89ShmkwqV~Ir{fyj{u5-AkG~VO(kvbY@)Sqy9|9XJW z!M||_gjkSRLc$7Irv+x*FCa|?cVD#BDrCVC$>BbaY7y1>yw(1gE#!y2i7_U(G=T=& zV7Dn8>h3$U?`{WUE7aXol=m-VdN+X#=cAQ9boq3!cqq`<>gAAK;<852T`FWw^};sp zoc%J)YITaecuyL6P<<7I2(@EWXcHGSXs3!9^fwYvuaZH67`$HO z)5z9+7iyX1zJ8t4B7M22NGR|c6u8-EFEtx5y6OwZ`@Z(I;;ihee7%g7(83?{WgAcW zd8KPN7)zlVFz=lddv3FKtu8J@j6ntg9pz&}8PSDty=b<_1V}=ppKmEFNQf|k>9Bwp z`i{(4ewFYrrg6;MB8%QKtPV3;c#jzqPY6pxvkW!V<(1y!a=Y*Wi^ODC3VJCdd3D$f zZK*7G1c}&6dd$riqt3Wzjp^2bm9#4~tZ}J!is?r4)*XE`89ht^Z4gED=ft5btDnQ1VJ zBM^_OqX$_j16%vmg5iU)QArWMy85{Z1tV2)vDedZL^84B8$r?)Mc;E|Wa(j+0shBk zfwDTk$&)EhU1Oq(`mS5S!yFK<=4uy5898o_QMcZNnIXUfU{C@Dt;`V1^%pF|!o^Z~ zY+W2WR2O$BYk#MHq;!)z8jXk%8wE8C^CCn z{O?iYH@@XcTH~3P?*XZA!He@stgqDqJCs$3NueM$H$+EGErr4HY7^;vb|{@0)EC9M zjgQ;HXY;@(4OP)im{#BByK^5DR&aPH1MIb0G(We0*6Q`2!Tma&=kxeGI8Y1LP>Cc9 zdbJyyWoJ@mrBDHDb}})Nf#3nNE;6yDf;|$k-aM{a5t2Wy%g43!#cwvW z^hH7-F*&X}9pg2_BbGZE7O7O5nfa|UMh4O}L(mO0lB9_r{lcvrA_ejMB?nGUCAJQm zauu@EiA0{b_WUK{9d{O29Tv=uiW9xw6WyQNHFJA%=w}9<*|wI)DN4cF;4Qq9#IH~v zost5SsXAy1st;$&54l8Plk5ExYXqxY*x6^lsUw&PoGpvWd1G@0X$&kXfU(AbI#jXQ z#FC7$^}r~w9T&d-o@2@e=hfPneK+Lcd#dS53b21X>nggaLRsvxa&wB1$Q z+Pm(p_~3<*p{Y`m%<0t_F>M1TX-Y~8r4^kol7P{FaM?NG^f5NjiJKCSl+qg<7!ho$ zQoP$dO%;R{Ri&yDMM)9H(WhTSHn5skg;j8qIcmfj0aGwJ4?L$q70Q&{+2uG1%6AG1Hhx0vc@f&Z90)M=@(lU1riYoQ z&YAA8kB0ww4rE<@Y_Z|bx-bSnXXQHbif7TB;7|TE>~HlH*yFb%n_P!>yOS^C!+5>b zRl-cTEz83+b!48b^`qzjGG~YVv0Rz;3fN6r7=A%3ak$2p>ijmgL}a)|QP2IOHD`(e z2XJd?o6hg|i68HsSM(pQPp1D4t;@v0`hOOmPqe!1XgUyQ{-WY;3NBSs@c|kF(O-kI zX=`L02o!ZV9m29b-r1w#?;OK)tz<5&V6g>{Mz4FLM3u?$axB#$%Vhoo5N$2j2Eb-_08Ey2p4hFQ8%IDClX4_=e}PL|JoBK%r&3JTLy( z8oxFV67{LaW=kF-Qw-_n2tjMUKe1!oE>|LKv#|5xZ^C4M$*Hh6O&@>4e(d;IC;=V~ zpD#N4;WKNg(47)DdAoqBHzvNxU(}0HgPh!mP<8U`kMzQpxlLlHpOzY{0{Q#l<^>!g z!q0je;zap+SYjeTNi3Wn?yd@YjJ5}!Qc@o-#dZVi}|N9HG z#6v(=zZx5Eahn@W<5!T+!!5`F_<)b;Jvl*U62Uhh52W}*q#OzecS(Cti8>%?S9;$| zJ@7LYSASqjVuD}AIBhZd{$Aa>KYmf+)C|j zEuxr~-v2+w&LK*WXv?B$+s;bcwr$(CZQHh8Y1_7K+g4Z4y4U)HKZ$7!;tlSLv+voM zI8rs31mcl*nba-mJ3r`*-2$kfxkF~QLGyZc9fJ~Vt$uoVS zB{D43YJ_kR=woJ1GWUZVtq#WV((M>lIh{$v7`1CXwPh_vpScwDg0Ojj!pAyq;Zd9y z5#7`j%squ zxI-Lm6Cd5HWhK?;)J{s907Gy5XU{u}87@D2x?VrVdp#CRl4;6~0Ni?+1hVk&JZME> zoTBpdnJ2PMNT{khWXuhgjqVCc)xzXQYJUE`wp?LP1)4~SdQ`Fkb-%c76;gClLvd7e z&7HLdz8AD3=xc>@SKY0S>(L|-7V_re4nPHV4(kTV#Gai8OvymvAAbx$lUx9q z-oeK>L;gCbbpke3`pu?73Q5z~MwPCIf^r$nuXaTvA8f74JBKLBF99VWQ{(8;GAJvp z5J(jm)(8c_gND(0fzL_t2dFuf50Dn8&CI?ZS06chp`H>qH>djOQxzvX^blHW_##H7 z1i3hG+n5f}t>t=RoixN{Ok)T-?J}hS^Ltjb3S_(;ZA#yz0ddFof>(X3=0?wMW1n=d z$e8`hw>1vGQ*m8x$4VWRuw7K7$h@<_J!91N;L-aGX&_mR4w?8z=NBGH7da~>7V_@| z3Acw(*ZR$_J0j8^qIrhd{m@(^Z8-1>q1R!1$^y~SEzhe^KmfToqIcso`D0V!RF(0# z0%2W|F2i^&gcyuq@XX~Fkkzm9vk*q&84`~#yjG3xr4nZ@x>^#(ItQY- zoAw@%-z>g!3uqCJQEj66o>N@}|MIC!*rUagotlv}k~PN>=*t-0?Kl5qz} zotwBg_`){~)p}(rbaio>MCao!aRi^(zZrYzGj4|)9pU5=4=L14YR-cXt7Qz@Hfbqpu|&q81I&r zizabu4hGXoGBi@msB?)6@P5SXv1BPphQ4Ks*m0gqw1JR$muI1>4#!JVowC94d= zI`olRnVp8G9IFt%j|XZyT(Sn4QM(&W9Kq-gI3dkKl8Yxg_mpc33y`iyX}681O)x&+ zI_+EFN?kqUfAjc$_t{3YEc*Y`%=BOJ>r5XbN9Ug9bD6jGe%;+-P$FOWEyHO*_M~Z-kYfPIlo5bL zRWLjsB6Ha+MFWv?{b$Dua@1XsVijo*$!DHHr4A>lrN^*mV)~U_C#i>IV~Q6wT9D#i z%;F2tEm}!ox@b3HtwEGb76Ul=AePMsu~e2RyfNw`-7wwDo_<=wbO6tisfl&k7g7g_ z{dJto1GO4y*DOxdKT#Cp?wby9#0dl$(rqK}_Oj{8O#>9$OCEBma|5cUVM@*+kMgI7 z(MmYd|8TH-kpPqlOizdb|LM8&GUvji2)uikRF)W(6;6%i6J~DL8bGBEODSzT(}fRA zoo@TR3!JtUA#XYeR|F6($n1D?%Ln&>LN{*QTxdD#{!MhJq*N3fs5q=)D4huy@0qF# z-}xtzUnK#YqrMxBsJBotSfsw6f`G*!#nfhC58+OVdO9ct_u53x4536Sgbme1w^Xwh z268}V$23QJu&JnG9Ah^B0<(pWgSGtlKr?EiemW$V@>n`9uWDOT1*q%Im}6Wwb`BMP~k)VbfN_>$eta4fZCny+jippRx^5Pi*-^Bzm6m?jM$tl5F7}*M9(D;D`;BV4zySgX zpwJ?)MrFVh^Nl1MmeDUCnyMTB77WMbSUdcFHuX%izzdX3RJTq0CLu|(3gfwKMCbd7 z>k8PEn7jV4?Op{^_fZTDLnIWEsf)&m_V+cCExiYea)-h2ZG_3LA8umIsvcwd z)2pg8K^!9+FrZ7?o1%yQ1!)b)pdSqEqva)7^f->V z3p%6}%L{iiS}M#TpkT48+V+w=ZkVL|Oh0|PeQG&U>89J|oMmi`voZXu-Xzx|PBXGn zIh$!H9so%?MP(FQL24n18G;CxRgpjxhRM`NIGkrYhlGkUIm^V?Uo%YX73*(CT`H;T zU1vEgjeiA)b^3vBt1g|Yuq2JJu{kI-yCjac&cq1TRH>P0s~Zg_NM@QcX4J-4#}I)L zP&>XpEpo-rHWshdRe)uT@;BoM=))kI{JL4fH0mo%o9>t{#~QA3I6+~n+?G#*rIf(b zGwJZq3fjBKQU8PO1ld%F#`XsvE)lX)QHOx1QP{3C(v@d73bOo z>&j=RqITw!t&p@$LG{mSaK5@o#`kX_YWWw^Q>IEAffaq$>u6nwKR=(tkWMkBHz#22 zuk&n1A$&!AkkrqJT~MUqZu?t85ST_h8_Y48GQ%(-;v_ z#F#MP+f*xwG4XWjA#7;6{b3fN<}-9CoG{LSA%^S@1|S3q>u9uPK2=Jh~ay^?8R zA?dA9?J{Lir$r=)aC3l`S$aNU71@=2gtvQBwG<45v{xg11(zOQJjO64GJF8dsBj7S z!77=;6(swYYKE)~Mvg~4+6lWf%*el=FOW}`IgJj=kC7_>%A z_|q>j(#REx+fuAiIz=HKx+B zxK`Y_J*IY;apx6*uuB2Gr7FG}8U&xZ26{xkdK|#KP>V&FsqOOEev#^W=@i85NNOcP zmIHm7)Gs{8l`)AG=W`}&MvK`MAb%U9YMiSrmcpi#s>l(u$}ATaTS%w$*`->YvmMZ> z5?a{EP_)CD)b0WgHY@7qX}RO3f^jyVz1}&=WSVd#9q`VpnMVUKls^|k>lR0NB%$-B z@5UB;{@u3-as8Cx+{aM;Ez5bAQ1eay*bc5j<}6<(UlQK8#s^l}DUlMfjlWy0s`5ma z%8m2ta6_VkA9C+8?2FByG$J05vMoeA8u~~~*)nPG;woOKSmx;HQ&It0v*?RWBe6Pt z%}d48?iQ>{x#zci#TUHz9p-SF^CRR)O8KmLY{i~i`_jR%Z_Gv-57^?f+fPeCkE2lN zrcFlCu<3y9)-6+;T_8Z?BiIQzq^d;(zNb~S6H|4bz)Ebiv1?vV90Fmw(7L~k7`fvH z=~|&xI`12EQ&<&L*r7FXGRA_vHqnQy>ZB8uS`(+_zeVUxR3nz_9PiFucHjlXSfct0}6# z!g;%-ow{om;7IRLfCMh$SxZdgs^qqUrG1e|kZFh?9vOn=sCvHxo-aA>Gp-)s+!SkW zaElis@lR0=^(U>oy)KV|iz2`ypBY;qA_H@M8(}7)`?K$I-&`7Ke$nW%jKC7wUu+GA zougj#flSzLfrwR$OxWp1HI0&c_DACzlsU!|XsgK779WV40@n;u8&~`lkuYY>7U|!n zHkO@TVaxj9CN~SE-ai4X&9N73l}bYQv@V>3F@$)#15wv_w*|5&$&!9yoH5?yG=TV} za&GseUpwr(r3)6!_x}_X>|qhV5xl>| z1t)hp{XhebAmdlaJAX>3nh-hbCPT)mDU`Jg%a}4f7o@ygC~hwf%4hf}8fFSTjiF>P*<2L9<+5V7q* zAUlt#PWEt)`Sdn17(l9-bC&4gGh|e}J1SN@%zCA!dF{H8X#wN^@{RKB7Q3VNEn9M1vfl^WFNNc4}ahda}24+83|x14wRb(Xw`4n%f?91 zAJv`Oip4Da3fo}#_`FqtV*8eBQT^3`cZfm)L6QrW%_@MH6^O;v77V=*N>=QfDGA~aPa*0h<_mC zZ4uoBBAc6KlW1BdZp}i&Xgo?{0z>%2vp+qPr=kE4j{uS9hvID}PQIvvYa4vKJ^eT{ z*vq&R2sqff`l*1 zux#-6qfc80BoSl*E1STby5N&%G-8?-!sQZIgIMCKR+C8)a<}4nYmAXDLi^@oGr^8skQw4Xzule|UB z#TgA3lKK>p8$#oiMe+^jPQCkHnV9*^NSzs694BvMA4*|Ljo&1+mIM1o11?9p7-ws# zr!B`LP#Z*d8gF8@&|QtZlguVNm6rflxyUjElOh+?rjpbEKM`~pk;#P0!pD_Ix17J-d^0?{E2JZ&NfWlgq4|PS|j%^|(fI~m1 zU7(;#0g;D0D|itsBJTBr94cdtO{qBR3fP^0P8WQ0Fzd%e$?ovvh-97O9TAPKj+7b7sIOlcfJb^9S)LnmEFBqi z@MxQ_H|w^qS3_FPZ!=mv+8q(pgX2@bg+9H-UcbDb-&wu1UEf#qxe1QCwAx$d4})$; z2Hl>U-!{wZt5fjd^dH97S$JoHZ&1F4+PrgY^O$%spInQD-t?dC#b~?gZYw?O4?#B$ z_<++?y1qwT@1Ms@yR=^K>8;_YdCCiON;gsLI)GPz!qR5PMNXEG83BSo^Qd_x(eY8t1ZBBp5KrKe$!kipcl-JMkxjgLO+qK6AH(3 z!!F4cM~H7HDJVm_HP-^IrQW5?XJ#dxvLt@3qBqHAX+%`L4{$9H<2VeU5?O*}Xm3;> z3{0~FT6qq8RNqvcCO?3De3cCgaa!9CJJ&S$Q(}A|$}6l!0BC@M<(2iK@e>b%;Za@O z3vJ_FX5Y&mYyyVm9dv~b(K7O?BBv#|;^bi|!og>e;VOkQeS18*;Hcm+0o+i6Ht$l8 zIIKDp`gtBzV7_K>abc@X%kUQ?CoF9T96_TNd6eKP$kfVD20H(2BTh;@AC8rovq_qF z8rL_{^{lv%sGId28=9u`ocn3(T!PPVbuSx0@>y!$^;G)7bsx>1x{ug+Ies)xl^x?T zZS*fTx>HVB(TWmdl+;#H2FcAT8qjJ%3mV*e%bo6XO-tk~GEFS;T`SspEM<5jt3^-r zSKyB=0jhxR#qV=ASj*EPRox*cG{iy{d2~ER(tH-7H7OvzMZMT+M0Bp6Z;&DrL&Yf?Uh1F^I+oM_a zBpa4N^^I@$XD~aSlL50&Uu!o10kJEk{@dr( zJg>}`E&ZTDj0*A)v$$jaY8$jjDIM(DWZ5sxV)=a)Wwn(oPL1f+4_H*MvBlBY1@dAt zyXz=7My{2c3^L=U}$bZ9euc2i>(0pgG19P7;23#>dq)+T(`VwX1mU0aHLQSR| zcHvUD&jr!~Q~E0TB~~S(XwBef(Cbx5aIVFY035)`vy@27xZm`6Pm-MIohXlsAsfj2 zt>p6iEWa(P$#oD_;{h8cpgs+q`4fzw@GZ}AL$Kj5iN`^5vo$vK2>MkWz zc!7M*Ipw=K$}0I)lxYDoZri#J3sn_JT(a_`3cOVB<-@OC6xoXs`orY(ZIDP|vFy4^ z_HliRV@jNh%UvB7$xQOvdOteM&tmz~Bt4Q^WZ1Pv04{vl9j=wXjC<1NB)p-J%;sGD z9?WHxgU*n~2taDxc&rh^Y26sCK}81orB1;2fdnZ49%7GySR;%LZM$~4r!fpT=_i&8 zP~7>#3}wkVD^oouzuu96p!WBG>v1PbS|D-*r%y~=BU0I{EahDnK=XcLwA|p&9Wr{m zoq#p|TrqX!C-J!KyIClTz6PTzu-EP?GE*WVx$A>XqF4;O{t| zATKP;UnJ@n3vFh)zCQ#d&Pa%@fd3vteyphyVk_lfg$k=nHJXizlFUx!z{Zzs0OHk0 zI^vKquL5q08Z;|bhit6?{8f=19dT0~*Z~MUPbwX#-6N;FfyaW$7ZN;3cqPn3QMJ=D zl(+HMsfZERKiJlN(oez7UkaoH;448+^D{X(Q?ptVP$~=LU$i%L5^k67%dC;!b=Fca z2YtIF5#dFgWwd^ifx`;Ey?)SoZngu&tz@A#?yZ=AICrY5>nmN`o&;0B4}# zCNv4ow|;_FOznoJ>@R=jeOuk|KA0bMGssDNatWU`a?%1nbgkXT)%8oAmgKJcGjXt? zj0srx>Z@J0g1ut6di>y|P1z#SbWS=OQ#&FXHQdDCDqu$b&D`<&-kiweoF-@c>Z)^$ zPWx0T*9F7q{&8sJQ>!OJ;K9AYrcaQVT4%q>eXkpWiPnO2pTHs5)Ew58Nu)>IyZ*>X z+Uoc1RnBm-N^GzU{c|?nkO%n;ee*mdsmH$Yy05>%r0yLG7DM<5hXXUh6A(n9xK0sN zn%}%4Lw(U0u80cMN%VA@&?PEeOMP(QPy~@@luiA1m;_C)%at22B<99S$~%sNp(5PN zOxC)7Q1mo{xl|m-=EQZ$x}m)HHlJ^$U&+Y3`l_YQKN0YIxL%dblg@^f%d29FJ53BJ zC(RlOWr`!r{v`cYApsk9jdQ#R;LEz0^_v9Sh2kL7Cc7+As*a7haPvcca&|9Dhp@Mg zn-RNu4{B#b>N}~X<>~gTAS$;`tEU$zX>#KKqz%htR+6IB!`D4wXbVTz`LwZ0=^W=n z<70htg|%66B2|fN{xR;=S#fag zff}N)m)p}ylq^@-bVaq2R3M~RGzi_`GPLNPv4A}{oh;64xW|Hk$1N2tUsKEb_nGo| zxb(W~KFB0rU>M?(vD_cNV%rd^Yl|c?qN5F_x>iL!GH5@+J3xp&XvW}9=4Q~vNMqOG z&%DMAp;yjsF*g&FZ7*AnG#%h7v=zubzmzUvm#0q*oy)Mprz`S(*BIAJsMw*dsM@+5 z`{f>iyfxr_0(^lY+Sq(=mzm6E+4o83yN=lwNchHh#^$Vwbj?U%LF?zk_wo z&Qb`i*C}KXf|V(Phr^~p-6~;S7cUmiE)SuK-qRF&A_)z&$nN!UWI7LUBIjt5z^lwGMI+Jz+j5UPgwvVKgz51mDhpLs7ysmY<&v zv0r(l``+{EoIcUUV8u~s3<_}5!nIT`|Aks70 z`e-crX0%eSGt~jRAC85h9O~kXzsNbx`w3x&=8!ySa4g<{=|aC#yyay@Oe=gis0RPi ze&s{|qp}O76Ul&AK(AcQtObyh@cxB- zo!_qwwMcoC*@h>ol!VHnBFyQ=U|tMK>8vd!2TM@D)1qHJq37{yMTJp!Vfm`$2}`xA zkP5-js`hdyCHvyLU7N$l+h;a_E`tFTW ziZ;VFF3rq?+K59Vgdjr|FlvBa-fIIw?s8qSCqC`ppkII|!!Cypb}oY8Cwe=QYEAF% z6)RSlM)^!)!5?}sH}GqpL6a;-?*e5U{o zUD$4B9r;s(=JI6)y`_K`6YUM&@}xv26HN2#x~Zj=?Wk~F3q(rWjHHxxecpVQ zRgjW??(Bahv%o6+O8m*je%fvoi_HyObHFYs>(Qup=)0ZuuwXLUVWzfPxM3?es9=-_ zt=31XIxi;$w=Cq0XPx@gFY97)yuh8KWB!JsTwhE!z_v~&zd^8&_@;sjd}x*hq)8GoM>P{MJUHC$9}uIrY88=O}-P{iZ%f(-xjrpE87~S&bAlTOALQf&elIi z0zi>06MAL<_$daK!*W;P2ZEjkC~XNGkdFFIj{<=%N0&mfSVPQe0#a>XozUyBH1twd zv$`-i!lwtxiw$*^F|I`P$U!^AnsWm;-=M1n2Cyu{5HZHssb?~)VMO&s^P;$k30s6_ ztxj&7<;dWO%+Z=SP(2f|N!u<#x~I6PFP36Dc|lz};>!%>F4*Th!Cx4E`RmQR^yRSV z+k?5#y~I7A`tht$S=6Rgx1{yC`*$9CX1z+?cU~*-24hEbHJX`LnWA|XK3J5|vAmA@ zc}0OT17SO_10=+;&2?EJE#%xxJm!hH5$)c+Et&QjEZl((8YJAQkD^T(w*+i|X+dU3 zW`eaD#p15nnb~Lk!SH-?*ef2^S5G8TU}r>VUKa@IV3PD*=N5#_l{qtOV@jo1_41_C zz{No6;gBrszH=a&EoB)ed6I*?)v|iV$iRgIMR8-k$SJbf5^*@#DBs1h2Il(+L(sDg zk+D)xY-@Ou;XLo>TwS)!j}HleB3Ulku~ftKSvs$nF;c*n)(DgcwAjO@LaYa=U#3Ja z1;I&&ae;1@j&t({$Sn4%$DE(6z|GV zQ~=muZoA13KK4CN2Qn*U!>gl=xP6@Lr zX1NmDHXpXXxcpV$%eW@@cfRXxRNzhsR;7tcjN(gPRXcZqZ3- za?>uBT7aj~{42VD)zt4NG>~QeeV)6>1}{w@pl1iWg^7;j?7Gr-?X(VVwdA20G%@;e z>9}Q@R`SgAGPrDE#kNPO%v)B&1J95d=(al{gyr|tu?Xhyj!{5z)Y4H|OrItg{4&LA z+wcj@oQH?A(c{c5PdUe%YR}8GR>{~9CrLzn_}*_s%vTo-5Jt+SMMk$i`j=_dM#GHq z->5&9BSly7$pZJ({~&2eaaFypQ@w=ta&cVBs^cMQH~fZJG>y~E;s77latSiT~%T{ZRw-^jpRYX&mm+sOj-s3)8>)UwUE#?(aK9$OANC{9Q>8( zj(Sy5Z@1)4l}yJ$PN+n{tqjy!i>kXk&^t)p@j$@2fWx|1THLRS%r`#_s@W0tRuDH4 z*JMY5!Ax?3*_1)5PLJKBC2~uClM#4al@95Cj@exVLXJ+SSL$ZYu@M83>M%6g5L4q% zfwVeVIdV4rvrR>f^PW@r%6i9@@)V;A#a&k^xqB@Ww8BJF+n7bQF{>QzVx~Wi8P2;g zZbaY#IN!l_%QNR&CWzDW$baNzr$uxrpYEy`4G_d^(jdRd6X5eRN_VAa--Dq^L<>AIN73Ix^?1=-K(^ z03&M`YWD`@*gK~6|os)*hs1|$6W6` zM!9etv1w#Q34ANM*`$V>!xKmwgG&!VNjpBdlTfo|ZV9s1u8A&%V(B&e{HnqDz-jws~cyGc%35NG3{FZF{1u`wMW3`f2xXIc`KOWjVGpzNbk^-MC zK3jz^7s)$|mgA6;suJK{IyiwMm+|S(I zDDURvd63=L<+tIwtjk&D-I<2Xl#(S^!Vxp0r-m&WpPLZk@a2M0NT+#SIc33aww(X2 zGh^y3H)Y8gzpq6o`n0+fD)WAjmj@ZXTAWu0y;7}Xi`}Y~JkrK0n_JHNZW>xDRGdR< zCt>{29E48TT6Zptxwbwp?(?A(whG&c5acrMkO76Nlu=?-U-r0J$#maE8AF zx4_r*w7OOr-%64lbL}gwgm3Fm|2ms@t?vFEo6eUt&-nn|L;0ygg3nB`&bFv@0voN}Vw-6A^vd{Y%yhEJ3ll?3HO@J|GU+BTwGW6#{5a|}_)q=0mT$2X+B&I#eP_cw@tqz*R2%8YArn5z zOdu35EsLC((1$QW%Q1m*RD4ojwymTl}a>&-#f7r}-mN%9&JxghRBP#b$> zHSHmgecBx|7(9RoYlY#OTS4l4VG$n%21&Wy^P3D*f`bQ0Ogu*IcYSc751+9(r-jrX zXPRh3rt|R6yj*zdDqArdww!Qi&nVYesuCs~*WQfl>;XMqJRGr>0E!D;+bUL#L7Boa z@c!gZF!ok~^cNs;(D|QgPNG53l>KZRbm7pX2JJcDwfNIO-Z#(EC@7S&qmH#5%<|o{ zB%ene=Fo?pXmk~DoSer()Q<-VZLPQKDKCLwcG^dg61NU@k#`8&Pn=0wqiHanoS_`f z6L%!HyL2P@oxgz{Msfm(kq9R`1^A6+s?Yoiy4{C%$PZmO^A(LojDZ5@e~G;SA{={-yoeQ=Na*{D%m;5xz>yo3|xZYd)Rf#ZCIWf}w8>_&{u#ZB# zv}>Rylw>y?VP*E|NHL{h#;{|k!X8bL!Y~cUWAf3j1ly^+CAvXWMO_VDbiPaz8hR@4 zJuK_8F0y0{F9wF{?j1@b4HSFkTV~$4Qu4Gh8vTpX-(hb1>@j(w>t}8eKtSW!PznjV zq&0*|629$Zm0h)M?c_;AHIhJ=Pf^>9srj{IyD@u8A`u^%9NkkUnPSYTgAsM{A0&9? zk5kxK1v`KxccPMSO7{C5@j#*%QHK4I$-@BqKwevS2} zd6scL^e5P{Uqsq@|2mbNcuz=yis-9hrIxMM2+O4$4vW)FsZgU*My{4d7A5UW>lI}v zRn`vRaXDD7rBYoiZ^iN9i&zK%|mV6#NJk{OIW6i3gNWv|ZKP+-$@jT`OW@Z~5*`?JN=4oZb@~pr9zLuKE z>(n=SCMH7@U*KpWUxYh9SE+M0!Z<`0zK~&NJ6e2jZWGi>)b2_`O2N4|pz=d%pt`k{ zG9%wDASr#YsteWq1H~lT5S*0Hl{|x2)U2%yrMsZqigqT7Xn(A^(A|bxBZ;HJ^i;P| zdv_&}sWXq5T0}Z(lRZD7+S^203?qydRI~DgcB`5 zy;R+30ZQhhcdZgt5{yZOgO}bek;P4c(}B!@=RoT~o!J0F`?4ReQ}u@p;7tac0C*ex zWwx9)Ru>+wSb!%xxWZJ8nc|!LVuB1b#~8Vdj}B+^ z#=KaX?9N)nlqgDXQNOs$W#Y-QzO~I-NXzwGS5`n$ zejZ({0w+G#eG84~y22Ir=i84}0_a`Jx2OQcaTm_5XxkvFh{wdJKsm@NG zdjfCJWbil`Pjk5(zjnUGaG6}J4xwZYUfCK8;3_QQwJ-qpzKdT z2>>biun0I*S`eN$Tqtcormo-j;4grL*|On(_$R{r-yz-X?Ck$H)m+w*iX&?OU-#r2 zym~@8+uWIuzj448Ylc?5P^VY6)JdJ!_%8hOA1OtZcAZ>D7BpzNG!q{6C9%jt@$2)} zBu$!S_IvNT6LuZ@N!ap3hiR$+jdu*OTy=s)IeXJRok|5)d&0v zLyu4@H{g_Lsc-BF{)phGt9!s5z2EQa+p=C?u5VW)PB5G?1S^^ISK)oI1|f zoJ}82wFOAJ<+aW%&)pHhlH@xB;lv~{*&-m4LI(J$B1xJ)IGX)}h^AEmQxdOH?bKl`Nz$DyXA=2f`sYZE=yB%al7 z{40}G3WLOnE6%ukh7%iY<6xmQlu99)iKD!le4bz?*_^rw; z5J#ip*PjVqcqaV*(4CR}ro8G1U47L2zbn&t{{s8 zUsSR0eP$k#dk#63JJt3I4$xALnTGksa_Ym*U5R{^;! zxA0U<4M?80IGv1%H1qQSj%Fc}ti!TOjTwtgKX$2LFH77aIOZmPk?eO9J?Prw*N>3e zcH}DHgu;rWoIeIBmalkP$(F13b|o81&5erJoU@6aK6)h^jVGrmmj5CPg-TplIi*T2 zndw1Emqz9~MW0Ca`2T&>DQ-j86f5%uSh@9G5H93z0Iz5+;MBpLPM>0k)R_WBG*#xJ zmH``>WhEVYPhtN%gfmI+R~)OW@4r9ux<6$UuCA+=6( za5&U1r`!&7Pdg>PrR6wdWW>cvE;Q5=(m8!nIs8|BnG4+&$jQD^em3cOGuT1h>?m*{ z+n5!|p=}T>WV92g!aiBv;c>lXITnFAD4MJyRWkM{@ugOZQKm9=fhjFT(NUZep8GJs zGb#0L`Wi^mIv&MHdGYfUri4szsrEsrf^fd&Ds}`pmen<8CBo*>1ER%g9U#h)mFEj|u8@N7eL8UW4DrLM zC;|#{W3XQ$)ligD+v^xi(3b&nsHWH+NyePrCY8(bO*MZ^x%sOkKi3|fVes_G-mE;K zs-ow0`K@8>1$)itRWz7GkP=+W(xzm9S!7r;PDhr`il7HUs`e>!;i5RZ z(=si3VTzA*o815;)@Asi@&G6xqAuAE&x``)NM0Fbuxg7ENwND~ROymv7gjxR&{MYR zcW4<$jG>DW%u!vzA>^RJ_#iAw^ftok!XcSGVs?gF*kjVc8rFKfDLmD6Qbz!2k|U6b z)QT4M8S!l!ENv9%Y!-*??F=+|A}UHo9w;*nrx8*mM^?a!3TKP90ANooA~tYNR#@aj z#djb!KRBGrg8JzDW0-NV=S-2<2l)s45pB#XKv=T=Q4>IaMH>B99BboQ9l2n-H+{b0 zi2mSjLp!MJukP0O<2wISQ;>3a*I9YUOJj?n-%y2Z25yX9&LiJ9m9xekYN6(Ue`D%J z@bQxD!0|tL!2ocR*2M_H^dk8?uX!T?aHQL*bn?1CeWm~ecYXVs(;PA#00xW>wK^2< zqZ1-H_r+9lK?UF}wk`s}%pB!BmH~8`Y*}6j;bR?+faxciR5s!D~~NYxfMs@un1^AeueeOh$QljNi%K zP!NL6`wX=v!-M}G=k~t9=0tF4E)B16*&UXfpVfstw2$h$ zJdn+dOUtTx?UtppAUWsq;{(#p&R&b@eywLY#lNBFfcL`asK3=H_n7vWD1J0tTy)vy zdbLMYjw8i?d9sBB1&Xp9d@A5~lqcl0o&iV|6dh4kq^ZZDOBY)7?mxhrh<(DjL|ax> zKLy8vbB)5H^46{9NL;(mpQdR*6;YLUxU1U*8%>Hx~6E`B_`z1oo0S zyW>8r7%N|e_XaDLVG+SQ14_3pQV|~<&4A!P<$C#%*)ldh@9ij8y;-ZU=THxaA&TTV0=c%NiZlY&-ioI3i9euUD?63u}7R*Z>FUz_s=4l0h+k_Du>PUSN)DQ8%j;P zM6{PRHVTodf*n{BB?T!BaEUlA&;nT7WlGa*q_!xsZyoLNn+MO4(V?VPAnXYzdVVE# zu=kQTFTPO36QnoY&7;X%-DYnKqPOWykXW3*Ufb|C)#8xj)YDpWim4|XOd%6xcUD$T_KXu?VxN-{gGQkvjJp%w ziBJ}otmGDqOzO3I?y{!sG!@icQ>QcLjr4<~DXiZ^=B=^WAD)?c3nMImt;MQj4M@6>-z7S7J3Kh_SsZoghK(t>D0AH?Q#mB1 zy=sjk=!;S-QGDPd%EP(lQ3HXu53QvtL?Ss_CVHe6`(6T7TiEy%fnBuGU?gyUHmQ?c z595$oH7E8dn#s??7&MCWw1XDOB$!p#yP2+zkrB04Ssfj=O;%+dWWmRXQzoSz6}Yv* z(C-v&!_OA)Oq@_A93Jo+{3#)(oFuC;)qjwbBoxqr7NpZ2rVB6a%$5I5r^U|v-9B+v zX}qHmkU=iZ>E}Q>oLMl4ik(k*$ziF!wQK`3iU`!2@g79xA&w~_5T}_*52nng#mW2u z&PIRlNeA(`3Zw(!zr0675EL(y=M&X+KOuei7`~xw;sl4KlS#4wI|I+o39dflM}$Z6 zyHVv7&JgUnpR(0yj2|LiYW*lC5igb!l@pp2z9itxP4GPHUe$EPU)T@fw1=7)7G>2@ z*N-)>*8h4Or86y-@my5CI!~BpSo=500>1)&*@)1s=%s-GD5KU;m)jMw2vP}EW?Vn_ zuUs|gKazLN`V*$hOq^_pOwwPeLCJJ%FTfOAnb-J+x)KRcW`OIiDWez~h+3C1@z+wF zm838yU}&a{c(~5fWf*G&OOBfhm*{Pe0r_rY=wh)vGfd-E4RP;XKiAYNJNac>CU5R& z>H*{t?4lNS_YIfo=v~E_=0~1(*n!onH_Do!x>QuTH6A1`OPUv;3=yM>p3m1zM`vAw zL(M`g&&BbB`B}(q(X0q@h5Qd=|IjW-n03*j+qP}nwr$(Cjoh|vE4OXiwryJ{>)y`! z&Qp!*#Se&xH&(1U$B1B(Qa8aE2Gu6GB=p;dBeh1hdssXO#-{Du{wW-f!DZ3T-8flc zDRqc&ic@eB_4Gewq0(s}Xy5uUTbBzMgA5eu_mK6bEMfIgQZ&)n^;>j{o_YFXI4Q)d zyTUe_L}!qMdq5imW2Z^$%JER4&}swM&*WUGMOB4%-@I)`%Pqd)qsi-hHFcc}%G{tu zUjY73$5J&8YlE&V-7L`qIWA>CXGLn9DrK;5^m9M+1MW`Hyx!4MuQ*n0myHhqFu^5ArtL&)nunX^Tiw>5Ya}@j8oj#{!3GU9vs^te`pqi&STsCr!%1?r}^)a z%O-+MX3L`-2>Tz3v?E(BXKoOvl9FpuO;T8vciC=-4a^Dcc_=wqniSpfW8SFr+Z4;f znp9Ytqo}9?VPYZkc{Xw3zmlo)3eQd{yXOJ}vXD!XJDTpnCvHJ|nLLI)R>iXZe!-q= z6Ft#lIETHtFD|b*6lKAX%3AkL5d~Fn9-+)iu*CrYtakM`Ez4^VSZ`*mGyhIhC+Pq? zpKaybZogpqD<(JhpI_da4fGitn<$7#0v|581u+pPn^M|wq@{VGg%`czEX;+;m57F= zS;T8vU3W>tEd$*z@qY)uZ;Jen88?9_eBDdD7C344f+w^4tVTewH9La)C|b?AReQ^Y zo`fj7H=*Q_c}dIYU??1V9NDP0mJS2am5XGQwoa_@n4%($!%NFNdUanb4&>+5k@V_r zvGQk)D%;j}A?f~OVEUE%C}v}*HLX&Y2F^%)0^1u^l@*O(4~2Su`0fr`b3r|Ys+(VH z*m1~0=(D%jMeTNoREukBlGYKez;{Y6nRgYAS^T9Pmg{)0N;aUVuC<2I=7(bxqte+C z<0F@8lO-ID7*S8H>*HnK4?HEakLQ0GyIKDy?Itr5>;Iw83~Ni*Vt4+FBK&9UMy+7~ z|HIq1MH{I*!sDE8O5GjRUvJaA6bj8)UPw4C5kXqap9m=V_>_3kcIh4FpWx{L>HEo1 z7mu&mz3$vUelKqx>GSCQf3!OS{_&yPeEiDF)G)E>^YDK^idp^UHv(5)u6-FFv>|KXWbg`sAOc7n4S>p?3Ti zUInZ#=xtLX#IR95*3c=3<}?-|4H9jZxI84$dQKffc&294Bf2suZyzmo#j^UGA2}9J zVo@jQeVuC*6J95YjP6w;eX?!|ej^vHe0^=Gx5~;oZW4AsM&jhL8E+|gG?<|upukW$ z(t0V(m6Ht8Mh?N=PrpMmWLR3M)%ea8pmlg1SR8-wAG%uzJ;qGA{ zG`5*n(+!Hqo+CQdkEs?cPZ+W!@G6E2W~u9OHW%4CC!7@$G}*M+!DP#%l?H^SY*xv0 z%94J}OaI1B$ln*&tMPTx;Yiq6|GhpBtY6s$g5Qkjq#M%g3z1^!#YFDfeY0ZT=R118sw?Md zn%?ywvK>D@5Y!Une7yw+=ZpG5U?D2_ZWY~tcj*&m7!5mtZ9l0{J=Yecj^K-Z=GcCw zN}B0}O3dmrt;c;dY@G49I{WX=n!vKB^VjLKM(x+HVO$_OdDsMXRp6pu$o)Efn4P3Y z#k9fLtDvj^X+Z>o|B%-PI>GgQ$?sqiQ<-xF`&{W^i{CAqIogc^<79cVJV(w%*Kh(@m;L;U_2C;LQ{#*50@58&{VD5pdjhk) z@{3)TH6tyqkw<4cRBGRvP-4cVBnb{vjzi-qJpslXSkpz)L!Tz1pynQaqR^^XeoERb z?K_Tyad+ZHaR=0|8f?I^)r8@RU*EvBhPtnad<^W&hEj(j(qcn=?7%8dk^Leco5CW{|~IbhiEX)BD>DCQ zS&5m2O8sgB{nHMr@E^sYVz27att_W?lhb}IRw9V^K?HN&vbsu}^!Vw~nt~gvjKCg{ z(!S%lS+tsb)u-7L$b@Jd87@;M;ZXhu$^Qi{LpVQsZA2nWq+$&+aLzO69vded3VvmS?FtNKk(|+CHgq!ft|SK&X*q#bdx$nT~6rwqgTszgr`$&KYZnZmR=)# zL4Nuex;@)I7KB*36@eaV)B+308jkpl;sL@)}@%=LSqLM=m-$T8MA-7L))3l9>^j= z>Gc5L1dM^1avem4sdmZ8(qk1x9H5&ko9K@Z|g4>^3wT;a|XK&6PO+$>nq>0wK( zxtqmds$=}Tpu=RuYMW#~*F1NU(;V=GR1}3N?=95My?W=@!|7>Kl#Jq%N^Yjg zGlSwMsh#gg)DPveg1!-};F?z1F`f^Se_OYF8XdhA=n$M3w1)duYy*?Flq~(y=yq>v z$P~bkcb)VxK|_t}7T3)C(3_}1bR(c2z|8~caaHmy_-6;2nm;(Bc2j?{_yxqEg5>w% zhh$?BiABw3U1QBGe77NkRNL0A_KWx|kdEj4b^ewJ$V1XRK5lvl5s&@D+9J#-LrkQ- zN)QB=a>z;sd$_QW+W!GT9YXPI$`S&`S#KhU&YKFZt}&@yiC^gKs~_4Wf}7I5WL>MV z+FPs~ny=!MRP&OGxfqX#)sk5TAfK_n;#y|dOnQg2Zky5R7iP9NsNz&)*Gfem--vca zC(&6;X7O8|KBO>**pE3w>A`v`ZjM|XRCx%96yjz-P6>QVdZ@4NBbWYri~zn!*~ zF$Fc2JIUZv60>c=#wgdCSWW4t7yZXKq;T**(yVUqD~3%(ZI7Txy?o2EbTD;l^*$#`qyp0opb)_D1f5XAq-3 zwx_OF@l}63YZ8_=+)k?RDf#z&(3o_FZv-PtI>S(U;JW=r z&mn7NmAo8=w(C4R+x4^)R_v%2sJE!Z7l%Ce4dcD%XNm!0%l1$Z?6~+)E-IKn)dpK3 zs}u~dos+!NJ@^_!*^Isa+$cHDcuBq$jXlDW(k7_iPQt+*L>d-SJrV-scxn&gRS^v* zLcW(c8AQL=2o#WndK8ieuQEtuhRzUiG1+B>_^8r5)=!;bAC>D%gR2&9(O0gSQT2RA}Z0_V_^Btt%M44bO^ zsJSDktDPUKu2I6@=x)vq!^vX8?52V45QBvBg%2c4q+hu9#7q+}GL7y>>7+p`|3(K~ zO-3&ypeJDCyX0ZwmV$-G!(n0I6h!I*3zuLX3ND<&PCc92yXPnXtG7mu0K}+Q`Hs)l z?5T)Q6I_(z(cZtPoO={@9a*!sE&fYyDmVleqYE0kKo$?`#v@2Q?RHK-fMh=utyZxm zZ!G*k3?$!#F_5SiF6gmksns713VL=EQGKE)uBW|laD|a%QY{PhUZ(Q-KeUT8YqdH) z+^?yGD^Hao1>T4Gakt@6AY4#|MLO(jaXC7e1-oQ#YD`DXP_Ek!k7McIv|@n?I!l2j zX+IG;vm5pv?lTWHvK6O1|C5Z2wn?#V;AA4ma<{|gG8Txy!JBL_Y)m=0tB1M;-luId zP+T-jelk}5eJnGk;(@JfhxSahd<5-a{~M{+GcZ)668J*$*~xD&NbG&kPUZSfsVj)f znZcQPUConu$P$UvhecK^VADVVq(RgJm@_pln1G5B}3=VE=@M9x9zCkSM{wXU?v)?Bc;)!Ds&{CP6;4`LpI(o1;2SPn-Pg z99Ak!&vj#}D=#*6ZJW|{%tRZD2J5lF<}+dVL>KWBX5kzbN5RMc88l_hpwTA`+!2c= zB@X@dQ1%P7z*Qjd-=?4csSM1-!OrmiUOHZD|I_Ss{l|m+1!SZF%}(%d=}01A2l#<@ z#Bg)We;ohXTO3(TqEu?L-YxTEz+kbK*pBkggWNoI&QH#v`3_zdP_~y8asKpR?|IMu z{%QOAI6GU$|HGQomuZ5Wox3Y95DFn@6MlI9{+#FE@IuP-efj=xRmk(YNYL`gfB~~K zO>9qF)Erpt`o)4cCJlZ}+RJxro_8`#ZwYBaBod7sr*-Z@KIt z?Diw|0j%Tvp}4pAlpVt*#k3`MQGd^rP-^CkYbW4=6$+Y(5pIi%217pAHJLqlUxdt) z;&8^EMTZVU>W77u7#ECiR67H?$WM7dBKFF)mBRmtg>X{(^MfT2zEh-*9qtQ}YOHQF z7E0Q_L2yD^{>r9QdgrVBv6GvKg`lkNaY>1`w+D7lAh4Ej^v3(tdd~Y?3mYwjC-d`6brN#e~j)(Z^vKS*%Xp7vR;R zQ-2-`kl6;7*CO=_L&Q=$qaH$H+|MfwJ|EekUphPG>&P`>pJ@z;4&0?)ICp!66XjFo z>y7eXD)oi}0LXp9!XVZVn{s@|G9_;MWB8;q*9l5)=U2H+PTccrwZqwkLX!#!3hjL@BOjH;+X}%v`P4@Bln@rfCaU5ATx$pc#g8h_b6PZjqF8!U#E}G@Vk4Ys- z>-a#;sUEHkiC4drSig@Y{fb%PQXV|DP$&?KRbJA2PTn&UE-Qb*7Ec@005g(1G1Jjf zW~>;%z}tV|Q`ufVQME6+h;Tjg(TRDB+Tf2{4ZX8GcY7Fvf)iB9eX*Akj-%2G$wQhI~IC4*n5N zu7A+AoMItv7=@83>Y{oAY;%}9wF2x2&rR%eeTYYzZ=p(N%6@}*$QB7wdhJg5KV!ipkjMNMS2Dv#$&OwU!3pIz}!?Y`2_@jmB}< zwgZH2&jTH{^VF=c7HJzI$FXL#JV1kEd7{#>R7032%v_UU37xjpu5)7a<ikh0Uyv&K&k>Mn~poRIu87l{F+_ zidNnKf+OMlH@c|czK9M#Iq$A(CRa23HVT2x8Er9Lv}tM-nzX#f9A`%US>P94@Oy<6 z(rusn35M|IQj-wZynxGv1WoGvE}@(sDLR%VkbtR-5y~S7G3&E~j=^Kf*()LRY=q%J z`-!>$vL_JnlMFB$FswQcD>C50RgZRQtF}S3SxJ+G&-^U5`o3BgKkDzCmM}dZRYMo* zI$wGtkdS7dWbp7vcQh?g@?8n8))C{?0yT|thG+aLhYeU6y{YV{T{B&q##~be4 zyk#D4@XO%0;@m{$*GztpGuh7Qx}a*S-rw7+w_R=OE`mpCGVzES;GGP)z(Gy0HhR@^ znREuhU%POgZsz#`@C0+j(yDf5G%(6^Pk6s| z1HmTn!5I^vxBA{O>+;?J6fA$hadm!$-C6hUXY?rjapsq=5T6ojOI+$C16>r68WarrdbJ4x>RVN*_f>>&>@JO;!6J#OW zrc!T=W=Ro>8BH)Y87w>rqi1o!gkj1YOSwwgmAvayGwJ{C7iF z&tMY=5SmHEZETp8+IfQOWHC#t08F%eVPjrbwv zI_=6AT-nnA9+W+3J1#mImrU-TDGp{E3UXN60npdX${**=&5rKtmzSW4c?+O&V6g*A zsE>4KJ2SJ#0$%iSu4p2`JCX8lrN&x7`K5a$dhpcfKXjf8Z|CWFf+;c+)Vb)45~4?$ zmN`yAN0zY|3W>NcqQaKbY?30;Qon?toILC7XDGMH^u3u2y!LX2pN5DB&yzo zx@}<9Ff=HPrb~}!0*IJZE0)s8)@+agcT92q4=e(Zz0$ZjIAzXgRx^a76_YT;#S%_iR~=MVl(I}lsc^K+`^YzvP*$2l~e2x4~Ctn(owWHBnpK4 zvrG&|+MI5)kD~k8-vwR;_!I`^YisKC?QGdUILFlCDEkGnFfnvm4O&>I+kn+2H`|Rq zOxik3sO&lno-+gBBR|_*I4r9Ic2iCEy3U(A&nDhuy@}cBs^bb%NKTH$K%3gtn|v`2 zo_aZLYL zb61`8tM>6ewaXmmWe<8R*kg8EnMPWXM|wVQG4rzMYwRj8-$fDoH*64ln8u_-59rGs z$(P>ta^Pa(f&s-osrf8?>@f4!*i`s!0&G5(^hzL)0t47@%2-~KkF@$)E^hU`k%dov z9hxM)Z{2uyn*I_!%+*?+SW)1!X;dF3IkJ@a{AEf_I9IUxxcP3(olO5^g&;Hg{ zB52s?deHcp-*<^+odD?myd6@|H&J}%)tEr@y3kD z61O9Ee^NhyizFfT!%{360&E7@1HVq+6{uW14Ev@pe)SNyk&L4#Pbf{o8k@~gNK70d zVH-lL;6~5(6S)s3nR!{cvmySlf3f1Vu@s zPxtFHkG0dpcB{obhqeD44ER>TZEZVv+1vA_yHfX!g@OutguCDaop5R~>pZo(iu~3$ zE5p7>9TvNAQr;DK3^E~_WqufzbF;5{*W?0ByF_Zte}fXeKu1R&G@(R8lYp+44oL`$ z%#CiS;79n|Fx1Q9k44524m0EV=c`{F7wipcAkEzs^KEaKa8l}IjOZb2=J-*`1as4# zr*;#|lj(TXql(A65o*~3v1IpnGd^-=WnWe~AN)MMJf)RHKN(bCj5`T*;7c>9Z8k3m zRbzi^V=By4Y~NR^y>SABnLPV?0JjcWgl&RhW4Lp(85-wm;H*Ly;~M4C#u|g{Qsjx_ z0{i5H54~D2D~-h6j;qCW8h1L;5EbKuj)5=)4%ag?XZ(-3Rxg1yJ3O!d@Ogt;$X=>4 zcKI{6G$z4$fPc5Fe7<6E0=@>aeQjJM4)S))l!!bk1`71`y>rg2LBZS6pNGs=HaSfi zxeFX2R%&NCq}G5h$**zqH3PESP@Q#4!~CE>&FrAw(nx(h30sEBr7@Ig$5A9i6xc>w zU3`9W2xBars^(u|JTYHm)5*Z_R9YNEfE5D3;6k2yUokV6Y%k9!&0Sp#fit&Z;CuuK z@R^7lySH1nij#jiG8Ee`u?pVXjO`|#Jj;RC`^d)5aRnoMn;8OVtldZ*i+B5nBx*7YR zWJsVY=61nPRV^OG(r0iW{arNQnKi>TKsGt#4=1uzhKx`2a?u%%==D?e(Lxfc+V# zf={f71Dit5U0qCe(XPSSyejCGAR;hDk|~3LR<2DUz9m zYRQrC65j;RG@P(;Y{12gP;5`cB$tLImIfg|ufz=RS$V;qB2v*3doQ{!vs`g zd&>h%-tZ^^BQ<|J$6>r3#WP1G*A*DGTY367&?h{LVJe7bAO|j-O-D)Esb%3)_pb$Lb>6};2z#b6 zk{suOm$c8&cRA6+dQusxBzZDdzt zl$>8Sru6#k#c0(XWwF@^v3Q6z%a!$9RgM`_Yq?CFaG~lvD`c8v&?b_pR*hE;tB$=z zl2t6TwSO`22?sE{Z_$X*F#BvSCe)u~IHg=;0X^^?X0gTulC*qA)f8)hPZZKc7LCUO z`~HrQxX8GdIIfePhH@5 zpLvcGY8y$%PKMII=9b}EH&ep}X zdSb2H3$_7M7;d@7@UOWyI@KhuHNM>5o;vLp49)oBSK%v>l=!i0__2zbP+hnUfg@RO zlOxA+6@z?9%P=Kg83KA)|rTq*f^sF+zam5?Y|HK_V}4eXx&mZPE% zPw{C`w2!6rD3?-|KfzP#`tT|xt;{ojBAgsr{1!LbQ%>CP)|;xCS$ZFuv*Q@UmDS&E z7iT`v?Zc~e7Sq2h&V1iq4r0jteecbtNaRPnP>)we9qvy)Dpd>N?DU&A2y0BBz_C0w zM(P9IU!A6N!1R_PIbxa9ps1g!yFF#uM;%lxo{fqw)Z`&RN5=rjqa(NaiHXV?tgOj{ z9Ke|&+7bj&>MtIyJ=FTGqVSZ|0F(X_9sLEu%ePxy>oV~LkG|gN?m5NG;@zNafyclW zct(D!c)86+QCotSmX3O}V*z=EKxq3Q1admOP!@6EC5Y(f6?WGGor%rM;nPRKL6aW>rt#d8$fx@zs-m@$Eg)*@?C=|F9yK zWf#Za-Gz&O!%Q6BLXBo2`eFTA3a#9=_zahjIJ$kMK;Kn{^`L{TSi|f&^vw$E33?xS zwPiAZx>rpi7dhRb2^jj-u3K@tqXxlQV|s|@EMH!w%ty+*Qj?a&RB5(m-B$Jj)Ik?dLSWzK zO&h}jhLN~uK0S|(6Z2!~JnlSqli4O}tEz-8(>nH8X^8&awA;OlbBTg@qJNaP2H8I97;FR zCE4S}Q9<7@Xu@6FHC+_klE*JLQ?aMTpGlj=M}l6Kb_h0$w+(oO#gk+^P8#7nK!MnioD`_Ze9y1fAhv;C86X&A&~dE%7q6^SEjBa zOFy6qI($=1PraMHLz$KYe+H(+CQK|k>&!e=q}4p}$zhdJZk@Hl#_5`7!TDCJHL#IJ`=3tR)_7Jws+Iah&-h5G{ug;i-<|yfnut7XO!(*Ii zupEX=dGWG~(;^9LP8?uh+;ws7Jyff8RtvJ2CTtoxk8E+6WphIT1|BFdE*5QmJ?nIpVraplWC(|5;Mj-R(YXme0 zV`IjdidKuodHW@=IhaOUx0<$c%QK`2PUu+Yxp=#{@_nC;@=AD;@8r0(Dtk7~Q*+{B-Wf-+g51fLpdTDzYeqj`5*)XDv4M zK=~bh{aP(6nRK)9SiZq&-3!d?oP!~FEZxt%*^t)ExV_Vxh&1){oyJbfz#*Py;X>@9 zM6pyUGL+M(8!L(yFxL;TC|hWIy`3AG*9~HuL96gq8t_gd7h%_3U1Z0q2ysal>oLq! z!X#`iserj~8TFU<=I1o*dlY^~(*wrWdt^UJA!+e&pWeN@Fk><(&JR)}WcYbD!F^n; zP_HG{hZZHibvb!rrAOs7P?@!F8=;Ocem)!&7(XF^*1ojYFn1wL-B-IdXadr~s!=W_ z)JYxG&?VI=BBx&FBiF6(t^a9J56($Q-DU`TyAGOH-!vik)ZF2oe5zkHut& z4tq2Nk}G#6XJwf*Nj4PK%WV ztnNDFBKQYY6$lxHI;%htLEIPGdEze9+i}_jhCHGslyuy9%abH`8l#}IPosi-Lz>_q z0vw^3|7X$TN)mZ@Qx9H*FbHw%57uvdLfFjM;p;OJ6esx}n>7pu5^iXTU+uZ!Tu&FMU879Uo-5<%zYFvT|gWF)>$6{elBIMhFRh@Lb@jq(&zoC|KYr%Ic zS@9Z%fL^#AGY;ttVKNZwa87l>tTjgzzUcl`tL;g?9rQ#R-P%3|a0deK&VzSOt?U%@ z!ZYh~3N4M2pmo?k$8C%?BKubM@lX~?g4c?h2}>MxuF?11#jqki9 z3nZUbVf_>6PCX6+LgEh2tQ~|Q42@3YeOcb^#e2q)xZ0LTwE9YkQ$D*P zGMnB(Qv7XEGlgWzOUvhlDD@5a+=x~c)_?>Vc>#+|qOn9mME3iWeC|tGl%V#kIjq5w zWDlBGHenI`Vi`u5gkNKpLPk8`0{qG_lr#+a#t^zzK{zvnKNT(3TA!f&h;D((ig!Cm zCon|(G@7NYC6}8u@ ziSdL3p`IldDIBi_$FaD;3YYw0Ep6xW?E>D&B|8-A+8Ca5aV?qn7yiRI(ZFgaymSMX z0-%E&ttKd5YMOc#Ls^Ek2*F?Qr754pXn=ukHv$rrBISn3h~G1bh?M+Twlj;Hy%z4G zN9tBW#&B3SxB!q&RmlnRM5}?45)jS1*UYln@_ix*;DO)YPPjjqUMBP?V8k( zfo!Ob(_XcOfWu6wyAqeAni6iS--|n>4+sISYV#XH17Aec^l1os^vp{4Ot>W^i!T>4GX|#%;kPJDJ!JrW*7Z- zzW<*2yyx3N=C2Wqt+mm!gcQDn>iQ_)L$lDhtqR~luuCO(wzgeHK5XL96#zc~q6N2Y z+TQf>J&Tn@F#LMXnwC-n^UXqbZdQ{wPR6sv#x+HeKA}7JMAFrZCqvp@aopAzQw}hhcEIAN3n17~^QH?cHnG%;~gJUcpA(eib7HUX!^LGPyu;ODsptt+wqN*^YrzE$vc@kqo#RhkE|P z%j%3<&FjR4Uk)9JIEpg)=jBKUOWh7dsMuKlPKhjHMMHFSTei4LjjjyF-1;WrH-^Fh zb#5O~HnR^yNjeXjH$0HKiuDeV5(lA40dhMuuu;e%rz23lkCWJ@XL674Vn7{vrtFFA z2v|qTa!!OOB$y6v@~yfZg$y6liij!Ym#!}#nfW5)k&fKk*rns4e6nrh^PYK6U?2e0 z&ziHaw}Lh6d=c5Xz%P^evzxg8V4>yo-e0X-tL%JwwN@^iDvHHkY!Z?T8Ux6nFc??L^U}$ z%)>SC;8g;&21cPdUmHg~6_4^DUkM0vasV=2u_l{;N!#zzDbE~9Q2+~-~CmdfFt6aUE01T!WYKG}V2n;gn4uDrtySq{fgm)Cf zQ7?YGL7D1a-TTW##~i0A4^oVLn#S!X6g02_w5tzbHx~LAahpY7Kzcx|qICs`dlZml zWZ|0m^mO8i>KMJ!V!uE>M;d0Gpl>viT4BlGGo@B01};ngsby7fqIIXm6zie$^3OB8 zS!IF=`O$%4)A6 zw-z@HafB}{JnjLg#uFUgPtexhU9U`~2J5u|pLJK$Jo?aKx-m=<4Gk)h70peyyX|Gu zU{fXe2WGUFm1;GuSV$jM6oilk8W(#TP`I7p?OGdz-ZX{|O8zXAhYI0}zV1+StKCam zYjc?%#Q-^O|2D^KS)w~8n{>iF?wQ1Leu!AI(59=bmwTmpz4#psBn&D*S2ejoqcqR@ zHYahs#TT6^`%Rk{yCK~t?Y)HPaAg|Cn|$#nuqpcweiND*75?VG&6WRK>WhK>|KK-| zwI*Y)SP-@!QQreG)Z4!j#kvK6NZi8L3DFi8-Pij5p!UkYE5_!ybzq<9wFQVNlFO~v zxaT;Tz1s$gKH}5hq2CrlIeLDlfcG3uMF=BCm22G#|rDT-_4?s}vr7u50S`}r(j z={JR{SL0gQ-Zf^5+y53Uo>3+Rx{yJ>{PEg}I=6z|i^JBO4Go z@Zb<^4|fsdt4TmFQUwi!#`1)uBYDn1=UnE1nn7MGx9Vx((8gsBmHXKy2htD9Cx_}^ zB)Y13a+p}NYLRu@2zehz7m++dMVLW`nN{>n%%gV?i+ExS2q?b{i&1Lt>Ts50vHfEc*?laGIpUGSz<2OfiiqQ>HL~Y^|PV67K|3s`?X}wP^u6`yw6| zDk90Rxm&_|DYL%D(3%Tatt^6mI=hnf1jS`G&~L6Q+ZmaMmikUHr_DK!zxMpNUB?>G z?DKoWwTkuH>g=R_6jOrq%q?_+;tJ`d^Yc8-Pwh5>$T5eLpQfKi&+hbnO_zMau=3xT zlqOhQIYBsN(13%P9xoXs%kb{O6Y>rhymhh1 z=*l%4E#)Zz*X$g9wLv2$E@+Q%qZ4UOT^J!D%1?1!%EocmLx>QvVHtF}Z=s03Y}14* zQp>6lH6wAc#}O4wC?u^;*GLA|HyLC2*({HSPzqBNsTB$N5%&AK5Bm?=`BG=MW)jMz z8Cvko3eP&soYQf!r4`V6% zM~Y6`aED*Zp3*N3&g8zOuNu?IKJ-n^ha-+^K8(w$UfBDhB3K$x>&K>1lP9Fp&5wVI z*pD(;^H^>NZ0(+lv*mHY-NL!K-QRof)_F)z>v?+bH}1C{%wUr;$7_uF0~##V)hdN5 zw!2*?frx~p^VvLwIUnxtJv<3!#Aa?*YAalA?KuTCDH%4}DmA)~k!?`xLDgB2T?D+JUlOXnl*HXLMEtYF*V=uJJ&G`$1{Cki z861e;Vw$M}*}g5hPjX3v(SC9eE0IXy#Ci|&sY(pt*f6q0<*2_d+xS$gv^}I5Xx#0^ zGW!<@9&*Z7R|wSJ`c3HoS&03>5}=}S5QQbzr%xP_nAzSJ5^^=c#(1$J?FHU z^Fj!!^)^vx%naizAR0?)?J(9X{9Tdx!VcHc?TS*vlXo98~w7}WJ3$e z8y(#(glqq7eRj24o59T_7`d#TO04p=8V3W%x!XX>CfZdt{85q4%`20yQL`}L4E@~v zW4{S^=X$9@$KFV0Z|8EwW^UTpw5PM4niP4-+ePNiBXe`)1k6q5{+E>jlR$mt5pp|e zN$4t_{;cvA_=709iDES9&oGnQCOU*=U`b_>!9YFZC1PoQ@fFZXMRE4^Sx_K2srw{bshM#iklqN7 zVM&#JefRVA_3~DPzd+@J9dv59_S*%TsLgq4CjwH)g)AZW)~3pi)_9~NX<6bQ4Y>7c zoMxUKotQ94-C9PYj+$%y(+UjDE)UF?)(G52d()4h8zY}di=%#o!-GU#U}QFVNI&UC_IyUhP5@sP06$R_U-m(fzBHt+CybUjcdQD zg>jexoW($3ASyi*vRJR*n0?&`s*`t~m(Y5`(U4vbQ_Pzj0`FVQY`B|%o{a}`SRl19Q zK5E&%-=l^PzelVFD0gpPc;H44T*|@4OTX5|ws!W*CDh|UKmafe#6e#BJoSiyCUv!r-SaF07k6EL9v-Z zH}k$%wztL$Ok=lWab60C%KP@ah{wf}qTQBag107mi?B5nwLzQRis>bPxtwJ(r*jgO z!%*Rqaqv_cKBJ`Ux;@g6L$~UFL5^Tg?qxFS@vcIa(u?w1Tl0 zn3%8vRg(4H{cse)=hJQyr{#~i9G={NVlC(2{9gyRUyqy9x4pjH-_NTaO#g|soNt2n zHbdER_;&tWiduixu>M)uvAQl?aq#68c6cB?qNjVnmj4>jeFwkLcbLzFNt3pJXaDUJ zuPCynd}_~4PQ+RWOTJ!)YsNK`|@~wzMr?k{}`h5`nAk)@Pp;yBHo=&GP z*x)o3|Yy?bFn@oA(OOzgiXhg>KY_MVl05eCB($TcapFX?KH@8B@L zo8aKdfu(Aw7ZA~6?xL`;wWQ^3W?Rr-0OOyZ^Y;AJ%N?pI;c0&O`tb^6>W3^H!N8NI zd6|$7WOBP6-opoVNP~g?+N;G2B~3VXF`cKHn==kXAj@B2ht&aMv163*AGe~%oo%-m zR<^VX?ED(;Y6TqL5F61Iy$x@VJkfdOkg|r&ko(}0O_b4Fv6}GIw2oRqMV8VHPJ4LC zjGwYk49suJ`Kj#OO7o3jNHrZSdFj$VV8cKSGW;6|bSKUp#M^->)eq$Vn^=&wCm%Wr zfruRLnYugq=`p-SQJ?ZR<)@jNjmZpDc6PgcE}nA4P~z{%aNJjQ>Q&H1PEz{={I971 z6vukLSnh+!tYGQL36mV)Gj6*%lb)f-BPUP--)y;M17>l|uhJS22;PToF49;UcUra+ zT<-)=8i*?pUV8o4<`@q5P}CwK*%<&*#XWJQAVq-(fClBB{#prQWc|EQPXo#?F96qucV>p z&-6FODYnnnSwt!xIm!z?K$YJGQjP0mOR87A41PaFtFv>)&Y zxrBjWHZdd(Othe;Ih?)6Cng`uB(G38%Ykwy@6PUZ)(-m0aCu=KYo>tva)C11l~omU zWYdEPb1nV&i~#u;*VxUxOvXSFX{5~?Mvqm58>gqp>7IP-GOINv1Wxr^Uf^7w-Z8dN z-2X$~TZh$^CF{euy9I|paEAo9;O_43?he6&y9a{1ySoQ>cXxOAk+e*APv4%o_s;js zJoh_)@No8C>)lnW>aD7^&faThVOu3jvuG-IC~hfKEyZ9dt6p)cn%W7 z*h^w;l#^a(Jnm(mmWIZ93LBzwk-3tmgr3WrP*QeuVFQ`H<6MrtRieeOj87|G_uv_Z zUt1eTSVb*W>K(_m$RV@N4r@)e7ybBon6U65Qg_*!n1z7!ZDROg6XQ4sRiVY8641te zyGo$<5anL~fnr939}jMq^;kH+r4_|c*tN^3DW+D^Myx~u-qY)pt!#L)oo{igBTU1P zzyPDgE_um$S4@Wj1CP1IOLAAvwt1}!lPtyOy-VOsrJ$#lpJRCkZocOhNM94))J>G~ z8Y!VDeh0A_uR-xUK4hu$6R6q&vjoR`8BAAwW4%;V!*^HmJM1|n2;|-j7F0>N5b>>g zaa$ah?0|_P`B#O_m!V{Dorp5|TH>oih21E{x{Qm-x)M|At^K7w%cde(=aja;KDF}M zxwoA6Et;Qk(wb`|Ea%(AJaICJW1rSNJJXh38)?-gLE%~C1 zFvC;!^f=8;GtBwB^!lr2Yy`>4UdYvwtO825T_a=O5HeMnz(_tCKl+gU_qD<;?0^R4 zyG#>iWkZmy0~U}iT_3RT*IP`ZP;}9wvg*41WEky@Yz;#r! z?oowJh$N<0BN3os=~-TcR#NMMK{7CZ6Az=jS`ufwOv9E=rc^7y!T?vZ%|z>=F~^)O zs0BH-Kjq7}D&5~H*QYu%3p%lI*IR18rZ3HfKZv2(!rzOxw7pNkxsTzB&y#pNg~Hkd ztESC5H8NN$QPjJFPPdsnftl0s|S1i8%_Fa^>)M@x6@)Yr}~shFWrl=`K^p?D(M zgl!I^U%bz5(=R~0C5rXEM*gw$va_BBYvtr|ISkLM61tkXZ6zFA@1EE|Mt$N&`#pPC*wL3>o7Vvl#~M*>S&w%M`0mut ztYWV9+w%ngC5>Hc*r5IJ;}(J`*0*7C{(+_B2(?1{X5om_bXcWdPY4MLXf@jw2n1DF ziF`AmwzYYf#pp0vXaw8P%9;K3k{rfa%-(|T^>t>WK0!(aU^_awQuu6B`a)rgRKVNi zV84v^S~QHEvAg!~l=b0#@y7@}P!^OM9zF5prG6;yAt)^j8_^kSa1gi$LFd{fqpb)$ z3yO@O2SQtqKr%`q=++RI-K;xIYO<1tCjwGUbFD@Tf;#s6&@*DL(GXyz8a2|(D%ga* zjxDRmV2P5iElHf9mwnJ|dB!`FSxxxOrV-B7Dvfh_&r98ad(pvavQag(fd7MFj=A_O z>rL&_@iqq`c!?2{yMt)p=9r^5YDgNaLX}d_RiIVkeiq*b4-OIVwfic;v(Pk=t1Y0m z6eR>(CQ`979?Df zeM^m=sbU;*coZ?PAnxIC#F&Ur7x_)^kq{Tb=pYU9c$X5l8477qf`dahxo;VWld25o zgx1zo=zY*rRJ!fxq*u`BXzuRTU9g2S!bAYh5-32Ts zCJ&ds&Rk!&LPM+6k+A~A+GIBvJGQs_)L%@sj`~PqTLF(|ZS*ks=8R-v9(>wrJbF*d zY=>SKr4nae$HpFn|0qH?cFD_~G7?;JH=`v-R`4bF08eN}w27TvR)r2Y;8~}XB=O^M zz0!?tg0|6vq~u9>cP2{_?$FNGhA#7%G&4)L=|u{d6>Hw;^F;SsSX#xqiMnw4!%2lr zU305#wWlIOM}!HE0=&2Ly)}-*4P|bZ#48vFGYGc(1zBL1rmY0t94ph7jt$8hG`G98 z6gw~RcCNeCw%PhS--^`YF)z?;9xp-k(G?ravfP!U+(6C`emh0Bp}#~470|9 zrdJVCh`Z7gU*A7*C|8`D8(uO(nRMWXz}}&X*5vgEevlK@L!Qo^6vzo{n>K1pZ`3zB z0!h4`>gx%cGLXV=C}OHqwlpYRHiJ<8VCZOitm9yMECQoobfQV+7vI<{11EUlnx18x z`$8MPmKWAhsEatlq1u}}qHlD|3IT4AyXH!i<@tHdkvT5$J$Q;t zUT*@X6Qcw`3gx7s1kgDZF_Lc-{VMUnYy`c;{r0f2=7%LEA`P#!ZOn!8w=bWh zHX9REND<5VXSJpYlh8Ca()UQW?#yMTsjooKG?XSKNT&7)FYF)?konxi9kL!0poghb{Jidd$oEkKRY9QefH6ScoI7$%Y7l;O z8+Sy)?Iw=Qs)(~+tl}InhRLAcQY98j4)AYFhSOsoLcFn%&-94XSEOJ>2R(D6n8qqf zh(PaLA~E-@MUDPQaK7vVp|nacb2qEE11jWS#dfmqZGrG8K(t@SC%uTs{Lo8^%pLEnL|8H*rj7{Y8z_wObDBs9 z$fL$ZB;^=qgVbQ@GByRodcOu1Qf=68^y`~B92$d0W^YiB(6~9m$mD8Ug4GsH8jHR~LrOu(F^LS}%<3v0F=BJfcr$_?tHBs0k+xv~1RWX9 ztz2}5Pl-LztW;ZN?Z>cztL6tGkU``0^-3995;Vh8Ps!m}$);Ds{yQ#T$e&3oRQh>q zT6FZQxx(ALgHF03W)-fT_Q-T$@17>Up)JOLu|csip{f@lI?ubdN_dG7oj_!pBw78lPLlf63K6*?dXI?NbIN z?b&miM!J@f(2Rf4RLGkSW{=3`*eD^hV*-WA39K`KFo2{1`c!-jvrp`K4X!B;hO5d9 z@p@BG1#SaJH-f{t1+U4|s)JYKxaDNMdKVFwJN*=bk99c)jW}>Pn?;%k|2mPMv z=i9S<(7EkSo8=Dm&?UDn^*h+bsgZ7?<&9Dgk*8%M6gwi69P}=lJ$~U`6_< zeJ)W(y0=#zHY#c`TA^UtTE;P;l6cr(pTRbUL+@Fmf}!$i3V)nyceI;vP9=WiL_|q( zr8eR#KWD!pddxd?l$Yt|Oo9d*wk0|`7FWymKa^e9*MZ8L5l6Af~ z7NBb9L{3|>T=G&ao_sv-S)IHA-a~ra@uB}MYR|~lt{pSMBTSq)I+rhKu6c& zgla;I&H#bpV<)$|SPgw_dw2@^1+x~{e2IB}d(0on>Z2Ddd|cL`eIh}nH0t2Z_FKaN z1JsbWiC;~I`PJgY)A>jnoo{HZwbZs@Z?&IVf?%!P>1le{;IW^=w-oZMiw1xr$8?V$N;eOedTHj4z z+0YrU{mejZB0hM~cRt&pO0y6c!FhGi#Hn%ow*7X)?RNY+^Qc~y{}OF}ZXKthZcJ69 zKF|gl9#31DLr|9l53q$hbm-e8$HS{<~^!v`*Y^ zxGgtLxfNJf7nJM!-BM#^3){V}f89EGWOEC#gn{uRR94z)jm;vW3I5A11TZl<@oa?hlk=g*1 zo;_iE-79H)gxQ%|k>$R+JFx*6vPsj!#GQRf8TV+#alEgatoSN zy&I-TK?T&v;dWwP#K^OniK`=eiq~?prqXFN)f}J)8q%zBJYPj;l$&H$ARZk<#P6KM z9tY<=FgXoFYXw_ou2PaCZ66<%=y>MerXjm6K*WcH2W>ggT;)GtoODB5PRiC)z+_Ek z3X)rJsy{!uPvGfFz@^XUR{3*@0zYohyZ~3LOs@V}HOTnSEFIG^(fy$s6b-*;L}VI;*X=;S(Ib*%SLb9*_Ld3sdM<1YLPEJs7)JPs{7D+njCw#0AW=W(pO2gq77mWVjG#mbaImX*_S&+Ymmhm=&~= zKc(B+ee1h;d=k&)i%0A3j~}5U*rBA;?{(CdQlZBpgW;D{085S~CN4xWfdIF;kxi$1 zwfi1hg-q{3Pzu6B;D-J1`6%WfHP#T*&eCn+>j|<&gkIii0W66A=!eN$75G^lLNmN> z!<#1uu+E*Yvlq^{yAD`(*5|8K&*zcZnQAuR=#Y96V?GGG_>P>*-N~6vwbassgdx!- z@JBQeW4klht;snruo3jwnAAmhoqpFJAjb7>uk)v`OZ8S2ni>+mN$nlIj%yqmY|m)R$&34K!g7?} zfoIEkOQaK^|8ihNxmTw!n1-!*1&;wDOoM>$1JnL)hz=n^m`R2=Dk#WSvw2yMvme^q zU{=d6vFaF{DEe;!NR@md0m@CRdyx-KL6|YOp`?nNZahWcy8;QO%D3HpA*Uczb*9}m z(OSSXPrjB_#c<|xa|BY;DA?bKO4&E7XA2b9-=6q!3;6;JIL9#Me6V>I&t<~Og}Ix( zze7#)RvI=pJjq4{5DcXtU3g^H-k>Pu)PR<(^SY0j6mTmJXw-L5*FJ6NsH^B$#rD%i z?V~KAjY09>CJ$*Wp{0~y2tgsXGpZEHREM7*rPxsjVFVW7iIliu9{{`GYQuDj^SDL>eZ(@YIn(1*c~>li3ky6YS%s>Co@!2hODtO+V>y%* zBxxfuXO+5{ix}5l`zbA(-B&&^<&yLPLW2Cz6m=K?UWw14aG5ox#ovU@gmE}@0^s?tt$0$36Qd}9LO zoJ6_IflJEIWVugC6QRPL^-Z>)Gsrz}*z%}b%eBd(KHNj_Pru)^yBMF~&|F#g`e~Wk zZGq(TsOwhbahz8BE=q){Z6EB0Q>ZzM4o(qo*)$JjSXxzy5};`FeAr zVlXpN`oIBe-n7}EYi>a5wZx?IV&DaDDWD|Aiu%ITX2@t+43IHrVlbc^yZEXiQEqp7l)=HsgYRT*(219XFx?GDSUp zhhx6;Q}#Bm@yK9BzlYPkUfN8hK|KuXra_wBB7Q&9AXA@c68slu=)_tyuvSbtToa)Z z2^$lCZ=la=BAjEI_g$_<-`Ml|l=|9u6!fR&XxWWQyOM0R83b`Gi&>Y_!xS%p*qXIu zVia}^7iMmHg1QUh{HyLgRpo|<%_i&{R+^69oM}y3%noIi2UI5P1P6hj3&r$ z!Ohs3#`ky3+1S4=L!dbh^3JzhEF+x_P}p8$40hs}=xMc`aECt5Qp;#W(28_L*VHvv z#wAnGg$&z7*dZQ0epOIp9ynvQk0CsQs<%lZ+$g8(+LB-vPaUPjbK&->9w)Zt?o{LW z3V0KDKU1NPtB^`CSG8u72#om*{blr4$4Zs_)TIF#Gx{M$6(+bH^@P6sZJ#q_R!8r# zR;!=SBWs=*MTvu>(|9VeU@|A&;JQDl1&cirVv2Tgab&RQ(Bs{Nr1ry)whwHz^Yr$)^I)_HVqOHEv#oaT7P;m^K2i)V~T`a5;^)}2e6sAc~ z3>7nea67wR#`eq$Yd}Yb&>@(Z2+GkR&271ymMS)ysq|pg$j6l_>%#|u&OhYF$7boP zQi;Fv?uuJpi((qjO*SaACw z$>xJH6jcmNv)^ugD{du<(?qr3a=_Hj2Kx~37SI{HFM&nFO!=lCqj6~peBR!yaj z1zjht?8e1T?-jiOQ3G&h^=URR+Owg+_#?Wh?#Vp$4gm-Y$^5D+<}*K!Y+NqxcGSz5 zfMy+cXi`*~<(#f1<; zlMdctS1}ZJ0x8HIkvtBS+7p(QshF+AIQpCE$L9M9C2emd-e6Y}P29ePls2X5eNsQu zOYqHUaf3t@OLMDl`d?IB*yvAIvO^1(83u$!x?SW%?l~WB8tY{|7t~&o^yt%^iLGo; zSC1hF3l5F_@*P2YuLaj}F)I0CT;q4t1!`|D^TX@F+KfXc%*)b~2@R@NHyCXQLTXB~ zyF=v^p#+*LAQ(5w8DDn7=c6E~i1#Dw6+c_BINhJVxr(AR{WH3;{8MG-2YRO8@-0?* zFzkR4X6c6F5!jk&UmF^tg4D|L(=n8uq8(l8d&epM7f;zp6e5utOL}w=Ys#RJ&Vct5 zp3z^#o+~GSCXgnYa`rA(9@lRk@2u~i7ToWz9_T+M>iW_yrQID7QQC?bH*h^SU?M*q zt;-Hbo?17~KH?P7Jx6+4-nkB;+_CU@fGIaVxxeV%JDg-^^(V0;>IKJ$u>@41(FHdb zN3`NBQkS{7xnSyYS(dF9)VHfBcE1*}_aN*0FU3{7u%)Sf;Y zxrE({=6fgaR?32g@=hD!2YrNkq?)8debbE@mR;XziJ}dYk<1%`zzM~*>}fr$o{Ys0 z&I5bu${6I>2JHAX3zYd5MP|!xySJ>3Bi4iD&5Ae0FgM_42)UQMc8?Kza%_M6dZW@M z3WEKD?+ZEUN+woQTJfht++@5aEp~h#Pmc;J-#H~V3t(Sm|J)n&`rA1G8an;ZQIs3K z1QZ--IB&(4ulVeRk_B&Q(a|j&Y=ODwTGXn!?DP;3EjA205Cmo;65|bIz=GnF)@!9b z<={}iK81Ibz6)6BBF?J7YW?I5+#^n~h*E@bG~OJUflr~ULT4##v^^6Q@}cBT8mBsr zAVdGFdR;UbTKiB=2EG_kt160Ku!H#<_AjL=EE(YZ+GBA-a37M~=lavsV%!kiDxnUl zkL8>-Iu-3&>JWldKKhAHPI#9!&{w0Nlam;G0m@>NeIC!CGVzmP}y)t7e;oCx* zmfnqYxRV<88`zU>liE}9w%*!`ZFvZMzYpR^6Bk8XP9fGf4VpwXqoR%Fkbt61bS+q} zLm?tazM3y3Z(J9if`TaAuK+>j5Dq4AbLbr8U5s#7@?Lg`>Y?6q5bDS+q$(wfSDLHT zMJK9ibb6rxeZ?Qd?sZo@q`-6eM?~~`G+6^rBi(RtXtjyv;_19hqc213DN!fG>}oBf zBuyCC?bAjW&^#;nvw2z4Cy|kM{cp)0qN0b-BNem0I5fs`s`3(DS@}^?mw>Z!SB7Mv z!A}8ps(#SAG=FQHqVNSQ1vi9)!$3Vixwf|`dejP@%1?G6IG~)4kjU<8>1c7wKe3dD zbl?~nJD9~74&mV4vP?h^bwOj}u0S2!9Q=mKOvL9wvXD0KS_HU4`D{w3DA0IQ) zbK6IuU&2=~eD)DBEir7U9Wc;b^Cz|0hR2=UVO-Y^OTL~C(7_n7B6GJd@#WJ^H^$AC z-Bxjf>9{n9!MK>x)nmo_XllG|S;$>e4g&Udu{vM_+ zDIVP*@Ji9McwRj~L8Zy1=mlYe*10VaK7Yl~3t&Ct@^|1~f`(L;W$cMymPM z1;frpjv(t0@>*f*WW2JCrG;R2jt-4=#m|><5@|$RA-H(eJ9dulHnREQ$L0cgD!b?* z*@8C!?x|iVcEX#c?YSPv!xrsHN3354ICQchX{hT{pet(!eMghbLo79HSnv$v1BSG* zG;FR6`m^YIBo@9(a_cr+5Q%~7HAEFa?T+=wsaDUU*Jk>JS9vNH1h$A|LIbL>w6^+o zYIopZAMsh>cty3G?2RClmV_kk-{Nokr}Is;kU||Hoen{2+0VG_O1)q+zmR;oF>s(G zG_$7dT+b2$4=sxvN_+jus@X#Y{!g+8{Xe&D)9+r>C`&3wD@O~!!wYIl2x`k9$^k9v z_qs=w7aKw@au#qsK)EN(#h+a2!#{PY_q4RX+n#kvtv~EtJ?xJiqR0gvfKc|e+H~8P zfZZ9~`ifF6`@vscy5I4e3iKAW_qx>*oe5<7?O-@KyZePTB#WlU;>&eO44nweEe5owZ2h$gnX4>0 zY4#<_B3qp&DQai$is$3jc`n|;#%8dBsDknavxoJv=5mE{(F8r(=nb<%>K^+IleKWa zI0&}bcy2fo9`<+M6z9o<1LHY8#|#B{q{O5 zN17O(o}9RnfpMxzP-UJ?OEHzX*X5X|db(~^ZJY|!2L!5#+K##ST)#DXpkY53{K{k6 zr;b}qj}IoR(lw%Cr0CyLO$E>2BAbt-L^Sn3gx7urvUz7?nrg68AVG?xJHY4PJWfo> zn9T~m%2wmzqY->{cb;>!{zXVl4li^s-z=|sySY!GYphiNq^O(fG|V%fvwaRldHh`( zv*}2M{fTP*$^e!s$WHcT`J{>Nn=Q6{*jif|HUx+UvE{73nVPX_E&>Bs=(?*lvX z3rEJ0jN3j>z@{!F}9!VJ3*wPT*XfpHgb4p=lw zS$#55wIWLmKSgZG4mH{MW_o9Ed;yY$r&L;H?$tS@2RCat|&_TnF zD0=$VE5}r(#CMG0NTLBas<63!Sx}xqw4XLP{B6RUp$w`n3}R0%&ooXxB3Mt|*wjGz zxgg=v-yA=pR_8yp!GJ$96){$aX^Yo;o4|^97FuUG;T)UO(*Sh(;2@}Hqse?pRg@=l zb9!0^D8#-xFA9MQCVUE&%#P>A8Tu59T97_YZ@1q;#;FYz7UwvDSXoidl-P|aI+{XP zAAkjh;2T#5Nd=2(1ySlM^cM65$fgXoO~Mb`7k|>4B4Pvms|0rbCfXYv$1HB}FKjZv zpoI@xGr$UQo;V*#F28B3e*RF1jl59wF%Cj|G3e7IFLJn22t~_8noYGKNV~Prw)+Y| zg~?bA2Cf%68tAd}{uhA3OZP=~piU$Okk=V}n;Aa<6G(trbU0H25F|VlQcz#bsZ{tz z2e1P|O5iB8Br6F!p&v2(M@lpYNJ_j7dh@ZSKs$M^O8mM;2yU&G`9MeOZXUGiv4uB& z{+D=mg{WBkJ#Tea&*n91tm$$pk-nyWOC}$OohI;qM_nSr_!R zDVSmRh6(#@sdg80Hrgbpi{0C43i5t%0PbW?K`oJ&Hkbjn(W)_cp@!8%E#@F#r3%&_ z2u7mq{m~noZpPOqYZm*(9P;9zT?RZW+27k}v&j}+gCb1g$^$Fwmm^AzPg=`fk-2l$ z$8KrhYHUU-Ei#@IflGjL(BvQ8Awpw|ZJ$)N6(-Rce=ZAlMRPJV5=0vvvFEKn4oJQ6 zUx8vgMIs$NXpmDOy0G&`7f#%2@_(Gy!pHt11KOhLDBNi}QpTYR91zBE9 z!_y!eS>_GHT55e_2MSaEC$wrDqCNL+6L$Ye)zK*>vm`Z_&tOE*Y=Im{)uRX>P*|+i zES4?{jm?-@eJ?01gB7;7@Q1lXxPf5d8ZE7qq|Ai7OI1hbj__esN4h1p5e4iq zOq1ulscFxuhOjM4%?)W}PCNW-GFDj3d~WzpqK&I`pde*ZS-240RVLE#9M2zNP&zUV zg`H56CzIalRT7gAw|jh0)rHwYF;47ck(A*fCKvWcx?AUH5f?ZL^;9R#y$n;A8_77^ zoN(RY=Gu(7eBIU{MY3{jEA6p`*Ny;Befo84o#dYCeha{xdYck!JZGhuj)0Y<9PT85 zbkd$h4?_@AUA+u=<;-Rq5ic;PuuxG;S5UR%t_rv>$O4u^cP?R^5wm%879aN;KEqx@ zeNm^nSG2=l24|SxW>bMXt?VWeAj*{_Wx?w-B?2#A595(dh7xZq+oaq5rlvk&|Q$NX6gP06h^{FF`snRM9h9*D1w?q-*gWEzDVPeW3b-H0~>zci94k$tRlcvdsn+rYjjFST&Z)Q z$d5h%I}Ml?iC^Mja_Kx?-(R1Lb6c5plt9moPiN9#sqTeZFQ z`s@9u%6Rt56?e;7AC>GN3>oWop`qXsLl-}_)@TmlfDEHr#VlBJwp+t}V&t->ejDc@ zVFMDhcRZTU0?oBeL<--2LX`HgBu*JQ!thgG@^jT44I^7uH^`zHw9pH~9r(eA-F40v z?(`~TbPkz_rV3$SOZa+*6nx8*pl1~R!4f~{?oWAbDcR1J9I+%+7)A}3nwjs&xTyr% zGUr$ccew%voPugIg?T&46RXVBm(N;|CUtA-4GQ|cb)l@5TNJ0R^5+d3RC<|pbLDfzIvr=BMR? z<1yg`WYv!?t9adg7wozAq}5XjHd8tnr2?w`@{PS5b0Wx~GnGwO&NZ=zqn7T$&Y~i1 zOY=m=T)fZQHMS9F#)S_MTg$kn&F`>+#~H{|+9d6rZOLh@&~l=RoapD6WdJ2(69hUo z>KrsJBkMikAq9U5n+n2C8)uFh80d>DKR?Ud!u!SIeOpEAwmT~KV-OwtWj`|-bI6J%fH_67-l#}c7uP#hsU0g0 zn((Ta8^N~=0VfU~&F~i~3U3=}(=R-D7tcLflSWmqL@4wuj^})9XG+YDrDWidP1=DN z*cCwMqn)6aOTr8~7Ao~e2~ks6_hRvJ3qV%vcV41BAd#3YkErSj@!x@!m!aJ*V+siC zs~dCFm2LIYx{Oji5QnJ;)7cg($ni;1>Xz)>UfM1R?y!!NX4t2xEz>e*WSj3p$K~En zYcZM#KIabS5khjVh5&su2Sc$npa|XxF+fQtH9uasAyt?k0u?DX57!gBm`~SuBk9BT~yvtEO-*u0P^Ya&JL-mPi4x4-0KYC|jk6%wt z)lHJ&qUa*?rDdtfnZlKfVz#K+S^fn5bc2j-5}O5;L$L`%FELNW%)r{3?YQaA zDb5)p<2z`qEx(Ng^g@zJk?-lJkrE(BdQ&ls9VnnYlWVgY*c>Q8H`Nl8bBQ6qffSk% z8Jsar^U`QXx~@x?d0Z@uJGXY=M>3+08tC>IP&k9E6I6edw!%cM z6T>ThFGEI)z2I-2Tx^n)xMOdC=T<(qpvT{@jJ_e6Q@rZ_*35fP;McuPyBA!UHWMOe z(!*Q`eBZJ8_Da;z^**Bto&99I_ZlT^7dmMrr$vi30H~`0Ebz(|dB|u}_$fi9h!_gw z623MxMMc8NGc~%23!O$O*eiHTFv+YetwGK{bS7R5Ob|s)Jj#-PC46$?lP46cgnKSk zw`FyLglJ;QI}De`^4WA=eWFVt^}G0$(5xAqrd*@@avgRbO)ph0Fye6oE$`*a>~6n3 zUMT|mv@KN28E16Dl0$O}21fNnI`l-UMGH0<401jq^jcidK7*p9=aRshO3}%+b2Kfg zRUbHMuh`Qadniv22TZvj3(mQF8wx)b>H9+vmS|<9IF>M3);t{_dC^k~g>n)u9;|%6 zm4Gk=aS-HeJ+zT9Z1E?u_WZX~26Aba6rZRmkoxsswsl8Ui6XM$+`J|CSTa|_-2kL{ zwG2)`Z0W~#H9)64c%<3;fYX|kq1*OapWD4JE^@7}cr|df`L`qnx}9%i2Z-v3z?eWe zjtoX8nrbBnb{7)oJz(^vUxW$5)2^=N8?)t0DOAv>rhtx1jupxhBD!FNWY$X>UNi*+ z_?)TtqNH-REa{1$=574wqxR%DYF~<_)74ups4pusaP*!fq`L~Uz7mmn{2H7!zOkNsy5Q6EhH6- zN$XlBu9o(I)(kO=m7Mes#qUSVYl8z7cc;DAkJTeVGS~Ey(~YYsiqCHd@oz zhHKktbgW-DpDq}Lf3Z|3JMY%%x2Xcl;+ARK@~oXBxR~L3#9{N9!<~m z;di$^RI4g9){VMq z8{NX+xH*<9=kH=#UHYCNw@7yN4S;EJ>1!69{#-e0!~(n%o?M z@PX6NeZ%LJr$Rf`;fazyT5?y(`uGw|TY1AENZZ=umOwR@dy|?Jhyb_Nk?kGL^O56; z3x7b}yV;1GQ59hGt8yTB@Vm=Kw+wE7NhDEZyz;Pztt<5|M0$>F<*)1=adit=SfS*6 zxK}QEs0H~2Z|o>*qCz59R)vV~q9y~~$2%H=QOgo`ZBOPx;s*@!%?4PFG9X&YwbqR& z5vXSMQTHrEqrYC}-GIo=trUi>$kAlx^pA~iwOJ7&c4yxXy%Xk>y<3IlR=ze&79Af+ zHX?{=D3ReNK^FgLE3Ff5Pulp@HCE}?lV+mI3-c*tP1nan^)My%?(~blC|mG1t)1t5 z>K(xw-gp;X-r6lar{{?{BB{6aWA6_PEJE;l0QREDhSwyF zRO?yYbJ{^(=?bTDiusbjXwutgZ~Rc*!xmv<58Q9Pn}GZ)@t@Kdb4!9l1KgR9@Z-zw zyUjgVsW2k*f*Gm=nwClW#Ga-{y41ZcM0<8)D3R>zy+gBi$HAdS-@TwA>Q|ZZ>`@+Y zWxGWo^Q+Ok&=q1tHhm1m!w5J0qU++VY*%77A8vqOduF-#8SBO|LibM2)69Y1YHwZ6wU{ix+H0vVwk>{y}l zWY?y`L2Rs0@JcY^vD{T%vXDhJYh8Q`R$c~8#HkOuMPNEY-TBb@@8jPp%Rs?&)33#n zMSo^~ufK2>>N>}?Y{f&El1>djvkWdN&Mc_a*(PWAOqU>nJ}Q#mPLl;MKp66ly65x^ z*B4gj6o)Z_qy`y5do1bj$jF_t|}_)CAISnLp&E|=b{fK7_8 zZq|sEK5qsuM*9fM_ofayqZ)*~5)cebN5M8Bt=;S3TM==ZCFcY?`XZa|h5*W)-&LhR!%T~Uo1_h{1!5xrh_R%! zol&s3;mg=E@A$>r*6AS+u2DCobUF(Utvz1S2C#8Gq?IAKK+#Q3`_^vqdsWDwpWk+h zQ3=|xR;X^8h=*aa`QF@bRvR5}ph+J`!-f(9OgjvuB?o6rtRL+WB`I!kP$ziHYw_f^fRbYD{o8uH1L{5 zXUV7P@se3d#e$(#)mC5o~`-;||sZAec?hyLIix_);M{bAyKtD|4Fg$Rbw~=Tz!y^SCYA zOqr*(+@&8~@pLg$^>k?n9c1oZgW>opd){_W(-%%bZ>Vl5ZAh{q&g>|5mdk9y*}_}G zOxHQRxGRF03c*f`o~Sya?}wzLk;f(Zdq)WtBT8a^HpC)YlF9F9A%Hjpx&})=qo{>1 z_l-XwRRP7BH-2w66J$Z{P9;6#*K%))&?VQ_ly4+Y;NI^kYmE{5`Y<>T_$D~;)pRbb zLTspHTj9ZpC`!>1@p+OKp{)u+M7w24b+nu+^fr-s+{@fMGmkD8Q5UkdO0Aj6Zp_IC zU|tEqJyzdp$x#dDHb81DOeJ=P)Z!R(+AK-<{R9_zCc;8h>kv>x=-r}jogzm#rqdhB zQK}D%3f3Ms&R_%+PRKi!yGDU@!z)O-8MOz%9u-vs2MwqdZQ3 z{R`S9M!np4*z;~1Z2r$WKD$y!+xQ2$mE(bJ;^9IIXZrG{~iIizGhIAJNW>8&Ba@C0qSML-&<(FB)aL!l*-u3Cw;;jV*#X87vtK`VZ-V~yB;rqL4fW% zS;heNw)<3MIlh6vZWiRj5E=InH`^ z5l^Q$t2*j8Vi;N@GrtUqFnxa)5Bnj1v33VN9yOCBhgohu?s)!!w{f`LkxH6;VZtN4 zjqByylO7Cw;m_*e-|R~z=WL}K=Fe(t+*AhzLBwzi;cdli-er6i>WS) z9sw686uT3vlev}o>t*nr%*`xpS)DitwDl}?^jTm3|9+T;fD;NIpWR09^$pg10zWr; z{l-CHWM^l^N<-u5=t%9zKy7JbNJGcM!a_q!PeV^n_1c2U*4e^N+lk7;mhcD0&nSHQ zwz@XPR(8gg7Wm&$wRJ4*?KlVsUa#^epPz)X`pxw$Y^i?;NUdvWPV;(#hK`zn<}Z7{ zDkx)YXk=&mtIWT{aMHGV#h|6J`O)UDq4acr#jvusG5ewQYed&K(>K?*u(N%|q5Eq9 zD(!px-(B`MzNKw!Z2n`Mzn`PAu%$89`)j#g+u8pW zi2Xl{@=Aq2Q|=Yt=^s0tm5s5j`L6&!zS-JoTj*)q=>5>fLfc&5_LZ>uwlq50w#K?N z46iQumt$k1?eHt!chXrH+gkpBveh-xH`lhMd2R4dxs9BZ;jch{YBoC>E5pB*#nw*1 z;-9j;!0QfAe{FJMD?8oyuN39Aw9)@ntk?LU`;%^VdNjXn@k7BMLE*0j{O&CLPImeh zwy$yKSJ>~v_ILiI|4Xxfj41nKr2iW3Cu{t*&flezvaz(%x3P2nYc#8$Tm56a?^OG1 ztnUfrAL9rZ>zn-p1{!>C@=H*E4eP%fY}TLM@q60%>GLCb@Ms(U?a0rmz|8nZ2C&k$ zvDN=c{9i)F&k5sKgzs1QY4CrB=lu9RN#RSqrlg;avwzP8e`xco1mAIfNcl5{m5siE zu@mQOkKc9s`S5?)?N`pq%LsG+7op)tWcVHG?|S{0*uNP1w}bRU?C&{JR^R%M$N#%S z_|s7S7=&LukM+A`oN_kWR#y6YKZ*SNQ@<1T&j1{>&Fp_zj#KWHMSpbJ{Zd4{)*-(G{$0oa68_)DC%&J3OqlNvKJ$ZZzmxZ` zDfJp;{($grXOz6WFdzPFx$?>vW4%`%eW#8M{wqoFwav`%9rSI!XIoqR*D?p+M*o$4 z-??XtZ)t$9{VVnUpwj<{NdL0fCv5S(Cezjb|Cg<7t@L$YEvNfE;Ay``+aD3~Ki5bK zKe^Ta+D8A0De9MC@e6l;L#zKNqR9NhW?nOGTiZW~_TLR`e+l+)k8yIZb%MFJg~e-N zGq%8YG&0sT`c3%4H@5u|+VpMyu4MWjg|h#snm|fMSXLaL=lgW@wKn)^<>@C||GxJA zT@w3kPXDE@{yz8pUB~}PW&KainSXbk|M1%2b;-)g%=ml8c`dXJjLr1_mrVLk3~4_( z(JwjXr{wZCz42e`vhRw2ueX2VmYvZnrG72Uwe^f%srAPQ^FN~2zpP5Ivez;Dc_Jb4 zI%E3Ju-W%ji+|ZnN$PJJ;(w>mA5{GJ4!^dcp^d)b4@dgGNbm>Q{=3QNUqqSz&xZf| zBF!IE{PzyOj-{n3|4*g-ALRPKF!Vob_I-}>eSzS+vVTkazgseJd|fj55eaOK{xzxp zUlyMnEX`h5HU1A8=eJ?$CnfPM?9FxbZT_I^zn36?D$@T2Zv1xmjcsl1^?x3Hd`IKg zq;2t975}N{{d=up^}3cNqitdMf07Tcy5ZY=SMJA}%kRU}Pd52}?6q)yUE=(CHRgL{ zGq(FVbp1c}zB0P5TuIl=%#I;uh?$ukGbYBEnU0y6DYj!~=9rn88DhtdnIUFodMD}I zx6^&^%$m7t)_U{i&5xtKkG7e;3kE zfdFl0KVKieTcm&2E&nXV|F$m~Bgy{{1O@ct8#vfmTLJao|CeQDX0QK0b4&^UGNyh} zS^jRP`F~_A8CskD51jHu%}mT3^Z-Qi`sTnNXbubbE*6Ocr z%f-d^vxq+u z{ms4dGpDqXtFyJ8p*{a^Y5xBA_cVXUwsOnr*;yDF0^vN4K-KpjqW>|ys*(PC2jFb< z0}t~P%w!J)^BUM00S&EAMnHqTCD3*M6M_e{eFI^1KX8h!boP1-tU#Qip^=dxy%BJY z`3Idp756(eLj&&L5H$QiM9uFu^dCSiUWPv&{gU`+ul@u2@)P7D1aSBx<`0`05Cg~! z0II@#Bt}*w{E|Sw%FmYkfbEF;Xh_)_=z!DCpTanCSt`99(|_6hw^xdaggl zzL1Hb-akTYevA2q_|Gc;se-(~Hv9$}{-c8b@hU6*@OuDd3$!=d6a9_HhD5-(GSKm; zMyq z_2)MHXcZ80ZuFNn{ROu4H~bMlGb1xA9U}`J6Q>dr6E`C(Hyb+*Bk+dt-y;4?IX^l2 zE2$r(f7rkOLi(4%_IE@a5MA|~CI7EbtKaDUlI1tK{Zi@=DnI+VwcTF`{ZhAI3CS1% z5o9WQ4i2Vzjz1O_|D5D6nSYY}3yB|8e}h5uTk4rv(K{Hq{7m+@xL*drk6!Hvd@=o{ za=$d`*UJ4Eg@3Kk-$x0*A#g7E>(hVEp}$h)1rBZQpS{pX^ha;_cLe>Hl)pFSN3`q@ zc%AEiq<~*i{;7b!xuO3C+8V$wqxWM5{$ar+G6i-DJ0KGD=QQ?P zTmP2mm&~%V+`qq*Bt`ih9nB26x!70@jPy8}>DW1pndyFfe2fk_iF460GO`(Su(2|+ z7#TDFEc4HK|6J%F(4*f9W#`Z{(latPq%&Y;=b&RXHZ-8)(g)t@vHZ9Isp;$M|6b@X zdH-DK-=Q-6Ouwi7BkIpd{|v$ab`)bhM*wi`4U`(N+JAZad)A*WdG0^FxqtIw^E;T@ z8T~N0{_y+%lgEF~{$tVgb9Kqj0c6u}dH#s|JuR>vK%6?aoWhSK+Rv1Kj`^AHx2`Pu z3+59T{aYk(vkGu`3&Y>HxBM}henZ{;r^CNh>_46F_YD7=|94LOYuEqf-@nGU-*f#h z|9k` zxop3FIDJ`5-5yUo#%opQOXMs#e7v%HqCs~Re|OEt^!cR9)&~+Eb|SQ#N)a%8l=HKb zn+G`YM3)ef8N^AXK(J*&XCve7^myeTzuoVJMp(C_OkvERNe}Q#Y;%ZVjJfeiVG6i$X}k3c zo8!V``ZSRq8*Y1AcHw93lkh&$T8SI`HoSSfue9+reFUq*;=AVABkY7aa#o5YLQ~{c=mYiqAvB;cunlqO;!u+I0?N^!hMu|^rCV~-5R(E=Qw;AqY)ER zZ>4){4st}jHoI_zC$huLnTU+(poF0f^vNzYo0A5|{l3}vYxFq}eelZFLbJm0F^`_yItlQ$f@VJK{kQOhW-DoT{{ZN!P4 zf){!-KBzRYc5=wsZklhpFzrXoXQgHmBK5AwjS#4_p~y@aT6Ty*@vy-h916p%6fsC|=YTu8EqUth{ILgL^G zzaf5qDpmK!_dZZDC%;&bm+PvXl#L{raHbA1_yX%Vy=E*mmX5JnYJ z9vX*066+&|DFM38kwhk0qD!D6T0FhaK+G-hYz$S@8hCx1c;1e%R(Y+z*)rAzZTt|uWa?yIA^!Y{V;vktpQbFHKMj*!Rf?aQZ+(8F)VrB^)-qDNE zr#*mhC4y=BCHunG)qfyVQ$CQui};)$2vb{9KMsFXl%E4Vxse6xfmASqbxJ7+o~FQd zSBfr91BqxOd;~Amqs7$e!6gHo(er==v!P`(+a$&109yU&0c6j~hT8*tQ+XQ6X|q@# zq|ByVAA}#&;2dohgx~kEvqk}9&JQH@fM~vxkQ-cmBix`J|B%MipPv(Ds6+xecs`q+ z3y08@ik~2l$p_hnDNW;ahMEn{7+Y1*)EQIAPCuS_zz4-BK>^nTVe)-aPYgjB3DieOlo4e)?X2eR(yobfQN#(7g(hFv$ze8W zPnHpEP!c-8qq(*9gZ9L?i*0>3CY_fRmgTqT7PqxRpw|O}UgCo5M~@99+a6ygcn~r} zv!Mbgg!ba7Ivd@FGvUGgR;r)Cn`d4jzchdoma-)eA|O3dOzUyCA&PzXN=w4Wo&6B| zZVBwk$+b$etvMxQTvr)z)3f!ktsimH5sVp@%CJWDaao&W?krVWj4Ln^dM8J>Dh93YkYBbE{SrZdrId==?oq@0QUNAJxU%?X)rMUBvk)V>g6EnY@an7{rJma{>@X za_*T<6L6gDEZcbj;c++Hm9V93^5W*tlZ{lT(R<`E#QsT{(aE+&1&mOreZ*UHivX$p zUCg0sA)-sxurD;0CBp+>S6dJq21DRchIjPQM7rpk| zKC^|41_F*lmq?_4*PWg1y;bvv=Z#XboC|lFeL0+)YNh-jWeGQ#oldv}cMg&_cTXFS zPZ$*(W+3`s^y>!5C--k{ZJL6abOp=4Su#$dAzIYR53JEI^Q5+=Gngakr=hNj^-9!7 zTUgRYmY}cY;6VcRLW3yv)`z*a2#6~~jMPeeBIKEqA~LnKkipw}d?}=B7I!mYBgak?_q9HPriw*elmC(CwZPcn#%4U%*GNo_L zow&4~razm>(29l~Fe7~usGe;up|1kbAIS_cpG3zy@Ec6WG=01Oj+?>3r0xTPcq|gB z$vBUSWh$CrK?5G+TPMD*P-31$e3XfKu!1#q)o;cIZXqLx*aBQSd}5NF`Kg!3Y2Ol7 z^gLA|ldXM4O?$7R2?mqG>ue>WwkZaE<^m4q1j9EvH$8}m`@?|_1D$K1O&Q{6+{1nm zBjhbo@~gm+&d*E;%`maGyADF9`7^lNb6sj02@O(X$k34U!CfGISI!lqoWn>3$U}x> z;w1sz^zjGIHRQZtOG4-XbD|THZ;$*`8*hCjuf1d@37hev=eP{#G)2FDm(e|m2()+k zNXS>R?O*s1+=8RCe`UKZVZa0kv+eR!TaI*{+kY1CffKXI zhNX#WdxLmA7Pc*>wrCNtid1HOOZ&P?A^?k@Jp<{$5L#3DNIr3A`Le=F zWdwr>R!#6ITxr`()qBA#Q=P7^Z(L1X!VTb<^a2!%F?jP>Ju9_&cpJ{~;TRI0E&;)& zFpn-7%*NOQ*(R5l%a`VS8p-_IgV`!U`Uo(O^L+ael_K;SA?2^@!94ji7!XPzNv14ug{4M`BXbQ!sMvGX-)XKIbEvW`Sdep?_#*f;ndXORKm^H&NC&Ml&( z1xKKesby~-$t8ZNZZoVH8_2sK9LYAR2{YTIrRBv;6l~fbxS|)@=(GeStasOaemQuu z=pbt`(n34l-hdCckkZl6mk)a*U~ z!41x;@iijez%bRM?&}5v+FLS)C$(k+X28`lT{|d$q9?!QRT=gna$Hv8qsr^!YtuI2 zLx)@S?>$x@gnd+L^aL0{XSw*ODP9~VLn8_@G<1E0ORL~hzw_BeWAvCfQ}LJ7_kz)Z zm$lHwHr4D$(AwuI*urz07av#wfFJbtj7Hr`q6^h%EY_D=aJWzk!_#%`39(V)>wQ*S>;^OFw@OWmpx_qKpvRC6=GKc|o`0<*%JS1ClzKNoFRc*gx#ki%Wm);;N%GX8#waUuNW-d>V&kFtFa+VjGvaAX^LUi zOgBGRrm>8F>Rd}QE#Sw$Q`+n(M zp<89efIi+3fG{24E!DCxBB1FP@VJ-_RwUT^dbCK-ClN`FwB+pSJV)3>N!gqsVjC7j#uS zN%wvLy;OglA48>+&cLr(Pc!|Q*zmr}-KMp7AA%IQRd;;NG)5hLd~(+zL`!hZj&By0 zS^$|!_;lSu;I*CgP^1pj)1mUXqAO`j^4-a6?eiDxli7ok0|v_2y_qG=3HrjYtH;ax z%Vjj%O7-$_-l{Z_5g>S4gDI*bjn~sx|{~K0$n`I(n4p~%~F1F2z8>drA64$ zeMON)*^5JAsV?M*^?5sOCbSV7cDbmBh1e_=ult-qd4`X5UFoJZBH&eOd^&>|d54py zvZR{5tj!LFTlKAoheT6uBm^!rnChwLYJmHIyxfsrtZ*|XI-c)Kn)uTvunKEx?%+eb>&=e^$vdTC-phT6Mk!n-O21zV!r)u_<%jLjppdIhTq)e8FVy8|{wm60=f( zd^$Hrt(pX1XSDzpW;mk`hBupKkE+yB zl%Z)U#a3g{iDv@c*~Nv@xZj1j!rwBY*IF9_o0;@u- zfh2BXH@PRvijBFs;oS3jioPnR^E^5yfBgZn)ZHG&O=bF5mXwju&GWPqM(4szywLV0 z?=^*MW1p(37U$y#tex47$X4W3JI1_=VB}Uc<>e|U+1E1V$1*^4CcFh&#|EL;G`8R@2B%I+3U`^BY^PlrCso>eBT^G&|vR!&ae z4~(n)xpc~D(DFBv^7))+fpJM0bXs2J- z2V)t>RrQF&9&>Gsh=?|zV{nxi2BAcD3pW9&;^w#v<*qZl#_K_Q8f~}sJduA2!t~5 z+NCs^$_o_Y9t`^~y8~h{!xyswQZGV&9&8|WgW@!N*vtg`96dh}?)Yw!kO6V`ttgVw zd8ma)d(aR9gSBKo-(|D`VGC7&U%G69H+a`K6(lGluO-0;1GOr*kPs6Ab)Ey(DZ})M zZzn4qMPhM_jug&E^Yh9PXsPu1$Dgs;cZogWdf>TG7)$0a0Z&#=^#PG-43sr}Ti7O1 zHaG%JCHGjh88rs#uIs)LRrrWB%j>8dS`rT_@WRhz{^BBqBi_k(`fQmg4KyKhdt2U} zq`HjiV=LNn*bOGq-{bEn#naYTN!IAI(vX-m8l;T@#~}}#qZfntc*q|=PMq3YA-jpb zZ@jM-Siy2)<<*B4J9y#9XorO$Jh-eFU)3%fUtL?LmM_wgX-|D(7D#_O{bpT{{AlUL zrK8iaf={b|6n6C1_3UD+qad+nC$VxquBOeo(Rr+Gpw0St8lL|1<;@)=?({15lB(ZH zx5yF}@~-t7aX{*WZGermeFeiUwC=t8S~OlOq{|kRHI6iU^yLi>!-1y@*Yd`;^~N>~ z2m2<(QsEBa9wLCX({29R9KaVTJ8-&3wET4~2u(9l zda!aVq-Wm@p?30f(D)9UZ5Ml3|Ic68Iqlq<&Ps8|7|lQ8~eXwhGgYpV*S+& znXf4uNy=r{c2Y4}Wu(jch-6o#b_m8lce)U~JhI@=Wm?S2*R2%qR{YiCrsKw)EI(X^ zTp98(|E<{RW?z^tH))*` zlQ_mT!X?c%!JbhiwCs#X(b(l=<|O({!+pU*=Fm0bTF+JtY^d>G_W_u*ZZTkatUUS) z=I>-HlQP-@qmj@~*omQpz>5R+xRPX14!#VgDpZPnGD9!3PfhEla662DztlSz|0NXm zy?uQu@EeHqSrG;w0WpEgxScWJczr%buZIhCuQ2SEFig72OmclpD|L8rp_22_%qNM& zvBs(AP~U=d8xS!PQG+Gb91^ zXPf;3!8yb!k`+pq6LQHssR!>e?$R}tvC!G|RSmtQ|7_LpKmZ@aCj`02a}6Pk?=$)( zDp?wWJsrZPkDqR3QzMq*?EGjI2;2gyvniYb!T}>(DSW+M7nTQQ?}i^^&|ER9IJ#yp zPG}llSC;5_gsy0(zhkJPc<-lv@(Ej51Yck-+pg`k-Ls9yO+RpJO^NXXcPI+2aM zA5^xc;F)WC8ia!rsDcFex`V%$9|)* z+L~Wb-%KsicWIR?mV3B{;3vs-q)HmyHIH<+~)8fYG&D+~+k>a=OIu`14 z{L&9H%+>V0?NT3bpx;UjyMp$IGP8H$DE5otkPgqm6oxRfcLV?V@r05p@d-c0*y<~M z0`JJ#hzOzRB?RoiRzhd+u3v@B@OBwV7z+4o^57?N`ipq)4(T{JXLN_JjH1tVK2cWY zG05u*IVD%dj4*R|d|_uD8v7zR?%=Hj{tzE}0^>ds5Whl&J_{o~9KZ%V0Zva=v$z#o z2vZ(jM3U~%&NMSWkleaWh!M}eCS(Vs2^$wR)gcnZ?oP=nvm5k~ND0pd}BGF&tIZ1~er0Gs``BJf-y zOU&dRU(Lg<#ZkmU&R#F8?higQvTE>^&9D|-QdZp`BYFctQ(_u2pPxKjf(mzSvQRkA zv|zGOpDPN3PoAAtIx>jOTwacLr}rN1xL-SARaZy(;;m*iMAUoqCp8<7Q2N?#$$U4z zJ!5JNN{zqX`+#$fd+QX2x2K8Opkgb$Y)}%)o6l`*oBTJY{{IIzM*Ah@fJD z1$+AY!<|QfpTN6WNFuYAdE{%X=}&l z{Fl2+u%(JZZ%%`YZ;2B+Hx-e=;zm0jDTWmdp1izA9YQ#@r>B>94l4ql{EwH-!Jut| zUxs(5N1knIT>Gci8wz*Jws1vWrF(dCJwG1Zp1aa;MM6=dlO-}C4kQj#An$GpAgPjg zJ-BhdMrJUvs;u>TMc21qmU%rPK;X43W%~gx=X(=#?*857-GwcUk=RV))4}syOYro; zI%qMjqE3d~u1+LFNa}5+x0|0^e?kz=+Z7%?3-1pR( zoebiPs*yR)HvVtl7k0F@#-g}FHp}KjT2nI1{Yk9zIQlYH`U$^AN;f6`A-zH~7-x@qQrn;omd}}GGUXkb;WU$7`j1ulT3c;smXZ2b z-y&O(U|L)~`qDM>GdHV|8@we}jIVFEL!vtN6!uu_+$82Z z9f0=Qa?LIBp`dmxe?*;G-}y@M3ah&eM^K~{v!_%WfdOTw(&;tt(aX&Za^WsRVMBB0 z^PbCdec6`ks>Y0}k-+Phlaak!KhdRelV!#BW~*J$zO zw_$bA4yG+0oQ1*6mnUvv!!nCk3{&EB-67+XMYIr{Uqh&Po0n!DQRhBSHg*f86Na8I zs5I2Q+f}KQC+T&HX@YTO+HMMQic1cW{4lBsvCum%3S(gF3^H(3$nY=`JfF|AXZIp? zLIS$khTkF4*=XvIhIhcY3<(6gxW9cw0#z?F`aqpS@?Nq!ky_E_hvjvvXc zB2(ja!Oc|Dm5@V4g2wBet5;1|dYToH40taxij(A84gJvKDHjpNLz%$`k4>?HWtpVO3dKpg*W;SYbW7trI3bFb=OP9^3#k!r~_?7m_ZrYN*aa1U2E;8CLRP)Vnf z-S5@cOkDg`53(fy@}SHvGx$oSX`;ui#1{CoK@ajH&`nUTtkSXV=|Nk9RMGDAE8yG? z0J%uF6Ygx6>q25&rJe&d=7Qwuq%G9zp-o&xEU=NS$mgT~dPBEwQX+D&h(&rJr9&Q+ z?@088W*4+owO=gidwdltnVS&+f=e40Pw10szkbI?FeSP6J5y$OwP?<`3la&0H#@-K z6+7_9F$xFAQ3&KhMF6K?Jbfq&9Xcf|In^q8(rcyBY&ANeE;&YlH*>JYZy|X=Rh25M z^g_Kt4q`YHiQ(Rc4#UIFif==f7c0O6r{lWL;?KYvDL6J2`RnD$l#QC1+AGY=`+2zB zd%uZ?nO={ww0nEuJ&StisQXWoASh?88T5{LZ*q(V{nMT`HazgHnx<&N1Hm4zxDCo} z$lg>?p+L25sR>h8r}!D?PA&P>zV8sE7f*QJUe`oIe_#mzK)Co8WGzs-diPNom1Dg8?j)|Mn|OK5=ne}*UL&V<+pp0N!Yu*>cB!%gst!<$HJ$%J+#sIbl8-mlFwpMbyp8t zKul=b9k!vkPy>K}AXy`8;F+V{@0R_HG?aXQu9z^)EluCr^RA2jsikY?Zt*^4ML|}z zg=y$hxsySRg;F!q5F7t;lA$;ym+Q+Va#E35etW|E>ot{*Rss^8#ojEw-6y`~FCv6F;1~U!$ z%6&A50Z+#mAcN+nZbps?5T93eZJkieinhf+_RaXT>4JRefNzigea|J>;GSxQIGG=q z0hS@zo0+nY`l=3k<$3_3>`TVp!fP}S03NSP#mKa$jwqDUtIU)^A1MQ!x4_$nH_Ta6 zbE?r*QT^>7;}5GUNDPQQFF$^&9*^+?w_%)kh5I^nFeJv->SH(+ZjB77p^RNl>>q(B zu({qs8u5t_WaP~s`Ufb!%($kdqG_cMkWp600RwL8RpMm1VQ001Si46eX@3c~;9NLc z{3BuUUE5lCg7g6lcml0{40tW2evH^`X5%CX%olm%JZ5tKCMB069-r$0g)-Zlrpx2% ze9c+YRqOhWuKg18lj{a_trx^bZ>|)2$M2V8FUa+LA|5X{FVC5>tj57aXDi2RgNYUL z@&eDt!Pns*t_H#AjkoH2$3?KAxiy@8YKm*}*R=7z=N%49BqAIy`qC#6_~~iw(wfJI zSw(>0DNboY*B;z5^L&`!?&^l>&F6t{A!(rz%2wV^9Lg45dL|`T$-r_FqdQd0xj3PX zriPAfD(T=*kJ)gs6r@dwj0XihEe~&Y($IwUr#W=IoBNnsG9^mZQ8E?istXaf^35ps z{ey}qai7*W`nvHk6>r+z)qKWuD^Qc}0;HnT-?GK}i7N4@qTD|BrPKs^<9=7**EDG$ z*(!GM8@TC`K~5cE`|O$2mthFtOER@Jr=&3PaW#hA*+@d9wL{>uj?K|%NfyGWbX3nw zkM=+{N@3)=$upcEa@bn%^k&1=jth-+k~J6SVj7NRr)2B2iYePctYso2Xo0s35k5R< zv^iCL(v0t$D3}dTfYPIz-IJ+IGk0*Hl@ACRHisuQyBr~(9RS8AaZYp03eEUQJWx^$G6e_2hYmOlV8bL>{siW`+H86S z@geczw)njVd3Jaxs4|T+A+Ypl?^$7X9XlG5;3dDxwzYzi@RB)S-{@*+p*ARP+RhHg zH^v3;IS{g5$Q+z}??rGNA=UMRo9fGFOl@rJ+~vkgAmdzeU{*98aPE(|@Klg=w_Q~0 zP3v7(5>*ZXwFNUya&IDx`U-}`*PQA<4aa9ds-w1c<3Z_;B2k!*Zcg;2-*OhZF<%CRivO4ui% z_Z|$6`twj|sran@^cnL7OITTRoq6Mn|^T^X}l9;oLS@0|JK1z2(H>Mai>-m<;(%ibz^ZlCaG# z^LH;b5YA=P6;-u5)?_58Qn zGcb$8qmTE-Mpn@m#&s7XFQgY591Qglvm6zcK;>Y}eOZiNV_SiBu^6wTea7^0wk)UG zzT9=*ZAc?**jk9o56=Yu0Ob{N`?u$|$76s3eT;hEgBF4<&d|qYO(H#10O@00&ztT0~ zv5zj_@V3#APvuPfg851>V@M{Lsy`?qtudc+C@4nc>?dgxXh1a=qt6g)eexG}>_Z|% zQNvWKR<$6tN`jxOOwL*BJ0>1ZIavlHr^A40OM!zho~e9N``i(jF^RvQi3_2OnHr_` zutF&0exy~ghVPC}lIu8`BOFe8txAPMCQDEbXZg0O==~U~rE(vmr11L`ig}ABG+9kE zTvp^1E1ES8@?}#oUM0e>n_m{cej%?b%9sB-WsSl7fjO`e5oA&`V(M$&&~5MGj`_4` zThl&Bb{X7Zlty4K`lbq|o8L^OKlGg5Ca7=3q;nr~KP?&v^GpZF))hU`e> zIF<}4zhnuy9b|e;4Zj11@)n!JOG;jHi!DcBwxfpLqBUCH!+(a)#;CJazk#W zN|H4s9@nCRGC#60)xlLa+3t3xE z6}euqB79C<=|;8m(L^xK%}256LFuEA>U61CK06_P>Frz@ibHDW9u;0=@6EK`weYx2 z_NtfQi>*OeNzYnCXS%2NhI|7&Zo@Z2jdmF%HHA&&Q2`}30RVc$0}4B z2{Q>~!nuCexPNt#@XWSjdiAVwmw!LCe}wR5ffli&^-H#A zow?9?rU!vJGl(<6Wge~F!ljSMA42G-4)-tKf^f{oy+%5;Z&jQbsZT#jVLFbL7Rn&6 zWVhQ?Jbf6Oy8~IUNc0x69@@nuiXj*p7ch1x8PUDsuNbn6VN1;49f+BUiPU>pP#Qmw zVSIC_n@Wu8nM-$;ux=;kj$QFnMk$Q63>L$f7EwY*KmN9o(QFD&8W@5 zR-rLYX-nNKuYZf|{t)k?dUzR|TMuX-t6K7=xIYlfwgz9ea=%1wjNp7d|E*yHy%Mn9 z4iN1euyXEtGM`QCZbL~=)w8;BhFTtuM7*$j0MjcHsD%rYxZ11lTJ|8=GZE+gW@Ofe za`Sivog9VU-Ff-SkbBtZ`}XT($TTgO5<9Zgqn)UHEmI#ErPRG(w}K-HA=z zsDUS(+vLk>)8;eVE7@{BMjnxhHZ!X`-2wv+6gT{6vf_o^U#|N5OXTLZ#EzCP^_ z*Jh!2WY@15+zZ{aJC14#rSEs;7QGrz+mCBsd#*hmRU|w~kM%6To!yGod@7Sqx3<_- zrYy_n^T^=RDP~}$86h|oR!Y2bA)0zjz?%yEUPFfi#2f*z(FW$cn&VHfzr^}mP4&wbcy^fr0od3@9hK2dhn;*(F zv?^9OQQLP_Z_%O#s|J7yZiy6)iVdhR%^dvNXKdvO_pGU6t*f-Rrzfuc8Dw%RoT=T~ zwc~gu{TFAWEKXB9ap7#^LAsxlzPGK@3glAD^&8?tE=BfNaX? zrW*w3QI69(vgJ(u!vz5iiid_ZV9T96p@=cxhKr`K^5#AB&ReCS+IzKTA`Cy=^aJMAd$5-z{As_A9 zp}^0zb3nt=E7pB7bo-2#U}4;Rlj%iW6o?4nE<3dcNRZqK!dwC{!Wt#sh9p81srBiJ z1-J~kaH`neM&XZ2G?Jc;oy&mXOU00p`s40!!)Di1?PzJnbyVY+lTyI>h0%O3zE*?P zEdu>CALZy+zxHMjVAqJ2N{dCVLH4W`j)II62l-BoP>2jvz3ZHeYD9$|!uT`>!UP3; ztu>yvQ}0|`#{Xz5mloDEssbd44nxA21q&GsHw;H1N^mZ`Z+>PM#1KjU6_GGPDodrb zCJK&E0tq=SGA638^tl5DEoehrni`ZWthZ4WKe;bT#*hj#a!s}PV0M@tT?MVGdM6Z- zg6#%$j4&oWR?vG%+$IVo^tJS|0mws1MS2t$(58lWxFI#pgSnl{;3O2J-&e?~p)7bw zkR#rGQnF}S%L#%p=gSVq-En1L`*eTNp7ZMLn(%rJuGz0dRV@nCP;3KQnnt8d@Rp{Ip&EwF-L9-Wsc0Au9i}=R{h^Nl z`fE+VOz5WKq<;xSLd=4l0t(j%pAQS1^4f3;m0=(aqrb&XCwkl#7tJV1xjqUBhF=vJ zakwNHoi8>zh+iBTT2l18Gfa5>W)#KfBrr}e+byaFBa|AMQ?SrspOB?0VHw(Y>Vo8| zlS$xcnUKQe{N&q_5X44JSS%Tsqmr8T#b?5u_T^{6#9WCVGEqJY3Afr0v7u%)zf#6X zw6Oo|uGC?JL0>%z`Vg4ch?*eGc9-=Qr6I9IYHUV7JJDPRsSJ#2{~q4ah8ihPVfDz7a$(E(-b8K63xGGB&Afa?}^lrt%S zEM=HC`H-E)$j+8Ec_}U^)+ZKk)K|QvsoEFkniAd7Z%Mu&tw2dE#)BlZo;#j5=F;{f zsV>@?;kS>HwTfYbeuXAq7i9CLnCALE$ZJSu79>H(LI`ZWGcnCf4Z!4?cVsS|?^Q7n zCKU`_bYNvDH%_5KpwJ49)w0}(;4syCPwzj3b1upnbIBT5H`*=9*GQLc87F~FNW4`h9&pmqkqFwMm(^AyjXFXi6^fw!j*6E9DBN3G^sn~zIf7*v)sdYC-lXp7Crw9 zJCb`>IlYq>yknQqSA^sTuLjH4Oa(=!pU*-vtrYqQ)ob)BHBeMlKFnV^cC#B)i92n0 zF6Evm)Q4r%Ud_ZJYK=S~xx{>;!VUfi3+T*hRzu=S-5Om`KBMyY*-!g*}GM;;@3(eohI>%}6q}6^5(>J2HMl_v`K`n^?c#rsiYw}tWeULVj zPuDfSyQ1CgcIW#1o`kX#?t;U5YsLAsc1MTjm4~}mJv)ZQCSq{6j{ql{=u(*77>;Ml z>#&uMHrLx%=iaWjPlYG^d>$7gH!mJHJqJe@TV7W?V?7Ng{Hy%!_23;iSA~lmI*VZ+ zHv^Sz&zColgERqd-hj6 zH0U7Su~22w?mfR}fY1spry$+~!Iah5fu7xVa^bZJXdn;N05&)Jcv>i)$vJ1l4C-;X zi`8D($>sCm=^P3_iy?;iBHfd=?|t5;CEZ72pWWdyocrbA35E(9)92e`BgcpJhD@&j zy^i&k`wZDU+0x-oT}d_V&E8gumRAyE(MsHu7&s&}H?c=sJf8M-1SHNYMLP^k*XdjW&{emdj*0v`QV%uY4s<(APEfp#wWL*^4Roa<%{mbmCjCvZ zau<1K9u-WkQ)jbu%lXf=L13Xw7+<%i*gy-<<3*sZ)*jp@87=r~87HpRg0CvgK*wK1 zK?N!rwVTz{dDI;@nzqZiEu0A|4$pB^fJz)nPr2CAEMhxURaT|c!r;IXFRTBj(WLCU zJ#%_();A8Kd*d4{tizeOeVZ6Br9~-Buh?;xZR*<{ZzaR6U~OvIwyZSHmk_k!_M{tV zS_f1Yl5DChM_XpNygX%$GR}txb4$rtZ^oP9@tRyQ30nsM3!S8qdyH4hC!ahkMBOVL z@6kBVpyXV^3#WQQ#cUSrAm$pSvuOUQgbE<-HhfXJMBUiby~i?i)Ci{}1> zi%Ia5g9BAMX;YvG4(%#|WTMu!z4XgFzj~oHq)_wz3QB$cnml{Y`QT}aoa``DEBWWU z>+`*Vi4$wi`3AJ7V*!Ds%3c900;iZ^PmjKc!~vBB>l-*$J#36x(N&s804RaR8iU4~ zJAA^f4l8>$I>7T3`E>>nSz>|FQmswuwcW)E8sUc+=Y#+Q$h&GkRvH(CvD&o-K}*x1 zph+kz5rBxfh?Pi0$9h4&Ck*qEK{W8DEscGtww8gvpzR{jJ6a_e7z4#pWfrPDvRD>* zulU_B@~G`#F}Om&>yeBh8{g5g{e6-c+!euPF(bW@MJAGrc}Cs0oPxFi)*{!06q6$! zKQn7;=XS&9W(W7Cg}V)R<`t3XW50LVbM1M90xDd-Ovt*WgO>F5H)&z%Y-CM+Bn@vD zuw&XfL_FLU?ozLx$3?H^_ZqbVLz@rLQ8tn1 zdP=goft6B!!REBSaYCeikNdfX<|LOb(~a;d&+^jH+~KwHrA(!c(gc($mZf-#*B6H* z66fW}x(D9Nhc$4KJ_b$*I1sRk$)Qh#X_le8XNeA)2#@uVDHt@r5Ax zi`8>rT?GSKM0+%2v*(9Wf+G8->2Dgjit69ZibDDh6R0a-QYrCZ5B<5UQuTC<7dTpU z??ntF@b=n<>tfB#!{LKr;J+OqI6DPF>MeL_9dtar{qVZIUSgi1n{sfU^K(;S)8&4R z6BI{7P$j!`;Uefj@ZF}Z=Ek^TdzkcxjT}6v(J|pGm|cA$yJ){6f4Tc z+ToJTF5C;yX2~ zRmB;$IpkjTYj;lns8%}$pX&FnZbC&Qb?+If>W6}U7ChZgj?teDrkD;s_nUeXE#pQV zBS<(yeRYDm@=mN(yfPCYF1%0M&&`!U*ZRczMJsRjXv7Y6WH-aj zlDl2(!A{GS96Pvuhl6T7Yo!ILg{}wG{5~CW8;t z$oE6WCCx39Bel+xYN$lpu}uMA4I*&5N( z^~ZCO9eAHH3NCDac!J>@dTLNSc8$)&9Y(ZOK=A{cgd0W);I%3Oc^mY9D0`YNqsz9j%XW3ywr$&0r@ueq#Ce~H=l|k87wcwStQ|2&?woUs%sEmB ze+&bKz!ZwLA1qvWR1hjDrBWEU9&RLxN4OWu7&j#ki~?enN;TrE0M^?)7=mCl!y1WQgCD}HnQ9CxG1S{sjZ!x9IggmUCKZTa@{qyCsc~X}juC$uA z_?*^lQ-_BBc;Zl6KBn;4Om2dCYJQJ1df}-4N*zTbdbPCtj-i5F%UaZ}IQ4b26sZWy z!zfBh@q~S_@cMco0VmyPu#WDyprrzt<-tU>B8k18$js9a&14=~i)65;6`kl(Q;okk zBetXCv~~Z*wldk=VdNg+K99CBFm5>JDg0GF6r)iH6;FV0fKZ7vSb9s-%2Hx^L!cyb z7E6*qi8O>Es3%NuAnymO2Y6K@FvMMxP&hY&>G8-<2HIcr`G}rS43`UezcF{u2~FWS z8)pHG+-a#SdR0A{D!fSQ-%@kcb5QUTdK>2}eHE8^ zbY9z;nc43^9+jn`1i7imLfu&OLd=F7X5GL=Z8Bq_=WKkIAyJ9bH<_35-dmDy@8j{_ z8ShPTW$H`%(vkk~%X8Fv%F+_S$0K?GXVOEHrzHJNn+4>ja8MN&;Du!zVtw$@zA$z2 ziPkD1+kEvZ17%E+X5YOuXJCScI5H_K=BXmT#Da!8q1b#Bvg%QUW?~5$ljO|LcUfqy zs@zwqEo9x!s@259wTMDtKoHJ*1FZLWC{KCTQaOomPU&E6=Hc(l4DB);fnRY`QSs>h z&Mq?Tz;`@V9-v?&!t`4}d@`EMVEI;G)g!-hc|Zi`2QM}hQ8)-h-ddr4j|d=}LNb8- zTCScF?)uT-G_m6(8c>}V5yYU7cRi>WTc&5_HDv>zYo$)BSS^*GqEfZqjG3Kx%op3= zYEpg;|C!&%`mflr{x{gMurU4uyF?kQV1~cgeMRDEN!}8Zt@aVAw*=16TcUfqxVTa~ z7m7UBes^cMo#gk?@yIgCnN9?YHUX^pqi!}~ZDblao|>IlV9}QoIA+RQ1hc}c?aau& zw{tQXA)``Fy=|sQ`j%@PbJg6Y>0OLUIokbjeB0kY%`mNIXA!CSYltI)+twDBElQkB zVuMy}K?wU|NpD#?0Ij1Py8QI!4z!Mk^p+SR8=fW-G1fwnXCGN%`5RQ#Ifa>h_DPwp@xe?a!1+2{^1vw%4 zbo^U2r~3Fxa8ICu*GL_yR_2jFJ4^$03YMWab=chdG++{iV9UhwrJ%6wr$AjpoTv^K zYO%c;VLSTR=W4OZUP!pgb`wuJLk07fv9j5vZzQGyyTzY&=_tJ!W9TsBb`yK`<>LiK z!TA#3e@?Kwbd8;Ve8%W`IoM)C@)!9oER~kV1SeNH{gc!k^Q-rKa+ce!qM@V`AFO_Gh9wCY56zBS$- zS6BGxH9_!eOoUD|X(siXao%2D_1wQ^HMaPCmYxmYxbp^2n_6_jBtg{6GyP1e%nKd? zWfF-z3aDpwhCrQ(y5mLn=3|vS0!1jpj#yJ z%-#}ySc|kbmQUFwq$T80N5q3cPS`aNhYW@w?-Lf%W8xvH@IMPa!>nN5L|&8?abrH3 zD42+lPhpfoGm$N#%riqX2|YGbFiiudHhF2tFfRGSge)5@TL^u^GAHE5Y&trpL!JO} z#_54D3Nn_(6TYCsb+Vv?_?M=f-t34-ix1Io;&8^7WSJePdgAkKL$SA0E$`#aX0`9> z!KfW^v>roMi9Ar?TaoYAV^F}olcW#k8`bT~ik>)k3OS9gVv(B2Bc_IS;z;HLkL7V1 z=jYMPa;qE}yjqOMSlMrE=bm?TKYi9p_b0$xd2W=+ob!J}v@5ZjhFt5lm>RwQYs|9$ zH!;h?!Sv6ZwQ5@^fFQd48tFSh5t$cdnn*)}hJ1@4$0E!3LwG$1g}tm7{_8!UeTqq} zZ_dKjrbWkAA+_n$Y`1$YfAd@e$7^1L7Z!cp(qX1_iz7i~x#d3QrG=Nha376+vejxz zvsLBwtrLLn*3WZ+&D;fJ>i$+Jml`|7*VUuKgp$oiv~$U2Dac+u{^^qO*v2+2XwCK; z;RV# za|KW-jG?{dfuRM<@bcagGAPXy@yb96&HS@~k`R*!|33NCNe11J^GBdUT{t@AC&ke# zt(n4S^EGyU3eqVz;H(lpZ$pIzX?^*DOr5xWnLk292CFdUhTU3(w<^eDSMU=OM#*O~ z+&GQMBbGG6QM^itWaT*hl%ST2Xx$LNDwCkhB7~+StlYMh#^1}C2cejo4&e;1dzuS7 znw|LdG3iK-&k65{OGbnhqpuc`kueY$_s<+TkEJPf&TldSNltX}+Z-njEukym=U z-2y^JHnZ@(hA?N=phgQtGkRL4*n)qXGCh~f-kltPYX{yO`I(uWfJ6LRbzVIah?8a{ zia6#_uT}y5R!t#@eg~|25>0Km>#7|OR`2;bjZ4M7d}x<1!^M93n|KZ~0@)^9k;E;A z1c}5h%f!6VuOc|T!BM%hw zmSP?qrAT_abO($7C!>wn-Idg@7e|A+4UFmfn;5-bwLbYymP{zdr01gr z&Dhis;b0?u+sgQxtOi+^66jq10QnZGe?{v*3S0kov^ZG*xfP}8SnYG5gkIlMdvlI6 z4ZNk~gOZE~UfH^(Ou}4LWtL_CS%9+job~H@^4J_xAb^_oD!M1c9o=ev-u30s0bKI$ zzt+kvpPjPc3_p1KV#AkvN>Bf7?R9tI!L9x|d%auSW8Hiy?DyK?C$abx`1B&A?> z9OknAnPq~s)(ZzEbs}(V$AY$G)U`JG;1US0jbwo*D{C`^T-G|U1(2}0%*d?sd2k|= z^PmCySAzEe`+ckgK1R&78gXFp=))9p^BM>hmm^WgEV0aE6B1aXA>bY>403zWP&eg7 z)&%Y09CnP;N;w;pabUA!9dN`79p@b3VxH~hoXgIS?x81|na#FXfEz;{Jr&uEAw z)@W?PsIMs%D!M`DMV7k_g_cbv8lZj z9&jArewuVUSC{fp69WLzV7;B%^gRL9(t#n%|81z z1pL(dw|^!R!+*2kGBN)%kIHx0{v`<)pQu{8D54mFiiAbs$k3vAk=Kz$%uhlzVC$Nh zfj#gT&Z5xk9p~w@6Q(k5SCtWQK5N|hfDD$*C10+0CSZn5b zMxh9;x_g4%+e#UNv-q{?ZN5OU!f+imc!V4tHZ^Dn_ZC)r1yvaRFPv0h;?X#Gt(NyU z*}TYOj4vQdt%&DDCbqu!g4ux0T(S@DHWMAOf>NO+)(|xYJz!PVmtd;Cp4Bd*edYNR z)K&PZ#iy3ds>ZwMkgo--p|zH@lv$Ch@aBXR+b6^8+}G3He2t3lAwF5`+5UCa{==nE z>F+p*|1m23pMpK3@c&Yp|7%kHpPLb_;$QP7FqH0=s>9zd9APp;2M)-3X_z>-qNy_V z468_`Fbrb){>8K)@2wA8bJd#wu%eddjb?cY5J?L=>~k}k1r84KOdeb{>uqN3Ge}_4g|(XJciW@$RG`2 z#q3}pJ8~%AYP(^T%_0rqT^rR8n;3~z*{lI675be+=s|$HPHBa(M8$0j7i`6Es)BJz z*PIImo7-zD6;R)#8FO06#87WWKn+Dd{HgOxN@$-1Z1E_IYAP>NoP&G_(FpTML%4cy zUO1#nB$7vYy%J8(=&c)vv!%tp7324Gd*|}yF!d|BAKGPycfvT>ld^RR%V zL2Oj6Up{&A>{#^X2Ms&YBJ|FLH&Bp-mfMMuOhkulI4#^4x7V1dq#0>?39 z18+yK^U_S!=T7$LB*bIW=A+rxxlZ?|$KKUh>bTXi-H()1tmTk*BD20i#H|6SkPW(S zdxaMpvL4pQ(wk)O@mg5f`DWj}SP;FUX8}*_BE9Nr=|UTqBTw^Q%OhoebaH~%&AIHC zy#v;?uz-tpO!`X);G=|ge^c$~M2FcO(3qyShPu=6J#|`r*o6flC>jwv9UTp+JFpgZ z|81a%=R(x!7M|3ps)219AL1AstCEi)16utqMOGX$8lA?({D7gdj)$f_4GWZlAO-%E z9v&~(qX*O-g0n7`J}LCCH#ZL>N=&V=Yr+%gxq!O-x`3ZI-;{N~TBNUKwi9z#T6!KV zR8sp7Sc1?-3>-U*6@uAk=63PyaP3{8z#z z3oHA7W&xcK%-%}-(0p;vTgE_uY*myoRYo&jdSA;`1z}`Vs-=4s z7t-z7^z>s*&+|0>wT~KSI#1=h(|zqXMKK~QF5;U5ws_IR`s9@>X8C%%5q-+Ic=(IY zm^bF9%tlqlmjM5fpItZMc6(y$I(o;AnHz2>v&(^4yod+hoWz3aGptT%1({wOvgo+6 zr(+#WDS7M&>-JIuSTpYLN3+9YdkyJb2}5H(r3wK`b5shYJl3VOoZ6HC$;tp_=sAJ| zPCU|&}UqN#!y1pp-?VV95uUhjf4ml&C+G0A%R1yte(bs`ssOjv&0}^qoU-z`M?HbQqZkBeL$Sl5L4Cp!Ax;X(Kwef~8b{wwX2 zmGPg4-lR?2zwsb;?E$Uls-glEeW@BrR4maTWcgfL1TXMMA|6X1So`1--CL|ny-0+s zdHCLkxfwmvJF{i749zdJn(CwMw~QA2*PKq+7$AtB)h4N^!nQ(z;zRAYJ{B#rrT$wb zr%My%{p0a?`+d3P`AWN4;v+8hP)&)~`@$_krHQ}Z-S50hGUVRIp(FY$t7TZ0HZ@)` z>e=FYoMU5Qv;7M0YnbQBtL$^8k=*6EjU z%K{7TNk|vuIv~hpFeO0gBxJlC8)s4+f@6n76P8)nc+>GB)D>^G5d*gJ^3R`7G4w@c`#c4X`Q*l-`{^2Nzj?Mkm3`z zqs?{|T96*6GoMX}&A^lmFE*7GcTVVykR?RAObApE#__Kx(rz!>DWvH3~l>U@K=b0&46yGnQK5+xY&J|g+%DJ;1$#};l-nW%J*4dULaD(& zR&>)Q9Y@N%ow~g97$*7SnHSn(y$Y>o zLv|OC{L^io&WOdsM%-&|&FWKj&CAA6@gTWULTfHGDGsg(^)v>>%jOtaNbf>>QTb`% z%B*G3yz1SqDDGO{a=^)zY)f~_6$&bkjCLs9h$4AU&V7i)BYkE6$;P=l$uJ&K0EczW?(IGfSBm}R^>d8jK` z;kLm#K5chb?IklxG45vgHbehwi0oRC>`LYL^#eG}{ofD9|CN5n%=Qmw9GwI~yTJdW zIY;uYv4E>Pt04&$s8>qZV9y415k{wopw;j6`suB-+|I}lytRh*I|GnbAfL>YjGXXv}1*4@?$1JwG)Du7l8$}ex=tco(*X3U^)?hR9#JuiymS|U0 zW8)-CZyUX`@hZ$vp5`I{9g`Kij4C6clZjsBtX>OEO|vV0(nQXBBse z5D01xrs&vl7 zaiRPwk7zmOBuHss-V8Y7s5gqB&8346Y*YO1a?%NC;3vEr@WflUy)UPSV?TF`yh_X) zSI#=jaXO^BTeGY(kbrP)Irw4Y++CHLrh5gq%VZOI;31*p_Fsb< z6*ouLi>*H;-x-eJcqx7rxpK4*sN>qWB>UNB%hDB(Q zB3j$PlyWO|QnQeu0mW{Fp@BxU%7^plItQAW^>I<@tJamK=DO2vL)oZ&=g|qnrbNg0 z3yAG0ck|zXVEzv({{NCnVF?j2J6q@f;g$^l8@FU;WBSLfwk~xqb>!vdTm(~als)1Y z8)h!#g*O$%UIkvmq`wXI!+%%9g$RcmWc9e1fils89x>xi4FYS zbK1;k??I|xha4Osq=X0m^(_EsuPQJ9W!rx(Z+9zTI%tas_yZDZHr71`Lpm6NUs8Nj zU=;h?nubcYL#B&BHoH=8;TnsbjL5Lh+GdPS$Iv@amz9pl@WcGtq26){W3ex7C3`Kp zF*~9n?SNykkFkQ(NO^V*h9{%UQ!BG_twc6_)>_S?1)y5KTmfTYsgpsaTgqBg6oXT! znH-l^GB$JOT5+RMy7ae~Wx;_;*fC49bdJ1C<+@6@O_EhEvr>&#Hd=+ev|Po&fJ!Ap zvr2O2T&W~D>>T#isImR!=JF+{(LUz7q|yG`$>2UktOi=EQ~zn>B-v^Bg!!@JQZt)M zwklR)p(y56Cj8riK@%VqIg9Ypub&l)SQsu(l!YM`O+18*93e5FYzWSnm?km=KO4B&Yl?lWJIdOCAh)+jk{*fIuJ-|1oISrdP@$y>`Jr z(UWr_)n1OcpiGt6E?}2u2VVKp9%2kw?rC+)&2f8(KttYjCUFO2RerU}w_~TQ@|fp3 zG{!a}?dRlN&Ys|v&O-rj@uU|=V@DW~mGn{p4cWS4oYqLb^0b@R<7(!x#`eNY^P8&| zHwcjFoJ`FkI~&Tq>oL%kFouW_tqWpE{FL^Vp(B7-TW{zX!UqY0vK~)`GW?!KWFRCh{vQv{%k97r+(3;N5tfm5Ovcd{l zP|+sLT|L;mgy zLvZ>Sl9SsOG=g*Bbj@rFEI-11#JR|azk82)f4cQ}y?DP)sNyb|hBuqxVu6(r(3(;G zW2O#2pWCm0GCn%ca{yVO5SMk1W)i6U@#Ba}QZECBQIsxwpi($rCJziZnB94+`9N~L05|jpe9J%TxoA&@LiGnX&RhO&511J>Ea5cak5Kz-n2b(tG9PlQk*#*RERW@| zY>Gm!{4Ob%+>KU1f|G>~BXLrF4oy}=ZhOZj!zgWl1H3&6p&~_JoS1N%(64+39Zi&s zsIDS5%_scByeq`dRwfHza)FrN8F7gZY}`oF3kvUF^E5Dp`WNv{=IX5E@|p~BIbIpy zXVse+(;jE1?oqcoY%;`r1;%?GS*+>615hAxuD3eu9aLa>pbZ3m)&r*vLso1Y)HWcV zF@gh8BlK+&+njNX_?eq|g-6FGB6Us%_4FD!ig){9Rv0%!>DP(<)wkmKH6{R*LcCTGr^i-L+mX(|#6)$!4LlJ&ird z?XMn66fTER#N)rvenAD|Z+cBl1)4>cE3ut9YLL7VV=g0Ha}{=aH+)XzR@X!s!h4`Z zo?ct0vAC|4KGVBtUtZ}8a;95P@Fg~)2zN!eS!M1vV#~Hc7?v5~3$*?y1bbb}L2w8v zK(Do``5`tMgQdwgJo`lc1xoDZ=G~te>u`npVBTF219I;6PzaJCuE#=j&qBP)Kv8l4 zt;e%fM9}HMs;IJmz#B;@_w?mSIBe>Nq}xINt-#Xz9H~2U^ohl!odb7rTnzrYpWgA> zfFs=@woNIgxAU_P*vJ!w8{hOj@P-%6H_VObn<=X;5(mf>(q0V1y&7BA)$S}|8nGuN z1UjJkBK&Xn@$IqUYnci>MkGicA0>HC;4;614ZLv(LVREN~ADpx=1X7i4|KxrBG96;tv~P>{-JdTBlCwD3y)mj!?Md91Hk; z=1w~gn~vfHgRA%oOP^Kcl)rin5u!G{h#t;A ztWtgHbusUnk6ja=0;;2S8!O4D*%wdA*T`>9B0u;&Q@VhELYF+6@-gQMGxJ>QTck&u zRQb!9$=Ci)czzaq#HFoSzPB`5)CuE$H(6rAXqaED$c1o*djXK zVk()?(9|60{cEvqO3I7KzyGKPvFbWu$UF8pW*Iv$E<3r0L{qthm)s{)D8LNu9EbIW z*+Us|FEWd#SxHL$q;9j4d5Tr>iq^B-yGqmP(lVzcN`9LeYV;T^00HV5;>zJy5rS-G z;Sg|qZLAxS=*E=%@#QIdQKa>vH0^CM_p=f`M)bu$@g*ZID3Jpxh{NxhEK_Ir)Z9ZG zy+>?1zk$UP5!HB5_h;^C9sxZT>||&8?|Yb+++F{kSrZTYN#@`g zgxz2k=g2itWq-XycAG2ih>JPpIkDa&;R>xdm*3Pk5u^Mp>ppma#=?!2!K;g^94P7M z0bo4WDL!cL#cft#BB*xb7ce^o#>jN|p!Ge*y10vAgmt}>o7&y_Q&y%2$ByZwS@w59C+8Ivv}yb)s#y-V?^_skLw8At z7+`2}5&NZ)b}ad$ni$JfP3HYd_DFKk%mqgiMh(Rwq+yo8m1m+5)Jr2h(dEK!&nk`k zd6Mda9AjfomR;H+#aSo7u3CJMO}*g7u>X0aCPFkQHUar;-VR4ex5xdJuNFVn9gr~D zbRTj^f8ecT_pZNJ)#|g-9c?YSx_~*B=kKsDjMijZy)v1tyKUH>s?c?v*XFrR&gl|z zHQ;ZkB(-OGn8n&aY|9tBwb5Fgv^ip4D)C3M z>YlvN3gU?rfT3kaTJ`qTsGB^hFuaYM*HBea#vx#zlIH!0|DwA8Yi|F2VRPW#5^nGE z{qh5=qKLPAPqXqD_}z7lQu>GhG>SB!(ki%4`qE%aaj0#=J4g4_A`kgBE8n^@)X|ye zP>!)Q=k^G03RepLkXnngE`Vm}IE?BLfr|L!C? z2Vu6an;vJ0dLZBF4*ieaF`+v}?Z#sVw>M8aVN&o8Jw;V~=Ckv{${0!_cR^9lTkY=|c3j;h(kQTCdHR zR53>%Lc~#_1$HwOH*v45on7Lq3uE{LWMLVj3pU-E)99J5%8m$^8q!B->oTa)#a*rS z80f7W)u)c7U1Lv2QhaJK3URLCGdfY!^{u(j^0{7ZNL}QlwxG zlQ^~JUslr?gy*W%jxP=7K>^9Pqka5zosR1LqTYO$%$k|3nU06LW&g@fmNn*s5Xk5I^{n@T>*oWT^mKc{$U`ue6;(!=;E)zPOsB%a{7;pqJCabA4? zD()Epjll?HzmMNyry>X6!=kSNZSGtVt@HU%vj_ry&FdD*h49gV%bYZAxoqK{P6h*m z8gzL)gbOPy8`*_~{<8ZJeNe zo>Q6r*DhY;S&0%%ZdV)E@0;JxJx*Z3VGx7}kZ+;CI;-Sni+;o6G7IP8Tz9i%-tU7G zQcli-4nuON&`;@&JU;(nF7As`jICa5U6kYLn>LCuM-YUh@!33HQp;;`X7~n7tIhp* z4(XZ`2)q!5{7Y)XA05`(Zr79(r;_lnP>`5>OMG401yke96+=RU zqp>gfAKEITcA@{q^Ar(c*&!Q_>x(Fo({jeKHHDeU8YnV!htYE2>3RGFW6qFmOq;oA5 zL(Wyrm0~m((-^6e6#y!v8PWi9Fo?_vC_ztQp&Q9BJR^I@X_+B?w;o0VJKAtOWInf} zN-%|nKxr$Pie%3qDqX9&lY|(-9<#S=KTtpUV0^|j42fu>z;Jz{q%?s}S!vP|Waec=3~Pls=*Z!Mia0-D9yc!Af#nNF>l_uaM^o)Hi6{K75|3 za3N93g2aO3y~_h}NA6d7CMn0h#M{mblP9hvtvRjbcVF}b9U+?F+KqY^!D9z}SC)tt zmobsU)n@qUq~4UwoJsv(%l8+LBPA_xjabbD%*oYg+-|wTkII{@#sE|Gxk}MNPqG?F z&TK8Yz*u_aNd7^>0>%#?8QiiE%QvW1OH6M>M^yJh44&OQ@lf`|R@G&PAnmP3f?y7W z5qKwBmB_J4b7I^p0h2{ZakA^l7tr@#1~nT{86^+xp>Ja;kr#I^gU;~)a25GfcuR67 zYH^&%VcOw7gt#J|*S-EF;SLOs3(2A{2p?^2jqnN#9FUwyM&!A~ttcnlS8jwDc>X*S z?$^rLw!92f0fL8+^&RpH7UAH%UMn^GTp}#sv!})u%4?Yytk}{HvhrLPmlr^rI-_*w z>t`&CFKoBML}YFRuLTcqg+cX;#NmNkI`2yfkv2P2A`4uYQEl3^GdWobV|}PJTEg5P z^8gmr8>knj->L>?Xq74#6AsoRV?vo1EO=d*)P_Tf_e05kSc4?ZB-!AaueA@F>zHpt zufyxV71{G*!FyK!Si7R-BUNB=T49Kj0u*x6bJ&!eSuABIouPYTgX{@(Blh({@zY@Y z{6R6@8JRY+<|kmy(Hi|xOoLM6qz=-Ptc5hrFP|o~J#C)OID1i^elfh=Xh6XD1A&>@ zw2jy{tYQLKje-QrS39bk>rK40xXJF(cWX7&10^n=2{1x?SH$8_X6kDY#$9eWKm?{< z+Z^!xJD_WKW@pfU&FLWPF=bJNnqy26>kaDjhXH%phD&G*(aU5tSki?2a>Qj&^ggbj zGsRcJSG&bir7+=0LWdsrXwydo@LgR_5#*|k^ISEjLJEFXZ zAE_xpz!%fI-L_UZWe`^2m9%zZzuty!2|pj`*_-BQoPsAcY}rnZqx3S7jf$O-AAM00&ulOw}`pt?7#c+AxG)N9Ns z-!4<7cn2n#8rSbmVKp+BHIk?^=G@d+Q}GH++%1rUw>oA) z&odspy0F)`eZiS?4qL`aL6^tCC@kkPSx6qa=jFzfo z*0BWk$rHAnBm`+5}cGSf569M*V50~ZG+q9MJNi(cb$Au0_2AqxuOlN@;DbObQ zg^ljqT}LOF%921nZ&83@rA+1)#zzxYEjKRGCGGPRm|~ORwapGUW#u__ZpAv3keJfL zkO6n+!x2R1!zo;p<|Lrl>h8#afsmEdl%6)Icd{%C&TmR869JmPW+cR+xfSwwT9{t1 z#XRoxh<})L@!?zH@Y!I-Mj#yU_jHA~y_ijiZNkF#wkeCx_iZzB?^&K7+%+&x#0k3j zJbd+v9jIc?zh>ypiFC)jAzz@|fcR*hc397Q6Pkk!#Dy(F3C(~Dj|#8;;CU|}4VNWb z`b1k#dM~SZ7vbO^*g)QVp#j$&ly{j>)#JS*cp-b|!< z_DOx$aFAavi;>bq#cyG6JJe6K;@|uf=fiT_Dk#14sm+yZOC&s0`^wrk`{+O8JD&my zd=)s;2CRHm_AUxrdrX(|Q}%oi)rPHiy&$g`og}PEoS$l)o25>biVcd;G&8uKkfz}G zCHhr01HL2jKbRnGb6%YFl0EKnDWBxOt}p9<`*}!Ur_PgISYPAh?LcLc5%U)NfpE%1 zw`Wv35m~`1^$Z%YQ+Mc+c7QvHDLABT#*6K;b}nlpWnMn9YME;xyed<4q)YJXIfqa%t?Td3t`K}(gmFu(bmVZgE6zUbz&TWoojCIq zo~WuT*tW1X71?9K-JCoQ`<^~t`&PuXTarxuW5Y{Ifa>Uyr}hK&12T3Hc?iCj&;3sq zBLf=Qh6m^tONy;hXQ(^Bsy;qw&Sht|3d=l11zc*w!mmldBX_zE6oqM>Vsrd-UL%<7 zlRHaeKu_&GE}az6z=@VS(I#vAaQ@)b+i_XCrSEU+N0@W?Vuq05Wxv+P;NCAjr&&-O zX(Mo1VB#Ye7Ki2z;9G7Q&~^?efZdbtSi>kpc_;oeEC#9ogimbw$Vy`o>I0PG)~%Kf z+E=<1i$yiBF~_goyyNXZ^59ZF_B#_Rua+(EDMV;TXKIG$1O6XH!hI+mSJuYe} z{G@WZd_WP}gEEKWgSTnCQQI>i78{RrDECb_Yxu`|ZdaVKN$_r{e>iT6*lovjQ>&w$ zssL3kmpmiurW8H)awddFKZ0=)ydBYruA8?|9nB0P_Iw9)Xv&Ij^TcLvsLqeMlZJK7 zxVf%qdO@fxr10w1U5~yrTQ1L127x=~@aqS;hh@|N0*!SSh$#1oSI3#?aBx zt?6n}YrHvlflpH(>@}G2#Cmbk$+P{*3;hWjm@;1bRUd~96uozXrKZV=+oG1*W1ea3 zd#g40D;d4}S2Dpwu8I8|=5L{|m;&yN_08F%m6;>h2ek8&3vED=bPp4MfMhQ*;u9v! z=R{1Kv~4!E8MTZ4Jy4JsCn>0gVgESS!$UPrhtcM^z-W#@c9}JLSBFrN`wI$Hscb(r zDMMWR>g(RuZ}i>No$;Ee?!Kue?N%b#dXXL&5m`?NoyvSI zI#u{ytw)BE$VDeY3dZX@T+`ce!+B$OLfySRy4pZ01jx21 z?Y#AAXDxZ0M|ARSSX@y|NdW7xZE+p>*N^8g@L3C0Yv!pVTzXa{&Si$PdlC_6up?7j z>B&i))`DfaQAwcg9kNQ{?6{SKS8_B?{Pdl;7SW?^Ik%g z*V-S&M>6$y>VLJ~OCD#B=+n8xmr!N9DM zC1yIk{@`aXa79&5wxokiMn;5_fdF^EbwZkQcLGFSwP zp;b9+vd`l^SpA8~g9;|&Y#a#D{Zp*xW&*s?YPP9ey2O-?$8$IhbIl66d!pyERr3W0 zy{T)qt$XRLb;6?U>IH(>N`PZb#)O?7))^{I@V#@xY1_l)NiT~?yop7g3`kr^r{?YI z+J=@dGNnpHLRw5n-rDLO&wge_@{^O0cebt<0!Ydxh>Y)(2<9Xp$Vrq5jcX>7M4>uL zM6)nzqR}f1Nc9zakzge&mnV==pk^p9BFRa(8zx8=s8A%5UMNu}OBAZiaYTsWk*i29 zL?}w^RA=udOhUJ5B4wdaCj*KSP^n3fl9j0>lmSZ1o*w0_P&v>hfoeS5Vuz$&jN*rf zSuKY5Pct{Dy;>k!@SCsQrCh?a5o#2q4vH?$3DSqJb~9gwkSY{P1tySQyWtS^FdDxr z1v(M%jY;>SDg~E_&Jp+r@S#MS2?WI<>p`G|;fQ9%VG@E#h$+K?B}C`qrRjdsdBsDX z2Ct%y?m}|RW>HOnq;Ap`YTI3bEw5I`@KF2F@yGbZf6FyW5}+AFg6rLS9FAj_U_P6I zPZn*6w-jjDO;wnEQGS5S-w=pi&pMLzA1Rv4lbwtcVZM^&s;QVan(k_d^+R|j#LN0* zq85s;n`Y4e>S4ZLqx)g>QzCy>bS#vu4mFK-INZse4_@;n6$3wq6dMC}FNs$`Vno4d z-)APYWfOczECHxiYyf9h80aICd_n2gyg^;p>nupsdxRFl(ON4Ap!D#Yvb}OOBDDOj zzDU0;)F0@C;Uwma@He@b>aSg^KsT__ON|&A7Z({Hs2xa;_S?WJbpGeMg|KMRbP({K z7WVMEnDcKbkHh(|t)H&IR_l6m@%DdbR+ak-Fxly$(BASpGY}mefN{XvmT_5-1xsg5 z0hRyihm&3Ai1wZ+PVGxCxbxN@Va2S69Uz;mPSSBdStD%4ss60Dt9_q~Zxv(W#v3R* zgJWl11C*a%>#2`-?!7_`WvAb7B8>#yujOlTQf3MDf-cC|=SbTdFvLV?F2YK-sa8o_ zOqpA|urwl0ATRqh)HS5VoZ2sgLVzzg?OqAZntRG+@dziTSS~j%E2n5yia69^{?MPA zi)tyhiRBVN!IB;ls@p1PNs8SLpdi$)1S~(z;5{;wFXO_+1Tix3{R+n|2CVSHO;Fna;luF}-dAdY8Ve)mI(Uq|kBRtB0g3-VNK9^J; z9C_ZefKdeccJHWIo|SN2cy@)^E7Xa{SB_H&3t&{Du{Kt+j1DZNfO~L)+dv zZSQxC51n=gC}*a*ISd8io6ua680@p3xFy%C6oD*Rz5pDJ$06;^cib|hrjhLV@Vi&* zQZ>|txn3;f2Q$wSm+$S+&-X^l(O9gc78@I@40<;B~m4!4F2riegiq+^LfaE4CapzDkO3x zL5|kX3Uk4ujkUo<(0i}Ee!B#8fItqTkln4ML_B9?*{hV50r_{ZJ~p-fPCm0@WDrtg?u*sS=6-X zc3>hy-s>WshdIZr)v*^QK4})@pFWs&7|!Pg`-@7(^;P%sn7ZJVO(asUIY{FwDe1GY z_RGaJSb1%|T`oH#uo(6rFel(h;I*9C7GPb<#^aV!8@Q?7BvIzl5&@u@GTb8&FS2sL zNE3Vbd8G^LV(^7Gec8ab_h*AwmB;4j@aR^~{hz>8b^p5H0acp?)H4^(y~@aoHKxqL zzoU3C&=ttSIkO~3m=&E*Tj^iAXTjgjG$qEibZ7mIj5zgzL@kksl$b@ncU!it(!c-w zozs$Yg;ubp0B5@wO98_$55@Q`VI|jND5wpt7u&;27GA);1I0Rp5?n9Tnm|^(-9Oy zE^ehW`{B93HCd-ve7UHElZE#3sf0|30%U>2P7|&5;n9NAUCAw}H|@tq6}qKBu7F$y zAP3wqNCklhzMz8Prd zcMCkQ5jJITF?~N_<_WG_n?$oEA;f&2m`CjC@2=Ac#Ei0Ll7@ihNDWA!~gG&zY zHs}J!{$msxYJR!?_nie!SQZMlC(w(deRp!vG)jK$4nDIxC+VOEs(ah2q7kXVZc&^X zi%aVFot?TZpMGy)N!#fJ@QOst=XQdA`2(&Ep2gd2ItX6RnaBJ$J%lryXG2OqmBl+p z>hHiX5&6c0Ut)h+Y4vt09sIPwU+sqm^zyiO)#xNa2`%0ud?G)6QRv%K+s7vKT&DRNcQ{e5~O< zxV4PemDb^^Q@l)25XeRjjZlccXw}!~>LO-5tu$d2X!OR113zMt$t6yLWFLH;Y9?T$ zNkw#bA;8KFJ&a^+d_L<`n=49`68WmKb`e``4x$k0vcZBx)fPU>vqil9j7_w`_UG8_ zrt3y}0ehLL!`=SZ9BGRXRU*xpD5^Wje+-EY4jS>WpnGS%_v9(;oVS-MD6)2|bzX;F(VHAjtXg!$p%(Rhx_3GH)EC{ z{r^z*PC=SQ+q!Mqwr$(CZQEICRNA&}+pe_nr)}Gn)~)@vSHwCe?wJwub&RL+(0gya zePmhCf6-S+T-2%mp(~8fM_LP-T&}*a^sdIlRTXmKwDt|7qvu!QnO}OZcqT>rqGK*o zks)zvmn$^FQOkYrs7{hYor0oq%c>R>4^cA0_t8fFS#j))qRH8cY*S_{W;vOu4eWf7 zWbTwnW9XC*v&ROL+!j_VFm{r0)@TR8lfJ#WFK$2bqG%g(7DNop7$BhEBnt88T=e4N z@NOZcXc@LP;2+)L!ua2x2jjk{7ERccWkwAvUt_j7kbfPGX7_!$bpIw&;K3(Ij)4c2 zyMbMWz*1QNPXW;>4{_E?X`R?3St(yVGG-zO4E-r4z`4ZxBM&t||N6)}Uc3dFx9ts= zHzF|laBkF*mx?>I-{ZIq8MO7u)Kwl-^LOWEmjUvCoOwQKsQht%P@ zoY!2?QCNE7sT-!BXbVOGdY|e0y2buE6`kFqA=!i37Au}FeOhUSFxjTd-%^nN7*w}q z-KOB7ogk43-dAQw)WzexILiM1C<^wuIK_C_-;iXMRzyrx_=S|XvXuTsY~X>XL@8C( z*oGV7tJEf`n2)9!;M^`BX0(&6oLt{5zCJZByA3-nqY~$5Ri$h-0^YBcAkMT|?mBJI z6&G&5q#1-lR0bi;8klQR-7$$c?j*j~QczUfO4Jq>B3WMMsg2Rxi&M`)Q%6f)80Dw7 z^DhB9y68=0^bbq!a~T(h&P?gkUlL17qFE3YpV-XUkCyqQBvOERcD3CBd|8rHs6L-> zE40=y{dT`ZgK28FFir0?_p`HjVNFzszmZ>_yGCfb&WwVk%YLx4B1(N&&w9&-nv_=yw1VK#x6+t;HN`f&kE|NR^?4#S^)iI0L-G@nnw~e{AFr^~g4$K0J+I`Yb`LDECK1xJPCQ-1!0b z*$0w)3fE)9PhE(-fW2+f3w8GgEi5fUDhwXQqh{+Zdt~oAi52eIHPM@Mcvm5KHMJD> zyGZQ1eVBI5fK54@(bmjo64ogOTj|8k_R*P{c^&&Uov4`;6x+y6y7#l3iQVXLNbm(2 zp8r-#vi&dA^Zz_(WBCtC`hV(FqXc>?HNB+%JEE2eU?3t(u>UIUVf$ZWy#Loim5qz- zKS0u0Eoe2>)sC}7XLO>$tZ$v*3XY=1_d)&zNSfh$)kEVKeXqxw; zn(3C__u`06V?*Q$EP+H~%EdXmaq~p&t28!E_=SK>Clx@WN!GZ-?)~9Sak|&HDsBQ?9IixPQj-(8P!jD*HL(gc z=z2g_sSNZ>oFYsM7WQ3AhB(-X9 zJj3jkIMc^Z6pAqHj)(#|IZ_aL5!%57gE>4ymhRthEjnUk7{vs;F-J?dhD-xlV3@~* zzcF!5>=i{fqBewZU(t@V4HbA;ci4a=V@)yyMdsg_j;tuciX<$890iI!k%mG{fzc&` zdnkk!Q$+NWNF|a0ev05(tw-gvZAvTMB%P70n;db%et~;I<(&MSvx(Du)%?e&(CRg0 zKa*4<1`0=6Fvw&3;Qcf)S<)ij&Pn%5gURNiLYC3%kEeah<(cbCn#BUjn~$iKX_k%r=tdx}cH$&zGcTY$vIqX;OA4D+h@1p?qJ)d2`}mg*-hxdsrUziCnNou(+h!MRMe0_nF@(FxtPN*j=>1joISJ@sX6D+(#l0p6@9ZvSQ#y zXfkmP>)rZa2qP4Rw6s77OayND;N4U*qAfE(JRmSeKN>Fdat&x_+wGZ;8^I~60RS!f z!Ej!WXOl1Q>C_7j2 zOwqAso^2d4-p^_{25H*^BCOJt-!Ql|M)cw7{rot||M;h26YP*7Sh8hb6tnltE#ptj z4b?=#;e&Ky#4YK`Qh2TqYd~xt1K93m09x!Bg=fEpJZgxH?HGSs3}z0g0)wBtgd3_Yy+!b4OseD3s%)rvEq zc2@BN-|#JWZ&G%PvQOdkNy-j<1?10w)lxI`1($q^Mpja|*UiLj zDi1*4qFdpQ<|BbiOR17~2yYR8OP?@3YX-dptZBPWEyYd$Y|_DCkq9fUK7l%pdGb05 z>5Otrdb!sO&9A4d6l&Gu#f$PS-J!bPpW+kVvcr(dmRws#egl`!fN7I9wDqH3K4s6q zd_F`MjweQ|;$1Zji%J7JaHZU#5Glz+7FWBS4$Q3BzCYjPE3qi~-G`-V?{+)bkqSId>Dbm|)7UhE_O zjpzkae8u#P`as#E{&HFo{Jd#4WE`tIzQodd>=s!~DEPrE69Nk7A2W%>P#jI9D|-WF z3Jb|Vxr){QZqB;F2VEXMH0FC!?7icg5%e_>H&@UA3uj+w?gqVPhT92l_|fe~+JSIz zQhUj4KF+o5Y?#c^DC`d&zb<O+(uTRjr-sxY|>6=fIF(Y=eh4U#>T+tQBAU>R@lB`P*bQ3qehO-02P5TMwc;O@N zSq~$HWauu7&UeL<)0FDE2JKJ);euk1y#D8bxnIw*Mfr-JM|04II2nv+!lVAfS-^po z(n^=)wE(T{f_8o*2VK^)|Qn(x;Z%JOdxR2hk{PB zB^OX=1Upd|+@GZ>leZqr!YTrwfDq!JN3-9&HV%lA>v}*D;}otJ&yB&Im5|ypiI(kH zHFDrIwHPAjGQWd*gOMQRz5!o_{cg^8MJ%s+QYFSYKb)QxD$d5gSYVrpg*MD>tbU2a z3gi7EE?$Hc;qnpf>K<6zQVYVNT~Cg!g`8z-pKn@CFEURy*`a&m3TZxnYV)C(EtsO+ zV^Ob)@ZnC)_s}h9p17OD%pU~NxMM7FK0)14JVaEn@Kq`C-TkWvks6UHb;>@|6oK+PI2&u`KB)Q0VDuIT)0}IM;#KF z2)kr-YS>vOSH)m{-3vhW0FfL?x%OLxe`sTow#;W75mp@fzzW7PEU@FqtdEMADVUmo zG^@+hnV-fL{gGqJ3%@%^XzE8*))T>kS)Nd}S9XK8lNg9=d3wmG!f!uV8@Ba`(VvFD z6J>(7IE;j1)kDJ0i=1Tb94z`$mv`=-uxn~u8XB&{t%&0WeMF+`&09#*9bIlAzP1J^ znQ>}mm{iXI_SdLe`UG5`Y`!9^HR&mDx0|WH*7NhEtqJ9d&XB;nR+octv=S0i&K6lS z_W|yhD)0S)@3`NyB13%;1WPmqj5UUmrAwiNFFAhewyRmMaw}9dsQz;MpiD9;0$qOZ zxsRn)Kp2Ds<4={R*OX!Q2+G{9QTse4^9mV_TnW<%m`dw$liW~O;rT$I zcU!K4siiW9HIS~!JcM%gxR@7z>F{8tJbxf3k>WqrMSpLzadPZv#eSTBQdA>IceeY#u--RzpfoxkL z_a>HHee*X7Y;a+R&$3!ShlB5eG*A-vPE1iSuja1~_4H)PNpK&}E}nQd8jv9~lhIfX zWG_0@!W3Rblb@jAGG zZ+_oE@(gKs3FYoitW*jfK~akyE}*vYfdqX&#I`X`MLjOVvYi{S&7a5e-G*=4Io~|c zuN)VSWOqi{ag!g#)gSy*5dJ~4v26pb)yo}d7%g%rCUB|>Lr*ZiuV!RBt!AfM_b&vF zH9#w?|+))yIQC{u~1PpeW(JP&;MHJ3o>4G zES<@z2lCzKUhfLA1}(;G^EIXe#MWHiQI1}p3CHirWqLTs% zj7j$fwVk^~=!9&E^FGO=m&`R-Nh2CWq|@a_8xFvFYYgILJdOiLYh5WT^o3c_G6fR& zFT{HJLxB7X2eSs}_B^`#W#I~RQ*;z0eUu0AYVw#n=LP^879v@ zzJT(0IJl_l2$p6o^k#(#$n-lC9M0e@PBAK7Bw9yq`xIi7zQvku`L^wk^ z&*Zyde>Gz=MaTk0)(=NL{rdsf(>Vk8vRFU&mpNFo!uZcn{5YCly)y6CECg8o+keN)zq z_yY{RjOF4u8>o!pVZ&ugsV8<^!eL@~14`Q7xt&ceHolq7#03kndEYt)S!y^|UO;GA zqI3aT%a7}Gzy{G(!os*K{p13v=x>adods`Cw7T>|fVkGl?GVOMu?X2Ljp(u+y|%5y zG6;Bw-!A+Vk;n}MCsGfY7Z_tCab4z38V9y~<)ArJk9gbU{1I2y_p~ldjmhjg1bZQ8g*i;){S6B5e-D$}qtdG^Jz4Q!v;fyPVy%)NB^kA7RnzXM zl05E{RHo|G_|~)!uc&H_3|cdtGJ!E zR10v z54&XEvoedxiy?okO@{2A0hnqom`>G6K2RahpuUoCa>X&<1+L_3@rh9~k+@U1bWjJ9{JQWkNwh7@Vttc(C>EFYZx#YaA5hVbc| zM@Sw;ms`DdeQ%;M7*u(7l*NSEpw*UmZvu|*YXMp04aGScVpzZc=-<-HE z+;b4ma{<6;%G_1LR2VqDTwV&=B8k;TU{7e1_REcw>17}2#1tZjK}EXNI5_B`5kn z=8`*b@L9&$Il;J(&%qJ#`{i_UJZoW*bBlVTC!xVe9&=dAW7kI*|FIqpjn_;`pCLsd zS~q;Vf$n59p04jq^VriYAo4`kiL0jzk&4LJoOZYg0RJiP7bd}0;WYe(a=I%TbAWfg z5m8(H2}8r!Jooll4qUrMtgaXTRrx0H-V-g4=lppzdin9xRuTDv`q=m>^X`Z;X|!zC zz(FdIo*h-M5L%to_4)ZuM3FfyC2~IqV={AOG|U=F*3ksM%tFW$zXni)5$zE(sdatG zF+zv*2l$sDw?5kDTI?2Nqbgx!ijd7xQ}7p0En1$guV}$^UM10n*+3Zd z01e?rb8C%{N!Or{+o6{w1PFv|5=QBGIxzP&1`8kuA87F{60M5|5$q(VXk^qbKd>@e z2}Uy}1idST;fv1T_1LAkCTPX)CLft$yPiMnVW9A04l9(9`p3nIec zn$0KdC|`Q)wk3LK7!hk4(*HcvHx#NP#Tyzh9XAM*B;&f;?(~yJ-YwEI{v3e$Hb)2`)ab;2k!9A#tsC;VF9J_UyuJ^sLKCq zla7m>=|8S*^@7wwTiy7fo4P6>Q66RIF|}xTscRgL8r?zfUhrm=Mc0}fyvf@xW&A@& zHv$Zdd9D$^=rr=G>MeZibmAZ zb>Aos4t89Y4e<{!E=qX`QH*}`ecN0S4f%=HHRYf7F%EljoSp6Ey-$n8e^f*=W;N;Z~$o7uV&q(jyRtb;IzDfgw2wAUvaCbw5 za%;yG+yO8wZEpi;>FBJUha-(yW}yR#^HBLi*b7m=x-df(*!&$nlUi*#Vhvk;=ErO~ z{P>9JSf&A_Ov8W~{^|8iM%Tf7xsQ{@~T6PC?ucsO<2WF$^PEW^X&>HmnaU-5~mrG-KL^)HNDA_BIIJ z@Y*pBBiu&$4A3_0%_#dZccZur)RUM_qq+>-lephT1{s_u!EYvh8G;xQ;Kl=5P#966 z#w>Jr(fuTiRCGAe118Me8e#fq@F+9r>XC6#e#l=mUc~P+CW%^(6?e_>n-=c13L{o&*01UH7}wM0iQ@F4P87z|*`L(V7mhH51dd$TogB-yIEjhjYQ_GXI@q8o5gy z`U_)z?cKHy3kc36KWli`0AvWX;i3x zVu>Q|NnPPN`~7g9g4b2Zl7(bFA=~#;okiIoVF~eA*H(7I>Q)`FC%6QPM7=o7NE-#j zh+m}na{&FhVz5>Zc4k>yZRj@zmh|hLTYYR@O>`F;z_HNl8MuuAb& z0|AC$51bE7j_#f0fV0Bi`TCz4X$lHVkGv0#tfj@J>HcMzHcs7-4=){g!UXj5Kx}-q zK+X)k9FZTPU${JG@H-M*2_k5gU8ZQe7WNXww=&zK_sm-a$mh_TZSKE~Jy`Y=763Ss&$>WcPz9c3U`Gxh~p&+;zx`y##oR>jQP!da}WG?K=1|0Vf&hV zE0<==w-eHL@BKCZaI^!3g8~uzAO0T+5I7Bfj*>q#u3>{T8=VLw5uPb1ly+}Uh%g9l zy9uV;r|vM{C8xT`2$4u>YSby1E{6@QiwT7mLmp2lFAI7lv)B~r88E$!Y-H1kE-S7a zhwdCioHy%$0C<9ETajbg@Nho3T z1OzgQy%rU4DIx2qswyiF74W9{cUf@E2RWYIiGZc!4$mo*{=wO} zxJS6-LHgi7$|J9mDL)KZ6;tOqyCX zk5+7gTs2qBmvs}*%Hf?FU=^ux@}qAH`jXj@^5`uRl=R6-`JHp@Pdq-@J_z@Q3=gc3 ziokZkZN`>F@-RU~)#>GFSevM?kN{h-!~#=sG!M7lGUVSr9l3L@-6@y?|4Sp!whX5g z(-whMZ~eP#(babV9-@kBa+FPTyeE3g7Xg6umtYCF9d}==7(m6bF8qg0EQlf` zWW5-i4d<0cSB4NN{;8L+NkR*cB$MFolnV1u4@EGTSN7%3DAURhmX&RRQSER6sJS9O zL2>W6%>mPX^1B-xS;34k6@zj5P@qZ*QD8A^FUL)B{wdLhJd}KCjgA#0WsF^0 ze!b5ZoI%t(+0mMk1W$&fTAmF?`^9*CBuj0=_;vUmydp7<6^V97{)Zk?-P5i|vldAS zIQn1sb7GwSh$--Nr=khCqk%nM7*)5Zf+s!h{V`zqjnl3f#Ke*w-TgWsV_2LdWeKf; zm_TEPcsb8*X~JOin*@HeVHAtr3li~NGlc#fznOv~xcxll?M>S8=uo{dQqJx`B?BLT zrb1C+)!!j7{D8^vE`VzzZsYKIOK5>6z~y{w)byaxHL#S`Rh4uGT(z-v_^>w-+OhXO zt_cO9YY;fkNbD5(;BQ~=s8ie%zTWQ;9MjRBv!39Ld2>v9_^>-diE1a&O5G+}*?ewC zUw&gx{xwUx3IryXQf7%n-Xu+%F9AR4qHVUL%r21y4uDtdB?LX`^HQDu7}QqzMb;Ng1&+-eDdWN}hROTK zNl=Sr=BgxAt|MP;)d!|!j=olC{d3f67bTjTT1BQH={9gPgT@>$=J<7AU;S+ep^+M` zOo|(1oyutyF%XdaR83BBc0_O`1ENjB!t4mXVX&*7-@dH>dHpeAWk&sodEB|Oy8o97 zr&gG-htx$Fry&Q|Qc-BunIA>$G!fwmsT|#Dn=S}knF5f z^1q0y^}D}ftl_9FU)b47Fc*(LoD-m3Z6xxtNaD+j9uHt$WLT!KTd<55h+1#+kSGMG z>E=@NAo5Z*t!-dq=zgo`Wvd(b27F`0z?l|`TQXJ-9oQF3(s8eQnfV_QZymq+xy8Wmr)^^bx$$I%XgH}Z?E=8%6}<-JK?vmnJ$_;J7$DdM;QLf`{N~k z+Yl(+=ukUgzvtWW+#`h;J<XK4VSF*TkPBU{c zi@fBKy;$l;?xgu5<6G*3fNHmLU00yHxXrK~(reGa=SQ#fcknrT*P=a90t##yvu$Pxps7Uh$b)gcsWAk-2OIv~n9Ca(xykX%Vw^at zbgzd}7J)alyS<6Hfh~a?bE?M_UmJz4r?c(wRF|`Njx~#}U|aJ3GUCL?Q9J+zGoiWg zj#r>X7Iih8(qDH+LLi7>v!o|S=x~~63&7Dm5Vw}gbXJek1^6uxX04LL|grIl%5rcR|xkE zF5GeoQSfN-6#;q?(;!AeK}<}YDQtg+hT!n+4}L)+BBYPu$W1fEiqd>|K<&?oWL(Dl zWPxKkgxk$4-N3D7*y20CvLw;=s2$Woz%q9MAVFamS>8y2!%ua8G*Q5CIW~)KlQSic zz(;}vv7TMlk*^_gkK~agkQ5&t%^o3$v2zrNA-defpC!R>@kE`SjjXo3+YHv_kWfyX zuS`7o$UvyCRIauOAsY)Ni;vhV@3CoU7?3hJymcQ)-+#~orlBjdlpdGfwz6YvL_88S zx!{84mO1B!?wI@KVwf4#^Cao0Np}uoF(71*jLektTkDj2An8cQ??FC&TnH{LI#EP1ThlimR^84{=~Jd2(7aD->3 zO*1SmoskE491xms|oAFa0zDc_GNMosP1{vZL5;TtRdpu|-Oubt&#v*AP|8g(t=j=A2YCqo6KH@g({UFY$ zJl?8tkXD9;8>SmF2ZcK}IrYuA9Sg66uAKtE)u{K^8A=xdBj+ouxA5DvqaHT#PX7iD zefQ(U(J`?3#cc?9MWOn2R`)cIu;D8_U09Pv!q6gwahQMBcGWV)sYKIqCOns(`>MpV z=sm3_Vb#st-H$HFQH7ktrH~6DIfavns{ZkKaZc*C(;cm~05kO@uiGjM)Ii=OvnW@L z-Nz+>nZ30yO6@9Q3Qp1iLN9(e&vrzz7YA*Hq6ebc-{?rQH3K)5US#rjASTij`3ZkI zywh>G{Can=Fj~0{J9s?yvxMQQuYEhF#iyiUcO0{V^MV&5GQ=nKn+4-J;E%r-2~cyU zwu<5&k&Bu86dq{Xyh5D0WYAiI=$;DbGMIuUo=Kbe$&QeAaC+U$ZWQxh`Z&af)!&xQ4$fF(DWEPj zq7r`Q)pqGQA@jXlPz!-&ffG~SXM7Qh$jieVs#k7OgKU`>hr58a_ucp6$_sk_DCGA+ zd^Ue@4%Cn|FS|g4PEIFr#&1T~9wxnqv#BF^5(svL_~UW^FV~BQR6hM}Wt2%`trPsB z#N(*pg(3ph$NKuOEp!VByLus5RT9U7W2^jlff#b7Bkw@57H_l{|J=WFwJNy;on2LYY^R{D6K$E896ZSg$bVtxB#h1EMV10?&gvz2G`3;rP(~fF?7kbbVIYUBVS9lK%b+ic z0sg7;F)5BVJa+JVac{h&P&Muhq%9ns&bx*d)bMfM5+{uk#^mtm8^m?V^{Ok>XXk3{ z^XzS_+$NovcLq=$*P2a0dDkI6->s!+T1HTBvIUTD4jvgrb>;|6eFc)2_re6B$$E#k zvS$0LJq`A2#{r;}cPU=#fgNX}Kyhahnq^O3gKdlLr7&CH?AcAjOel!T4tVG3%1?2x zJw^vuFMAvNp~UhLd&J;fVP12YF6myiR93{YSQ!pwNKcx3oc#>TUICt}lu&3&jZKef zpXk6qz8Zz{(G+sc>$aMd04n2&u67KHcIQhMl+sZ+4RBI73J z!-THYHl}1ZUCYi15jf*JJ@B?gjsU2`$o=y^q26&(m7y4FTQZyG&t9A&{Ke(t7Pxu- zxD>mXe$yWhXLWJ|Cs7Ct!=DSeAgk3;9X&u^y?j3rvkK8Ox?B1ihW==JX@FJt`WCG5 zeJS~#v#2`hg+kL?D;50o^;IdlojwbhN$~5{!s5&NSlumHJ&p&O>YOV9Z=@(!j7@6A z(x&BI4&rR#LI>O7rpgi$-h0a%gdXgX$vLvmso9 z<7SHE-@d-a#M;K5&4^{A#u2^fg(h=!MXf=di=}7Y2Sw6^YSki&fizEn?1F1-SxLye zO<-Hc@Z{T^u^TpgBx%0SXfO8m*YTVp<=h{f zvpTes&b;qt@43k>$EE$xugzAGeeF-BX~|3oDdj4#^@;}>m35>@MCXB66n*38)E>R+ zm}y?3_^>*Zz*xlrO41F;#-U2EhL3S%N3L*g>74o837(mf)YDx-SL_AHp#Zx=h%{yW z>uf@mo$oJTm%}hvLNEa$-q7A_GPN6OL6Uow_*!0)3>cA!cL8`xS{<|<2#a{ywQJ4B zF{KX9?(?F<#>@)BqC_l!0ynZb^3Sw(kL5)5-j zt)A2iLc&a8edhl9xF{yz?n@#wMFv-s*!g!7n1rMx`at&u`j(uEa3I5eZS$uE-bQ1M z4;13z*n}x9ijZAsf4di})|!D$_y*gMo&6y^!2PAM+q1!+&_z9$X?)yps+b;2!nIF~ z>m{lZ#d*Q-QDe%zuBGY&h_8B)bE=0sBcdBDl_M9IvkO z;7n9J&oU8x%9R6_8C{;Qti&czI8HLAyZF=u0)$@dt8n?ySPi3 z!yipv@7rPzC|icx2=Q_3#H$dY&Pzym1_?=X`ZT|>dbu*y7<0LSkGZK7`?J$;^*2UH zbkv9K7v+U@2rgFdt)c3~4j2wxZ9)Sz8NnwIxp+(+ni*li9(@r4-i^rY$;2}=0)dZh zTVoNdu*Xa*G1+*q)zR&fCp5GDn92usrKBQr3HxUlQFiz34)7#39ggTUc=BFHb9fcw zDpNAFb6`OR&(>dJN*d;Cq->BbHkG%|s$gp}W?DBHeGEJaa%yxM@L&!1u;SPr49%lp zHlgJlPzed6(mYwPKSi&q>W`Hc1#=-T zgKv?8zkO;l6i>r5XJKKL!si#KaoMV#j1$$0XxP;OaFW{NC@Tk1e2>POge^3D(IAg!FNn$ zAg7I;WJkka%Ah|tcW5*77j8m1kdt;Un7h#=Mwk(!_7to6sY7;saV@x)!$cr)w=SxV zszrn|PT`NCRC*A15s_}Bd>GhfB(&!->=uTMEoJ(4S z2{R;|Cq2SYiOO%6&Svz*4mThDW`?0*{ug?XMVz`#npH*7YQy-!oBi|NyN32nVH#{D zmXW)rhlNe7Ib2Gk#Ri*NczlPIM+cRzkcz#C-~nF2?|8{!%Y1L0#@CS$N^pi8*M@XE zoNheKXRd$>iw|`MBsjpxZXi|7o{hwf8`TE^v6I+L|CYt~d8&7^6gp3=7NnDkG8-dg z1MGxzw}hvzgQLCtFdr&ox-GqH{oop9VSx6(!@k3 zf^pi{J@Po5dg5|QgVm9dA8%O6S4oXF9B4%Nqo`oDh{NoUkd{T*)+n8LIB$b9lX3_8 zn(kRfV8v1?0v=(+!zq2VU5h!p^+BE^Jv5O72+W02Oapa8LC-~)#M)W^w1UTa^8;x= z@s4=gcdY%rnishrHy$OyPo8jCdvEuLJN_X_2rc**bhiSg`xkd{39`^lVg=A}j4|XT+?1?SD-;FT`3iIZo&bZwF-tiK;7rx?H$FPtv zB&b-4RH0y-<4MJoBL(&lEAV|+9dF!UNcHy+Gz&i%=L-KVg7?b$d0)>!=)=a3g62F< zAk(W=3Dg>3L`vuTmxK>*Q3f6k`%N_K%3tqSi{2zZY`R3lUa+GQd-X|sOi^GEBr@$^I>#I8_mP_Q z?AXC@FyqZ$`0%rhY1`1gQ=?7vb6CwTy+*iGOI+Ld_-SYDq~^3l(5aU=No32`O9c}b z%;D*7ktUGtrRz%NMFy4k{5mxjJ>3-E{!KX9yBFU?IrT&3&1lEOn4}Ss4*4b?IxaFf zSk+--$_<+S_h*qES9PMjK^siHL3{c(lzE|>wr(b~+2o%}bX8;PkN5S)c3pc+6C6o@ zd6u+u+R|Jm4QW?Oy2~C#2Q(>Hrm&PFaY4VOh+nkML}P7FJy4wBW9W+1#-uA2qCStJ zZ{u0A@?)7D;Y2~N%hyd00-CdVHQ~Kj_+@lJQ^xTul(ny-;fBws!-Y&eyJ}K~m>Y{! z!FY}a5K7asNUSthfL)l1RM+4bKeL=J+Q?ZeIX8L=F@+!r4~xKX>-^*ASDfzL!%RXG zZ%r3P>QU>@mohmwb(-Om;Yg%5f=i5AyKN{I@b%Hm52)~HAvxb0p;zw9VJ7ArvB=*{ zU63Z5T?#C?2oBX75(z1!OIq_a~wQIf&y&Y9a zf!QDb%y?!3AK92B9aSG@nBTpBP0ozVSBC-?K67H=B#M`9faXTaRC*_(HEJym4tL?e zHhv(yvlPE?{U;=>^6Fc^^Q-K3Om$wSq^rNj7Jg_4f`&<1$Nt%8Nbh($?FRZDYRbTW z;;f#Ar{$`lKV+*y6Fcx?PkDcaI+*%cx5CS7C4B;n*IXZU`x)9;K>I47AkJ9fP|C`W z%Y-fo`nxb!AH5iZC2UvNRI8Wuo7y-yE?HWzd2$)}NoTrVen8oW*%kgPmhrzNAOC0S zgZ)2tr2dEcSi9?cef;tL;rRae_>l$u_d&6;^aDd8H8T+bQ$Rp~L&+jAPyhja#KM{X zw|m){|NrFhG5-hlQT-zbbB6E@1jOv_iuqp;{a=ej6w$703ATqj|wLJuRH)I8^}hYmI)9`1VT(q5xXct zo6tNWYchL_IN*wlkCDud%w0c<-A*|qUFRE{;E6osYR{b*&0d?ZFtt1x;igD_nuZ1?Tc`^ybxw)=2rlI6N;k3&Pc=Lla&ry&o?4>;<@?-`O3Rg^;gqU~{I7)^A-xbd8P05LAQ)8m9Lzinr_B_Q%0L4rI8F-Y(vcaAz03CK77aY=M0F%Zyd( za(D8iEdhM+4NZ28RG1DRGdb_RfM)l6Tq#9B9(cjoP;RBTa{tU0Y~lY2^6^yEt7wNc zk38}_{r3R-J5=-4NyxKujwr7f(gRRHqVBHKktGt%I#l}o1~Rt{shRwCM*i8>S8j8> zg4i>axk#``0cI>c!x<#|qr3Bx!l*rnSl`xS@WgAlt4vaT~_dET@h+ zXd=R1yI~2dLvXZcMM?%;CQ-_iH}Dn83{oeSe4|J)GO%u!Noqb!RI@z(^r;4p1?F|) zaoz)lKsU;;=TYEwKjIrS6XpsS;I=ujf-j9w@#4k-W@0L!$h0)GkteH}q*`n;q>0-)4`E=R(N6V1*Y z7bhuI`IkzN6LHI8BF0X;pNRNq#Nfk4&V>2_&IcU=6%{2zJa$XAbONHw!nRLF3RP$p zR6w>#-AeOwoTGQkkkBjO!2!5!g3kDN$o25bDj#A%#WG zIc+^Ytv~rX1{Ol#>I%tu;IoAngjB25x**Z0aQre|7BGutYf_^zUBV2WUBd>L!_2z1e)& zR~Ha{@_xe3$A5o1i2uSiSjJZgSGl-W6G^nbG4on+FK$F$|Vgt zr?o9)$a1L;xEj>iR>zAk08uF)RBba^V!OQFoF1GjD-e*yTp99qZSBRj$ zfB8IoB*~@<4d+XJWksg&JXdL;ffCpkwgO6f3qWI;(gB8K{}KwTEC3@wh7gF@!yr~d z5i>)P;K=&Q5N!m`hTWmcDXzOv&`=QfTE?h$uV8rzj@4{Vn$;|WrY@NP2O#bOOle%mrmNVv*0d1Kzfa*AsJB^z=<5YLQ>7GjjSrg zu?uqR_7%NM;BPBr_gU^;y+po;o$0-lU%SE7@xct>Ffr|4VpkR}R2PB&dsaY)`tdg+ zNl`cm14Ek;c2{+FsY^M2%OqXvQAGLN?tIT=s!UO=`l zcBSipYV_=gtaDnC~kEKgw`?tYQ=5ne!~P68_3ovW?O%4zEmUV z@by(le|F+ZKt5K>9O7QV4~s}H&@fOx*xG(yjP(o>P>V&zo*3|&v?COgh$GbhN7*|E zc@hR&qHWu@ZQI7QZQHhO+qTVVzKyu?VmIPsWL0HWRn&hK-*@ty z#+W@M!;T;5+c4z710W+9@=ry>CVNC7<8A%m2xvB$TdLNCJ!Q+-e~~-$2UsY1Mmi8J zD+LJEQ~^W|C6@uH90~!r92x=m85Iv?MyY!PIJ?Xh*)o1nybv^%0R+F)75NmYEJoo=sJ|GVU{mzX{c6w4&5$f3U?`BvMDWvOL1NEgD^~6oaX{>fo z4*5L@RHK5zT#WU_^(wi>`cSa|IJO7I#!b^C5Vg?WLdA69OE_aDb9d74p+lCyTOtt{ zZc0!#_4&!V{=l6wkDkYR=1-+}e>}N>JTIp%;z2p#0EoPimqUjZ-XxeTWxGlkx)3ua z-f<%cZB$1SC7Ezwrw9r7EYfsl{f&%WljmxO?yrzWl@Cf%ruU+joegPq`Nzrd5Zlw4HE~VBE z!X~;D5>!Pd&_VEDClmLbd{c3{CQn^|fNB!U+Xj0z>vPt;U}a=s_k5Fttsa|OmQ{2w zsojD*0kE{FugsZ}G54YvNNB?yNm>9P-8Ly3BO|Ff(Qq5M3FtfZ-VR2bE8Oc?30{Ku z0r&UtpEi%niW@Co_|OD(bwGt-Z_G>#7h+Ww*I@uc5uPK*Jd;21De1#+fR)6gD=GUv z4BH5Ek5;U3FrGvqbvSN@C_bl@0Z7%;k&@-5fJY)CL@=<+;7pFwoQ2@#)8kS_L4yC= z^umeJ%uOBLK@Ok}i7H0aJrk^C8-Smn;yxjTBpMfrYy;|Ols1jNyM#`QNb?Z<%-a#* z8B_j-aL)l%@&TB?%WwpZyvI32!cK9*31N8fTmN~`jD0TY7U=*Q0w<;Vb^(B|u+PLw-VJtFfpP^Z8jaLH>Ws=D+ga(o z@vBVq!o4>a8ZRTkprPYDvNSFU7(Y@MQmxDzrI)44oHlDQH)Cu@&q|cxSv9Hm%M^$e z=7Njk@*CDm7`N-M2K#Xm)?{tEP2XjM4yaN2pV|LecmMzb&kDAxf4)6p0$M)0#^VK1 z#w9<$5I%|L_0GO~uJhn4Ue-vaG+^Mgp?%Mkye3N2C$$PI5fz3B0R^eRb|rNCzam`U zLHH{sU%-Royc@XzX~UaX0G(Nj8f5SlD~))G3!4J{{(m&rxh3d_ zP9cQ1N($8~<&nkFOtVaZMJgHKqoMc)`HX~ne)|SCy?>*YT^$2EMqDv;~KUF`w!#u6DEwA0uWDyVIML|@|9YFraOIS zraWgFN3R+UMRf@+VYeVzLrhs1!nhEmNS;aN*JYiGR%+*`R|55?oVrAoV>m6Fz|N_> z8ez`sOPA!_!nt=-cLxT%J#2k76cv8}?R7y(2Qu>_CzqGk$9}{G0qgssQ43DtrdG#}MQODU3xXn|vTi_Wj0_ipPf}?DR-Eg0W59#i~5Q zTX!luiX4n(Xpt2zlh7cpS4dACt?`Jz!li;c{|Es z)Q>c2a&Xp_ulBh%Cn=fnrWFxDgKw)5mcUV}hGv^Xfp=j^&(YEGhCy1PDT+6a-STak z-=FR{cXmOmguS?BX2nDLu^D>OhR_a0B+(*Xa-s*~S&s1DJIWh#f)qHrf)Jh8;V`yy7Z#S)H;J;uF0JvwCK8ZR8@ zh!ZX&urLS9!3@2JP+?WqFw?GIbP^eWOP~uIG`5l{#=to3^I$HYPI{79Z~caIlgc`l z78A-#9+y21>SN_h3!Ap~$xe}%H_>^|`O-t5bxG=;b5t?uY^`G2;AQG;YtduJM|6dR z7w-|3_ajg=Q1M*1x4Nvh+fs}9S#56X=TOo(si&0==p@D3x^925gAV=ul(^u=T#e>N zf5=jkbp<*btUNVH#T_pnq-?J{rvNE&tS?#CvS_?`EJ8&!_FHUC-8wU!si za8ozEjx<)CnWW-pM7!j~X7dH?L3o_hPKDBed$|QrPJ1IzU44Cr&0lw%q}dRi0&h(N z`NG))O8NI>chhNpGQ6Zkl-)CfS63N;LKg*pbt-K0&t!F!nzkBF4M|>UMb2)5x)moj z);mtk20a9G0Zt#Ycl{}-HW`8?zeCpJ(~zRLOmfW__XykvK%&4ZjV8`;FMh<0hT`X5 zP7r$ujXms!q_cfZWU&*%`_DkEKojq^h7#htNntq*n&E1Olc;AY>5>?;6!Dq7+Aw`g z7J*IyF0&d>NJZ$Gh;nBei|Jlp-$)g#m%x~_oO3*YdE-0hc>p1Rcm^BI8T29Uc(A5{ z(GEc}$8zbAEkCg{EkQ$k^w)+UMtV5-V>G@;5qvQeC z!+~KlYxx0M*_C`1_-7OSEWKMp1*352jmnXzyp{-3Yy)yjr8gi)xRwb`r4;Z+tRO z^E^EV$gjWqd~Xt8i>^lO)ku`*vUt!C2^1)jA@GtOH)rQEmse-XaRNL8x2OFJk{Aer zJUBjkTW=qPy;obHLO)P|LP#B2(suK(35yV>Ss9~jPZTDuN!0ocZ6jcLj%i2i4goe$ zZ~_N(Ql3=ymKM#k_rW(E1fFe3974L-a2n$vTm&{U*%%r3bj}y_u=DoI`aUhQRrrfb z&WzM9*f=#myAo7&zlJ%@wXqL93>`a-%~xQO8{fnij_z@%u;}APZzn=P`06;<`uR}| ziUp`dCV{a-3G-n6r|)IFZcDOSc3Vf>PpTKQ-XS5wv1Iiv=jawLDZv;*{YHccM7^b( zCsW$Yt06u_NRWB9L?&=J$35Nj!1L8IC}Lc|#rTK77qu@M<>J8b`(w#jOeftJDAvbX zW5zo|Y@HA}F{Ck(gW39|T2Hw;?MJtl_5Ir*QWZ@dci-432R$zSlxr z(H0+6T$kYt$IRrPetlv=3`A}t9PWr?QyZheun?GRhEIPcw};6?Jsm&L z-jNoEi$~uKnZFyy4VN`C6dr6f5D*?W##*u(0Ap)TjBELF!qckCQ+II?cDhYf4K)QX z3a{!IFI*N=OrF=&a5Gc9bWeH^i03DZ#UN_xmyvt8l6v_oqRWLiXk!x7Hf<)FW*uGi z3<1TeM3;%!*3M6N&DQMKJu^*oRBpK4T6_BXDoQx3tKC~! z9RyX@l}>BB9-d)6+z2zXxtKDt1*qyRJ{b!~K$`Q_ka%mYZx!3&n@p@#E}3v2S{w6W z9f3QH9z4xXv3R@~?(_T4zfpQx(g^W4*bfM)XyR+^zW_7xaT1~(0uJ8qdzH$(nKh)% zc3^*Ks%&M2+QV~eCe=x#&~SaqY}cUryKV8s)Bg#9>1RkfH?#kdQJ?~{XTj2J%O!GB zP9?R?)H^g3BdxrzTAknjZmM_ELNXpyA)F^{_N|QF9E;UZW!ZysJ?wk zV@@WFOPvMNd${T&I{yAwp~At`S~B~y$5*XH&sLI(rB>bV*7o!7#9PX7o@nnZ8Y{MA zfQ7AOM5Z86(d-OMbCHr|4TPfm{` z$PFU)<({lFb4#|zG?@>Ta3j4`(su8ulI2zw(jkHq_D7Vmr%RqB-g;V#6REWC%zN%OjwReFF(t;8n09FSn5x$w-QyjGnF$!55J-jm z^<99x-NFPm2~|i?*b9EKW?@)?Lv{-;Y2)U+?G0VN9pL$6{|H9~Uz_ zr^?sSi`cK!CK6hQN0BKVA(jX?eUbSK@$<(fe!9Of z?wknomsXo7*rq$*K}}i)8f^{~Urt+V+XAfF-;fLA3w`^WNS!m4)M#wjMs1eIrlK9) zcI%S*6|oC;+f=-TL3SZywamDWYwH}5UdX26TuOWHn1fxPVdGA7s54d-BgcV)bH^@q zUax)|?XE-(YPy`(pU5(z$W1aiYU9l;C`J>Tk?bUu!O|PR2S(2^xS7GeDZ(nH^e9%! zx?N$DRH=(#S!4CVzt%@P`4f1(VPS@UCz%sn5heb0<-t?PI7ED@L<`~0b_DxT-)#TP z@>9XyM#4TWY);gvG8|nm_#<+olc9f9h}V}?j#=|7lK+RUoqsiZTy8M%-}-I&jef7; z3*W|5DoioVl&3&Ut~YaduPecY1`Stw^cDe)P-$@M0h+XU#VQUe@ofbY+B~jjNsnql z2{nm?5jy>F_X5)@wv=8@I_nD86fJwLfYO3G?o!W(vARcANK;!Xx)=X-^PN>=+K^oy zV`)GHq$qxb#L|F{Lk)SO;)PFgSvgIzL#aaCk(f!%sx_h(^_9kk6G>?p1}e+l*kUZT zPDAS<1HHv|kK6cB{#czT@)(Ea@n(*UV5CQzLk_;|4~m&_6zu7rR9eNaq%LQ(ll`kr z3?AMDTSR&>$oF?hh<8X;9S4FkijKe-mpd}ScVXipqhRN|zu1X+i>madp-S($fPCaku`18BY}JQ8(m z4IdC{6G7X|#x9T3{gK#opc=zKO$YztF8-f)8}&a|PrF_pR~~Czy~jVe8uK%=a`BXM zsTmS`;?jqj&@%jG2J^DSqgb{ubWgYBpBk7Y$vJK+pS29~}YwemIJ`o$LMhsP57oVr{o7OVj z-?tp~{$r`xf=vA0nyqTRoHLjIEl}IDQKZc||G>PU)J_ zu<{s+jn#^u1dCu73S+*%X2{X7TFhsRCVD0|l^u61CjS~t5uKuF`bF3*pIEb7t09#3 za@eYvVvtNy;+%C5eraoa&8PDZ`CK!*`knB?+kw|%=(JRKG6vIbxO(_Ea(<1iQlPJq zYecbJmT{NCV@O>}-;4OHFg6K6t&l?{OqV99SEXMHTB2r16FgxhQT=l_VKE&ppP`jq zFUc9zBr%K2#NF+o?DXSmh0ImmkF@rMQ>^&0q2lX7%t_z9tab&JPcsZa7g{RkKU?R$ zk^VWOEs{7V{%+x6t$b82N&Y&?czX(F_v4joMGb-xG=x;>OKG zKlso2(U{7=Qo<~#u31eFR_u$=!^Nh{-=_6-k}`(39cNlQyN}D_ZFW8bF)a-~Eg*j} zD`_ar=cLKzCa*5e^yX4c)&DDI36oJF;Ot@vkuMTn^SiB~?1%kpm9`<#i8z4laAVSg zs84$=+KY5a(v-KoUGo_=r$xKp~B6fmyGJsBi0{f+PKG-iA7| z)9qoNe$$`6F1JQ}NFR=aYjL#a*KzQ!Mgdp9vH!`kJ?v`}>T68`0v`bDX}e}cUv+6z z0)y*CdJtFMO?h773$i!R1j8A(8h?=2NjXA6v=hrAVhYwYjkTa^tr1o^WCvQ76m8*T zcks{(K_>9I-1_ISY;8?A0=htAU@{4L^!L}&xMOT!UyBiTpYwygZ{js>%fd;`+6ZEn ztk~6#F&%7N+1a{2HY@pV%32?VbsG@ghIFKMQIQ3v6X9Vu`rfsWn?^~Gi}?Kd^+|$F zZ)*tA1zAIyCRcwsb2uXzz)<;X?lI%G)tC1_Zbt`prb__8Z_VTlL$h9%^r==QYKE(C z^BX=!N!=2Bo1YgXtp&Y+>)jFrv|$4TfbSmz=c`0Jh!_`3Fef?>WP-RFteiP?Mf(HKqZ&+%CB4HAr458?qxr&Gybe=MC%$=}!)xuq?n(PvNJn(>1%R(3$eCK{_^M>l*eRY+`K;#qwYuB&WjNzq zUtiYjMHQqN#t;uN1^q?*NM{nZ%s~ha;9egFKGD|92hU9LYSJaXm>!RX#1m#DyW@p0oUSkRuGV9l|2}hvSdi{zhmx*o}oU{HLioDR7}$6MIm;p z%1K8lD_*xiGifD9)sY$_voD`rvxPo(sG_pIKVCcT(V>6S@g%HZS@Ev({;UJ> zsTVHu(0PZ2F%m4$u;zCXk9)<9-fRR7$jBN}ZtQ2iqzVAE80glm3u}-Lbs;+TPxJzF zg;*X~a}k9gfhfjaAxZ6gq-u+&(}D@qy;6Yp0+5@9kbF{W4SI7dNu*mmeHs#FRl3#4 zp4(|1McgeZiaxFDpqX)lfy@E8TweY2+kjJ;ZoZws-`450x5^RxU&y|I>%C1L-c4)K zIT(w|9M06o$Xz|21w0c&oYNc6<3%dH z{ig->(_Z>$JN6n5U@Qlim*Uqt1jRN%0sWq4ys>XoDshagDL1#9C~Z<#C7L6uYip#9 zTUVzLnvBZtv+SL4cow5&hrl^;+jCJlB zywSG40t4SM`4at3yqDc$Ykf~ouPeU!^AW6mJz%B^TS>tEZAAogj}@G2N`&sveIV}d zvfYe5-wxIF>p8&3*B4i_pZST9-<};_e4D-TQ!bR=EuO{O>_OmRkwyzWeg68GE?b3$l};t`n#uH4@r#|6K>x|M*JCO+%9R{yFo zD?sjYrQfO8}$BNn{AdaKs&#IgD|RwK?&;Qw#?m$tn+Cdb7Su2&V=m z6*D=^P6;+!80HvDJSgHmI;WEn^aVq#w&RL`(ei?1(UcNOmJycC)RSf=GFu|v1yb_L z0y;PA!_uIV82!ynInIsRXph_pB{h6XGU&XT|4tTX&}LG`s-3BSqUO+F4bJQ6((EuV z0+30kI zm5WmSLcWE9lD@-nDFR&LKfk!coZr5W6KGOhOWh*g?I{#kh+G*|KyP){-eFw;&mg%4 z$$MD2yCDw(i;#0Fj_t!)!7ZqB1Y8$nz3OMS8P^WdCYM?P8HT92hmPT8PGg)4jg1Hb z{Rs72p`6VKa~ap4-Q5PVFD{GxD!bGRd>|GjVh)IVi=E`RDEWA6ZN8`t7Lz~kO}rU{ox{LPZjuk!(c1}{=C7Q1ExRRJfy zMYYQRGX0Agd-8wu|5xQZ*yRSme$LynIQjo}|F4F_d6o!4 zNqN2;>#Q*f2iZNQb)5b`Ynx4!3o;Z=9F}k zR$mD^7fUD;cDU4#=~!ufO!h*R521m(v~9&`gb2CnD>&ZNOBd}Vt-i%89$9Y zfaHStK;#8F{Q{IAG};uh6=H~eZ#M~dw%0z-Kh8bYZ7qLzKX7sGUl*ehKu$^bxQxsw zV3{FbLH44$_G%4k7qU=;=34`|K+gfuL}bg*1W~}?hu9#E5jmD2frwaVu*9JM>o;HlXFDTx^3;96Xn^nmTQS!)~^KqLs zAJYem;S$m5wwlMLiNJpE4Wwv@{-e;Qcp2o_ftvpd;NeH#1WlP8NHACPSg-*IP(C*h zud_jR%vNSkeF6Le*R*-m02Yq`?!d{f0PfJnd1DgNxZxkLdTv9G7u|*~4AUG}s16{R zR)`*ux{8@_K$alB&(%+RChk-megM$}4xL8@QdHI<-J1EeWt3<@xCMDu3yUjpy~z|z zXw9KR(=?#n{k;Qkrt;V?rSS^ZW|Jh~G=tWcJ{V04L~No6s#fe8zfhq< zlx4Dv60d@jpe*pWC|yePktTG_YHGhHqXyN~)iXpPen}uDu&uy2+Qv1gz80;GO5_At zW}h$3OoDWr{7qi^y`Z8u@u_cB;qsB}s;99#T;bn`%ZxxrQ8>vneB-uud-3BzMn{<^ zC=u$4Tk(Q<3?IU^qE5aP?N|U{MeoRCZxo<3KOG7Z=!nI+O5X<$&`yiHK#F1Nm~z$U zs8OekC}?&mYSg>YWYU%$Yd$Oa$allu&5+BL^~V;%dvD#T*v~yU^$N(prKq>&YS71c&4&m3=;bz~7nObN^eW;s23X z)_+4^gh2oTGOu^o{cj)2{$HHP|A)TF!otG-|3_csVCLcy5P)%Ubv84ygYn$B;9 z(7L)W-uV1nUcNnzC!P=h2v6Llf`Cf^OYf5{um!eYn$ldw>gVFR0EDWw{}2pey`NMd z^y_EXe>Q3B1*qU=HUl4`8M?&YPZDknI(j#&2N8=mh0=!db zIn;V&N0S}r)k}XD=^~ol-~7-`NWWUAFJ#>xS%nI>FA$w|A=r~J!e-3S zAGE)T2b5vEjVGbIP!(F-zIZ~A@(V^JJ2^_JK^lWjmO>fh6o=k91`bkW3AEFwPI{H{ ze$x;fnOVveUqOKg(D=sI^Ds=2b1dHJE@RdP{4AwI5-J0h?mU15BsirL1 z$TB7ia&=fsVe7BS#h6u4qra^5aJ00M!GI@EgZ|V3Y#gmETXDOaMfu_de5S*f&FDX|3BO@=#T(crWek+!H^QVye#)*ToU=yTI)_K@gc zgK%Uir=y+j)F}V+D+Y%LO)>ser6j5|8;T5#p9N!_Tk!0+DS4?5dmj;oF7Oaj3w)2Y zsJTr!~<+q=Ig(8Ca2qVuiOzw~DB$_(F_{2P!ZaK%_gxyJX$P*{3TpF@;uK z7=LDOuA4SpH9aNzTBI%P5yj4sFF$FKKMKchy0#l_aeHI1=yfoY`4n-lGbbU#8k;Ig zew3A*oH?(oxSLi=5>yYg1l>r7y<)vzr)jxf%+9KWUMvFN)d=_%y9CEA2 z6qvEn;-Gz8o|4?kl^O8L(sOb5;7S7EZ`BfSm1@cY);3E2;$Ob_moNTh+<&>F#CMsa z*mpUcy)1{RT`tR0uhkv=fQjD zfsF)aviK;(5(e{9hB3af%6&boo_}(i3uJH=ZFux5V9I?=7`b`~HPMTGv1}f@vE`xg z-rcnlE$h+wrI{$)Xafw?7{3Gbs#{daiqWjDuv*pnMXqGeoiA4pvr8>4Ov$O!=??af@IJ=+rRT%f#^8I>`a2vGpopcIFFc?)z0SO5n&B&zas6ZB#XKqIRIBq_scpyr z1UhBjA8xQGSgY=GeCOIwi2cb}CPifkST$&z>)8``2=yA_0^f7$rhnuWDA}aUz7KU@ zSbjHZ7Rjm!bEWRl=wR0RqEG^%4w0Cvwhri#m?;>DbT6@e_;rE`#Md;|@f{h95)Xs| zDk5+sRCEyeif3#XOT;M@D*|Q1%{*3~#58tW)HAlQBy_yU2RcD?94bLnrPYEFM0z77 z5ba8OknLZm+ z!=JZn>D6LuO;KDR=|3hEnSJ99aELdGn3NJ+QNs|;1r268f`J9eOG7mo0oB+hA<4UH znHn^%pgXQW=mwcwKG+nPUD*ht`8RGX(3Cpyhn(!eKPOz;i`7TJIt30P;}nQw3#D?Q zH%(w(+9G=9n{41B3eK#3d4BOfllh`wDk0x3G^Ymkv%y1RPoS)4>CxRo(66{%+11hO zD^|_48b0t3m7Du?G85R_T8=52hlCdr!y|^0#G#-VQkSL?fGDH=!k~a!8XhYCr&WiJ z=^f1nVT29cf*bmK^Tm=4=Q*)!Z6k!Du^$1Ii7|2*?ol+*-}#P4?DU#s&*L>(Y1n_> zZ4+$)NGfemscQm;S|hiaNf{}E9Qvdd#X7S_LSm&;nH|ITef`45?$XWO%j%3$R(9|y zbz2eQtsATs{7F-1)BaA5>1Ly0eeEwJ-}B?|j(4~%Y2UgcKiDFM;tg0^b!oIr_$#K! zr5Cs&>2+oI#GltnfGCHR-Hq$Y;h1{HJnP#G>*cgYLwVk%VD4F~OWjl!MYi9?4K(n+ zyk+Q|ln%Cx5(BgxT2dv~L|bfeS$HRKSuHT_*UqmTxVYK{W2~nB?F&1*GfRh>ni@pd zD?9v3hk~|xg}QY9GW~`I8KJA`nQbSQEjMFH9kd4(PbHsA(?eqo&+&C5|r7Cs^DuzIt^K`Wfgwydsl{YHoPB@SqYN4M(>8hvnC z_@$1?yfL`GBUjF7*mT;>ke}h4M53n@c?6GPO~(oRUysivLu28VXDVL{cA!Ih!XK=P z27c}9emhnHPPT)3cb#iixqT4VB{w06SGOMF!B=53!!p=XARB|1k?YJ)22q#WykHnH zlO<{UO>$AqRiD7`%3@@WuqZIj%cH4TR%L_XRy>Cthh!+o2HgH)G-_tnUFQr=+_1HK zCIUG|#K{G;h3G@itF=KJXSI%DpX~w7%xrERAA!5ZNey!vlgAOYu-D~#zZpITO-4!* zcD4bHb`|%>YB~WU&t*1qe}l#b@bQ@*MZUEnp6^7+M@f)5^MO^PsNl4-zz>tfGer|N zEXh;M3KD`E7B$WoJ#R;O+r;KWA+=lnSc}tE*`p7@QHVd3|hJWeVicFqpQ^qVi{p8%75msBd+m1`op% z(^vp(TsE%9eTJ8040*pr#ipp8$4z*^!)^>TD-8ru)c38{0OxV<} z#rv1wEMq@(0bQ3|qWRvoP+6D>(GvxbSaU|t{9R6b$WEI~ZtJ=n8748{EjTSWQ7Oq~ z6{*-+pbrq6eq_i79~Tb(`BnksWaH!G6zT?UPV>p%LqtF5v6MBqHaWpU$PI943tnQ>{hAVc}6j|Y4s}+-7Q-!tdW1?2O zw-ve4EklDRfBc_52YhPLNjA7jMp`7pbv*OzcuHe8VfP=RAc!Wdb5VZ5k zK!#tepDrFz1*fXzj5wV z0%)eRajZYC#uYxjo6o1x$~rDC@Hs9-lJY#Q_Pu&=9B#%tnGG0L<^fxLW3>qq(5cuj^3p;PS(YUUyw5&7Nt8u{orYE@?k>Ul? zHvL%rRY9jLfXwCfh{YTwna#^!3`w*{!^k=J5NF4uA0_BgFv}ksk6@mR*Lh>CQPsAei<%<8Dj%)1Xfmkm_fZZ zQV9$*mi{!SVc`V5sHw#8Fs(C25M_m={azLowEg*Ddo+u)e5F}i^DLJ<>nojw6X z{qZ@whX%j!?UUW|>$8i^7Sduinj}zb>8I_n?M6pGHLPI=aayh-_C?*u4wGwdxcouf zK(P;_U!`BA)Su~Tw<D`_vYckdZtlOk_ zOXdlWmZ)O=4;2SqIyTf98@|g{#;EP+;0DGLzJhjd1R(|cN8sWV_c%XC%Ue=%VxP7b z10V~=OQIK)K{OPYv|F`tH>|1uj|AzMybvx(&f5rdA1!0p!(2u;= zK1)sb*DddD;GpY1_$yf8E3+grAbw()CUkMei}S3 zuNmCEr44&}3yYdwlarwiTH*rR?Ll}iV?@v(M zO1jj{J?zl6w@6)(^e;tvA!#rklni2(8s?k88wC&)Pzh8Z)qvk+H@OemZ#iJu2#Wkk z`{VXUt!S$ovAFK25y8cOjo~=vH0j8aCyy}6ZTk5&R0ZINeiS7=#Q4jP19cj zA%MR%io4Ap@GvJ%mmv2d{>*dqirtrouQ6K{QUNhiVUOH7OV8A{7L9`Q{CP*cfsWZe z*wQY+hw(+<5KZ`hd**h+Or#a%f$!*u%+fh3a?N|`?m6d zJ+QMzy5*YSRHXENfxP&RU|4WRRCF=4U~oH}GumzZuw{fPJjZ$6FU9y?`Ch~E2by4V zA!5qq$Fg?41~i`6o$T{D%cb*Ao7iPOxWniqJ0YA%KZG#d!t`?B%rm*O7qK1=^zh^W z+prlA^hza}XpovC3MkzNUX{`t;iA4D_x(ztH*EVe8#R99;{0!VTJ)FPX(}$AZ!uT* zyuMr2LGnv7q|9KH^lx|QD$Ija#0ny3*|I8!1wqa8$>m1chy(8|8@t0^S^c={%=h>n7P>gcOiw|UPxawwHHnWxD;KX;KthG1A8%KB_SkL zCF)=hnG6#CP_#v#=Bk{lE8Cm1KaV0X&`8y;NXVs7k>EYW#R>2?wW#?o0TjT?l79XJ zYcCIPEz;|Gd0j7CD*Y!uf9Lvu{obFiP?3e)Kp$Pk18`-<@6uYi2rJ(*etK~1BEoqbI)_8}?(8Y%+f2qU;BI@Gd{;EhvgllbLgMUlAUcvl@gq}}; zj-8zqx*cvlDi$`U*JSH;ntN0l3jl9IR+c_fE;<|wE0+`x8#6U6<$HKN#LmhYr>wB^ z=fhEy4&W<#$$cDun;x6h>a~391ZSM}cUox19JesFc#NfGp&{ktAoly*)%>eCavkz> zeY(`3_#@!)jJ1*tTclSnQAm)qV$){qV@CWd%_|L8*!2d`5YvkSGa-i>L?wj!G$5dzl_yti4M~O*@ zbC7LsB5)1Tm#6WtzTZP08&8nS$njurdFU*p1wt0W0&xyMSFqEt(f9Uy2oi!2-`Dx} zY{&wl0N1c8mLbc+Y2pd3?X?;a2t~fjokLw9(k+EK~~uzwg_JHFL8$ zZ;$84KZFBJ|M=eqRGvojF~p4azRGV0^_T&fEuM34U5vA7^V|FmgT11R{GZA9Wi^Zq zd4hJ|fBR+U>*sr>uEax*8T%Goz3~8X$h`^;cSnLW z%vY9G0^qiVukk418wA1j3d)l*SNdbMf!$v=$xknzKT_vonXTWj7KG5qOPe`p%7%T0 zui^iuUbYE+;!` z!nOS3j7ume$%2?4mYW{6V|C|yXg6g{3~{V#zPR|yx;lN!kad7OESE`}Qy}=9HVTgf zEo<%EpM)R5xQ~?^suCY^>^dlJ0iQ_kNK@h4YJ)u!2u^l{Y-zli17bN9CiHyPlXDP4 zdA@aJ{A}sSp2;Exd!iWZNd!HFzCQJ>y{L!RtEIuEj8=fOZ2b+!bN2+@daktc;=Xv7 z2V8j;@MQfip#-p-eGdutW}B?L{OH&%3g>b;X)xi901)v6<1SFYM)GuR?Tmq0lz;O) zhY$@(epY=VGh^Q0_~P6bWW1k7LVXWY=W4y$2w>jlIDuOTyuPegtq)(3dZOb4u%#%C zC)V`^a*@7p>OfjU6<@Hn+0*}bFOS0C7WciM4N_`p_~C$a9w20KKQ5_87ewD z8tvj}EP43f2=u9NMQ1m3Ht4>i3}zOvSKZ}O$`oWYtg2B{e0__CbSxa5@w^^d9ir?` zB0i>QV$|Y^MsbeyPV^iU*s#v>VSm|rMsaRtfKaMrm89*e?2HN7c&abs;!#pYEGO8d z&~xrjf??EAhOqZQF1K35w?f85T2^7*9fK!j!3fcpeC%BD03Ulm>kqrXY*{_w|MB<} z>Lt{QtkhM3ty)&Re-qybV_sat6pr`9nHu!;*tp$>?AfEV^n~ELAyIl831C8@5Oo=q z39H?fzgfbct%6eqUJ5UqHx`Pf&+k$7{|^9aK$X8fgF{+^Eq%jQbq)D~_M>&bgl`vI zWk04XgyBKDZ27`Gxl;W!x2&F2A<;{;_e?kZOp4( zilVyavTY)0ORY#S*Y7;qcp9$3`%7UAJiT=O^p^>z<02Tj!T<&pNo1pfL%1fO!R$AZ zfS+h^AWim<61F9jrzRz3#UkDXn0+m{PH#*W&0jFVunEX!47XEosGfA&gX2ItN))v@h|aMvAq)92 z9IYR6_Uk4Z{CvyxF9g@v81|I#K;#G9bZ*c~FVEeyMNwQ{U(_N38?>*pl-2KQz5p}` z?61IjSSgX@70g>4Jqf0h@L&mON=w0BDQXFZPmf)=xSN!Fx|-m1BKVn`*zFXyCRZih z8lR}Os=h%S5-({!O9SbHb+oQw$Uz$T?2mNKwHdz%eqi17c_Cb$f0?_ZiU@xBdF$4T z*wDKZj&Xrp;8QD}jrCmP zyn%pRFDr0DsrX=!z<>Ghics#Z+0jeI5irReer&hNy#*>sb9z-ma&qpbaX&4h14UH) z&DDRQeDD#ycKvGGkTJw|wo5<)FOrmP}vILJxj zt2#-693-+L0MRzsVcv!(zoEmlWAi|Tm|Hc|zx3#%Zt_$4&lk|%f~ylO!bwk#yaNao27Ow& zBup&$ei?UBIQof4x&9(_s zVBZ&PW=-jqK)=yHUuf3b6(SuN3^EycaXO4J1W;#a4I6YAAP@6%lLspmpnMexLOi5;4j|RYDDJCbV=^8K>9eGJ&%z=ffM7_qK z#_yCitqqASGTSn8h$b>-H&R72fF7el4hD@jFKb#x&Qm}pz)6Z_Ppi?=g?=$Chz_cX zn=Z!Aw7L|%l&5r{F{_;52BXbX&htwg+=(XI(iHG3a%RndMhUz$>nNiCA+IRIj zDOrrU>L?teg^aV!>^cvm)&Uj##p3_r;{UW)j-ofx#8hBDX<&Td(^mpn*=5P&+JU-j75J>+2`cis7+m3>oTyOUZip=TBURPt){z*a)I+BPR zrsM84Gb(AX+}rCQTZ{(M>lK8%zq^f5MC;@zZwB9Kk4^6})BAJ`c319ELZ&zePnMXn zOj-*n*I{y)?1bLOHumV}T_DvC)I|t2_ICU0K-9HGXICPHO4FsoW{5Oz<}D7$NK{sx z-Qd$ZHHiB;i5Y4Q>AsIU@E*NzYX~(M2Tr9)eM{FU^Z!0JdSw5-!tCDPE6i^5nTts$ zok+(}LJ8+%JSlvfki?A!q@6cmu@knNJHZDBbv__gZ;$B};!Q@WGryH^Bk22#!K~$j z3d)Mz4nk+s`D2QP^}2aWk}9*V!P$hoFD64=fup6yrH=)DX z?MC?cMjyshXhf5`!REHw2|L<9&CIsEKo@DYnrCEBxdIhudoT_^a?fA1}n)ga0i7Lc{CFsZv=t$7(Z0dRM6SQie2 zXAZ1?EuZ|7%(N>G<-=4maq74+NLPLIE|K60R9mZ!HlxLe>IIj|$QPG-R0R=yr`0aw zvN6WhR>TV{7>%AHviAtHW9eH3M}ZCpOe^;Sy$jC7w&WLOROMTqs3P;qm=tGh0~{dl zzxUDCS6<)9^%X(9HV1g%k@NMm(QGLtA&3+#*A!6Q!2Y;1(7)V2zSnHs`-9SPAgXM{ zgclftUX#b?0;|T(Uud=pzqk(S zO?5y%GF~w-4bZ5s2jb$xSqZ7)G=z^-L`$U^O0WkTq9rQ4p0U?kY#y`Ig!~G=hn-rO z2Km}ZZK^@5FXT1Bqa8uGbeM`s9i7FX-dtcNAs?V^?r91*eVNaDlZ60osVEL&bg>W% z(dIZH>OypO7dXU64DKuhYn?tH<(|m-nON>VE_m`Nm>IV_8Of4n6+*x!HnST&{&kBR7ldL0GiK? zrM?>BQ06jN?G5@YG2~{XYBfk`xeD$Mx{py8@u)njGnJgYH=a$yVMt~V232F|+ser~ znu`8zwj)3xASgfq2CXV9j2pgoHa8uCbq279kxCmaCM(!T$ZVO99p?+^JV%Sq1+p6Y zkkF+-^&r8}>I!mS&RMbvQb1P=72q>D(B*xfx6x1xK;$A8C@pm5LOSGU>N0cMlj=5L z^ZmHHxKZ3A;|{%aSzH18EXU6|!dv6^Kr2*Ll{A;OdEWpY-RV*xsP$@thOFjRF`69E z=jVnk-;|dOtD)c!bilr5q%pgij_qvkgg2pRDrTb)Zf1|LGJni-%JiJfM_WGa^aX6YK$EWqva@~>+SGQnh^G;1<#VIC0L<_UAZ0Hchiw(tT23?_ zIke*trm3ycq7;&c`M#haFJGSvDw19%D{rW)?%cbs{RQrR?q2R8?!k#ipZkeE^x<`n zDCC*jqepAqsKpx2Kcg29@?oqZ7e}ksfb_S~>LiOfIrD#G7~pLWy|yQRFn+bkj`=`F zCI7^1_oIqZeDqmgz^?NYi;ln6(KJwe2+iOzHWj~44g@v81=GIDvyIkcP(-?-w#~r` z{jo>6*&~lV_ie92)>5wh<>FH?vs=vMJeoV}-Q#QkCP$PEE>;+R&B0O>_u4kCkn0exr&GG}_5=diG;rDtKVQ+$f$BoOw#X>%|M1t#bNKt7w=d{PvMxYUc@RCsO;nA-zIWIm2yLY?X#At})hA~=2?C1v( zpW}?lP9pfV(dn**Qc@x-PsxnWiP+RG`9?$s!}-g_#|aH&moQifSiw%FE)rq|r#5KG zT5cJmPR&Tm%+AV5$Vmbs_+@qe{!TIMX`ubY4Y<|#=o!}(5YR>y=t7*PG8B6opb;kg*PL%&jhjn)+R)+Czt8D{}!)0 z2{*F)ZARNuwLwOO#)&+j#A7WY<(GV)V?5e?)+&?DvBhXJJDU!-)cH!9%6GsHaK|FO zUJ=Cwq%R`M3=JkYvaU5|_gC%o5eMqs*(?9upABiKuR6Zt`06im>IA>ic0VJmC@9HD zNl8t~F3PPIRW(*MiUl{E-C4gMTh4;GMXPR)%~n+PI_dbC@ic(RRp+R%7Gbv98Q;Eo zTogA_fm{kiNQz9>lDe-t8(XmIECq;%ELE0Pu1wv)k-UxaRB0S!k##LGdqgPVNGCe* zVVTb_+#b+%@_KC`b>E8f-)SkEV9F}qV^k=4Ee+|`F*=!E1$ppFSIlnM0yPz-ZDm_M z$Nv=6*-IiI5irn-pxS7)^7UY2Zw_c^U@!Dq)BoB3WXVow`dv{(sIkfoDJ zUnNVqJVuwV&OmybQ=}-ybXw-HR~Sv6-L@KX+vLQ%k11|C@Wt1#6P(e=0n${-%0!aP z5k?+uP%GlJ5=HE-CYr!j<7mb(RWoMq0eUA5xaABXN zBAV49ghQ z6|=Auv+!51oSGq84Qn^YMamCutc<>C^_*Dg;y)Vw=D16th_`x%PNvNzT;J}cj51cQ z3IkGzSgf>a9atDN^xVj6;cw*ilyh<@SdH{b44&=uX?u+~sXpd430*VWaR6}L7u*h`@ks$*aYCa1@L8%`%OpjGT_EYfW% zkqjata+5L-MwTGGmZCM&he3`8nN29C`5FG^53 z19#oMacf9y922E?K9|PhK{E87v0vJE#mq*?`jRO&9iW-^S<7XOInqaF4pO z=m(#BdOUF}Qj2-)Kw)cq<0{e15Vj^eS-Ep_^Sb|~p8uPFnJg`IxTTCV)4Lgqw|;lE z&tY$<-GMo)q!1uclbH^wB+s3V+N)|quNo%v9r%=vzOc(TWdBv^5&GznmG20yvr{N5 z+_`bv3~pHT$S@I1yO7_Y##FRlzF!8*AvNP^?oK2-(;?%)R!vPK)RU?_PgZJT)`nM( zM0`x2>YxL6il8mKrqGj8pJWZgGLA&mh#`^Oq;bGVhhj!x4-bmlCuhWXw8^Y~w>K(_@j>%f0A>z4Ye--Sbs%rWc1KVXspp zP9J8F*G{^R3*Kit|Hz#SmSxWkzjeLOv)j>1>S-UwTXo zJvwV4tbws-(hdSS1#LS^eeO-IsXK16JaUtN-$sUp`u!(e$LY&E0@)ar2oI)~?9IoH0jMn`kI9&I3(-nK^-zK?+?{`!++)8q3@)T807)PXt zCxq+sY2GgS+!6ZWeo+Vw{!M-R-*g`T;Urb=5bXEQMIjEQ6z8U;^$1~8JC$x(O)9K~ z*rYM3t5R3S#H@jJkkW`yTW@c&6p`)pImYU9wPP(K_>kA9s1S0LDv3_Dj$5WmRVC_k zAO~ciH)=9gCMHC}vw)Polt8n!V>cb-ZnPCa1rhAu8P~q%KlNL8wWF!^mVVP@$*SBi zu7BZr45taFV=e+Ih27A3ws!s*bt7Dat~Y9rla|ZP^gh@_c>nNzM#Dez;t;=FR6~FK za#@Yw7q*(cQ@DRgQLJbw#H=jLNISK{gBvt^OO0Q@Ptqkqd!IGiJkf2D$ASEKgbHhT zcN8l?uhpyKLg%K(LnP!iBRpXm!BVb;KET*&tG+x7R;Y$bDN?>+UdFy|Gt_7iU;9s|+=Ev5DK(pL-DM667W zjY?XNV6wrS+ff2uDDn`&j|W^%mlxf#Da9hsh|62Ex-0sG=tubRi+akCZ`dJ>r3i~w zJ39Yx*=dK5dVG%40d#N;^&>@h;l(+i&>cM5 zP}9~#08SiiYy0}DZx2{V2-^xf+0SBd`-oWj=M2|9#W|QL*N{{8d*=93)zz$$2%|+l!*I{$B z49^>x3`jHMdsPl3=X#(<>_SAVRAb4e*U1QXPj@AwOf)E`14+w+WTjo<7FR;G*$3o; z@q&RthQ!}7wv|JDX+h7;l2phwrI`%;6pY2Q%T{BwSAAhLo2*77f8TiW4~)s^vh_Zi z;*=6PiSsZnz68*c>}XIG=3*x{g-3L=le0#q49X2932yP_~PYDh{CXNJ&J->!< z>*+g;&Z@KXE!LD3Iq9?4k9X|yH5GLfZ#Q|2#Q=3kf*qMV{X@48p)YhbzDa+2Q?Wz9 z`j7eNBJnQD6Dj%Iw$j4Fq_{$9TJ!SG2Z5UiSfU32*B53Vdi7Ek(vWoKWU1oK5 zQ7R;mXCHf}-`#Q*J%&2I><{yNG3h_Eydaz!_m_S||`W|5b; z1^hi+-dEHXSt$~7quE)F)mp@NjUtxBWX2yT?pgz!y;tc!6pfoVHG z`9}K|B`g#RzQ^XWRcnbs!N_gOVo^DmoTf5TL+3Ik7w@S!vgc(jtgt2E=g-+CI|KbQ z>BGXJT+H1$U{GuFa-L6(jDch*^dbAlglnto%@dWFC#+B^ElbDnNH0_-XV*rxEI@kq zAXe26a3e-uoc%BH2XOMJ$5XcEP}WXliFH+#TWULs4j^!FE9r~E_1qFfHqhrtqQhTJ zSPe0-vK+3!uIis#_jeq6t!6v&l^rQ1$dj9UB&4f$1<=6v>b|GrKM!P&(@NoYvoAg@ z3Wqg$Yof?$TG83;E>!Q>kBs8+2;SBUn^EkWG_=7M5P#|) z`;^gS>GF^aJ#=BtH*_R@fQC}BXyR5OL}!nSUmCk)8Rp83u%;H?hh|5!qs8ngeG?01 z*V#`#1hQji>I`wno?b2f@+Gah9>`w(R_Krx_fAse@GTo?lbFwS3>jN4?9rY1}AI#N9jj^{xJtcXutqLmwZ zZf(n)S}P*d7E2vgt=qKdQ`Tbed8J0JSZUmBf;#ZHO07=v9=(fpKsEOaqm`@kmS8DS z0GV2|+$(N?a~6c$V+N+oP^m8i;h2SiErrYi{$T*XnypM&KUKGZ_3hsh%^dnDl14Z1EK?w#UmJq!&AZKVDjREGXwuMW@Av8(S<`=gGoc$MD z)#~mD^nd7|Bed!qa!h1;y+TfAO=lFIW$*M%e``4f7tdvJPt&2?06JHE5WaE$_{qDc zeV-r_dkc|?NU zSBrAH#)+o8z?<$J15*q2Ju?Pq`=Ua~z!p*<&6H)58!Qw&X&ZV6hUHTT|Y%w}6W3DQKN~hW;7bn3i%-^{PC%Hz6G2N66M4gYS za)VD?f}<rMNGWZ7w zT;OoEx6@ICK12J_kz5O7mtrE&kc?zq4j(c-*{B{Ht4BQV)YkLiVlOI|f?S*f3C7%J z!p)!`t33>0qNpk%-=AaXu&XD!&e_~Xj}Zx8$oJ@!4>b?D_(5`O+j-h_4%!9R{A+G` zrW)ZzDkW=PVWJK!C|d*^y4heZ2)JO#H%Bx^w?won-pV5%NtkBk>zOceCFJdjHRiGSNle`#R z&t$cgAElGGxae3Q+k+a71_d9_YTlN^x~qDgG{Bs?Spk_kldM>bsyCzJKQ?}DVCoEw z`Z^#E-j;Gm5NCtLm~D(T>n;3jQ*Rm_#`+k0gURee7S)QO^*RD(jdEv!DG4@19!OQM z61|M!<3Lo*XVVfAf;Jk^7Vzb#f&L5V!Zr!ttgVKa$+)%6tr@}mVp#{D}9#(CuBG*_U`nAdN4pv59@L6;&>EHVGpCF(& zt7T4lh09^&n=slWz}@x3^Yl)jBB1xtzFX)$G%1_Zixetw=@PPm!ev`6SFMsL>f^JMn&k`@!O z7a1$TP?RUmf;3$gke3Y%Ke?4-%r$12@=za`YYV(kB0dUMxl2N5DA%xT+0#=QE`%Gn zDSV=~z#!u%0x{#bp#fSfjTnnH7>mfi^`)4!N}#f+(5M#6jag=_97?=ipO4Tmx|R;) zAA1JX6R5lq@&|=tJjFd2S(z#Uj6vLLKEB7cBLo{61AyVVEx|2R&fK5P-;-9l`4f= zp;4*TgfnwR+%UR}QT5KAmhAzX7tPwkhZEs>)N&eX8DU*nsLMvh6ro})3Rfnfk8@vd z;N~;ZRR-NO!*5Vt4prs~Ag7Ec4GfM-hoiEU^x#vbI1j@($CPc-nGm0Bo;~(DM|0&T zCW{5V)#W0zoNi&tD=Nx-#oOxJO})@$%ya ze!P5M)T%Pqa}TU~k(-5?bQ!SkvEMTehs_RN5>hU&XT|jaufNaUzqR*fu~!N@Q2{^o zno_tndr3HYq{@d(rPR@8ujOy$y4sC4=N4P7XEy?iFUN(H95M>k$yr-sYu92AL%F+= zl|KCFn{z(KJiVu>v!i_RQ8_>FSmP^e@^yHRAPvS$K3@n}-5Ydd9k-ZKC1*-9vlYsS z_>B+^n`_}59B80-RCVrp@3rE3I1A-7Kt@7F_lQe3?G89~j@sV~WaDX_koJ3K-yG4a z5SEmfiX5YfF`CRg^R#N6m_T5PGEJ{E6c`|j6cmAH52%zPP{||I86@NJm$-69la5*{ zB#)e&e}xXF_tN2XwCLIGLfDi!GI448n$>Gp!5T>30mq=-*@7iG)`O;U-`1|3zBVlG zTaxCALng}WY0cHf`hXKxsOFnMR{5jQrf@4UVd(Wr<+R7Sen{JAL;PMi0S!eoVE>t| zd-vDx!}PyLUz1EWtMikQ4yRPg%Y3aRd)}H>zJhy{6C*JdKY4r-3N`KB?}|hr>f58g zX|MDC=Y;$yMSnL+y;`pzuW;GS|BZ2gcLC^i0rCeQC^tFHUP8s}ftxxe+_T&-|G0tSV+M+$sNDeLEGKag9d+Kp+ z#v^Y`Mmo@=qL-;z_$W6GHj35+ZNthU(1WR{t35MH91_NDtY_b9qx$-Qx3AI9uLZK- z`v(elt*Kch3WGIiDXS&X$_-f@A`vV$Itg8;JifNmRdkTaLk`mu-vU$N?E$$Q@%W%BDsb#_G+2GU%4%$- z9?Ap^PHu@J$}H6D94 z6p`v|uOvAsBWm%-hQlH{5l+8XbcE0Vb{>N;WkWlTTPQ@?v^p8-y#WULTuDs$+SDi@ zf@`bNckCBKR~_wJ+qM1d?ur)Pjx#|{Lf*RVkryx0ytj=P4v^E(t#Yh@YFhHZ-E zvkNjtsIq#?c6yq&U5CTSySGO-kX&z4(K?s~D&00ySKI^$-&HsY2qPcnRz9W~hQ}cSvjEgsNfqCJwWaK%yWMx;} zYyaw^qGC}9x4L&c!mC4ew>G@p`1X=-6s>|^={tT#SW@UqPDx5l%JpW|i5lwa>%@W^ zwcS~N9;pO0e6p#smpgr=`MteVz?fZT54gzgh^@;{CMA_DLMjaCM2**zs$m{+6b_bleNCVmeX~!R9Uv*nY?my`0 zu5JZ`HHr+0%KRepE>+ppoje2 zn<;j8)V@unH!c0he_DFurij0?^tI`wD}hXbWvdb+RA-j>Heq$2ks!^;j4pVEuif}O zjp{Jl>qzmj^1U5M0quN2lC6kF2+Euo&kaS5sMAo|%rbcilpzJNI;~DeGaCB#?4o;{ z$vf{A!HCMYGbrn01gVY!*r16TvWXS0On5r%1+eIM@<@MXYq7S{>UO(jA zwfvKG+Q~)l3$C+q^cUfqvwe%W3CUb=f(W83(~AmgC1u((g+%acrS@bY4mVd86`mHE zxdsX$0$y=uY}sP*)j&O|$?;?*C1r#yJ{f(DE@(meCW0>?DT}r%OlcOii3qMo+jA=U zP$;YO71fotno7|x_UnAHsp`BekdTZDg;(U-YI_Zxdm36~U|Yb|i-GK2?2|&o&Ro%0 zXs4qYqt#^P>&Sv42_jp5t}0cP=G_y<%_1Xj73F2(uVD!%W7KJi%^)R9_H8~w1K*&b z-X7;fDy3KECNEgEY&kk70(%>{ER`k~a;456fGNjl6^C5F{wGRI^%(faFY4Z=hdKoB z`U&sf1;6p3b=ix1a$yx3>J}eDoUzroyO0Z2V27gu>)R5tKdfcds14i$dA|dM>JPd)JCJ`nWC&Cl$}D*X5xl#C z6G0L>MlP&xk8eotP`1Jw(9*J{**E{R-UBUATT#A+_&SP?@(+t9_INixl1tjR>FRxg zpV=n*e}tFU8Fi`2DXAjJbt&!Y(t?Uqh#(tY;^Mgh&%pUo5$q~E+-|#f5|@x<**lap03((DD!pr47%Q_*hY4ISVsrLE)tT78GOst z&f6olUfaaG(V7c_>oeIS>_b9caFGnMHL`4-S{bjAkgO>Yi1e^w^0c||W|;^MR=v^q z4r>2^r`hWHzYz2K%(YyIJQ~8#J=S%^H>GaZ)Ile-6>n*jE|-OeuTDvbh(r8U!8*v= zLIl6eJZQs_0BKIL$sRfGJ}3Gf=%C9@bTIjv4e7nJYa=1u-?G=60;aIng-zUz zgy0bNA$Jy4bq4qscLx4C8_5>fv{sGjmGZF8%{!CZvbq$z^-iT-jy0J=fqx7}Js5~< zW!0K3;lAYB^hOD}VgKD)RC`dOBsD!VIW9b7jeI4RKX^LuU-9>P>?WskcV$<78)@6w z)p?}cYO?e^`04+#SBT+#p)+teQ}~a>7|u=jO^)Gx&-@cX9_j4x_mvExxt(#ff{)mY zW4()K^*sx*SLbg?iH?y-ax?QYh`;c+^{zJxgY&C$eUggk)(v&5i}^Lz`dfl3Y$}JY zOWK*iVFk=npBq8jbz4|!Z$zDdY zjQeM1iK8h&P!|D^Lb@}8A*GX_T%sxdxZr=F88);>q?=NGi&8!R&!h?pdTGVMQ>P9d zJSFZ7y1f`VB52a=*^?%npZzJnocW)~_mDA*j_X-L{p(CR?&b<=aZp5aSnb;KJ>^}s zoz28A{;kLEpMqN38n;*PGMbJ2dVBsLC_$ywsZv%(uM3M@v2Nj}+1W&+*J?lwYKz9I zKc9VK)4_FJk?rg1R+?3Itpf?F(+O?@W&^&`cO`C*X(Q}UHy2g^UZxqhwKcnZ;kFgK z!#bjOryS7PRTkwfZRw2oBGu~~!&^5K6z{j75(jn0cct#hUYi}38WB%$Shv5!&SEwv zhNrJL=z4B1_vpz1b_-IF1MR!JIu7nWvF&_0`Mn+A>!f$`KLP%Q|JaV)vY;r)%FItF z%uprD(v^Ag0ts@!{6=NFe7EVie0Sl|lx;5oiH1x(NropC-aHAD{B7xf2-*sjzTzfN zmA%nj?I>{-Rlp7?PIN@O*6A0!)_IoJZ8`;{9ej9_8&C4wJc-a{|HMlW{XV3l0;aM* z3773%wEg9_mp3m8U$%yLB+Sv8BMpa|4ka8(I-1sV;X6wqcLdI8`82V%u3$UgvdKoF)g)qY8a;B4}@rHWxM_7c4Os**nVJ+Z-o|k>3x&NJ6-WxT?-y zm-A6~sxy#&#^nk*)vwE`DrgMXe+IW0xO;o{a=7;rxAhu-O?%KE(aAV6*4iXO&YWAm(WkRwZMsbL=jEq)`o`abb5>%B6BD_B6>L} zgdQBuiS`X2uzX(t`|uBee(i8>iV)l?m)y*WUK_*T3?D@N3hZVScPAakjl4+l=T3f| z{ixpKgTAGYQPFEIv)zSpS5)XJ;1@-p-*eLzagT9N0{0lXfhTegJjy-IiC4*WD&B)- zcDYMO#jCDyPvcj;XFNvnd^&AWPuL=1_js_RMiJqbaJ7FDjU6zud%%CWv@)ybQr2*{ zUpDfFEco|_hBNOA@#>)eLA34xKd=M-S^+(+`Ip=h&mSY?$1nQR_-{4w2VM1S53;YL z*L(PtrUnz?7O;sFf3X_uS;~16{*)S>l5mTX){0eQ6i_oE8<#JCj`dn{*8CELZVtpyerBBeIUE z1@mhKW z?$N(XrbD^b?xFwX^XQwB@Vm{t>E@mz$bBSSy(N3%=**)}u(bqku_O>F4U>jCt$ z>w*7#FB@(PEB=dJeok%dqy_v>!28>HJARmP(|uM1arXij@S~jGP1vPDbpV|yK)RO( zx#-Ov z*H~3*wMHe{mCNEby5Iop4eyFPxaQ>gQ<&?E&Bd0F>Kjj6C_(6(x#P7jU#rF6+nus6_jHPc zL#x$m@@9s`&&x%+VNk+qSl_y_`PGi4?F$iP3k`)jGDWg^nPfcC2lE|^kZM?r){=`| z&8JI|XBeGW8}5qP5x+n3X!Hs2fXC=IlPeW%hbyiUE~)STAKiq|+1%j$U+fP!QqBHa z73g0{pBHwYr!nk#8q3r;rR`}7awCw-WwOBjX-Xuv{?T}Nx-)?bVN-c{kUFO6I=$^f(9~G z8cd!)23w5Pc9YS=Kd)C!{^Q%lJs%4|ku3slB{w1r=pv>Z9KDCQmBCs=x=L>-)FKm2 zCuzYsfbv_xXSZU${_($l+rQ^y5je|5KnK$iUBLBYvO(EcCo&;) zAVT~-l7K6npLWvk5v~PoLYAVeWfBQw<%^*EbayiQDI@plO$s3VF>yByj<;x=Mc0Cw z&E_p)U>~R7cF$rQa;wS(qyoyy#N9J3!b$8KL7#E~*hfBG@(+~+_-h^fM2A`9B-|JN zXBd@NZ_R~V&}&puJaXe1M#HZ;0;04*iOBzQP>Bs3Vs6-5!tOSpRct#p^#y$3A0P?% zwU4W(DV3Xa_w|owg@>BRASpXVOnhVknv#~+{ZgXj%7 zUv=qq@5(I+JAoW%I#hx_s1~a*{pwUXYobuD1c1x@!_i=JdA_3kD``J|x^6kwE}S%d zx-0?~L*h<2d2^l2?zaz?x59S-+&wT2qG2f#hmaWV`7Ao$NB`~fR#9u!5H|LN^swMp z_8fao2u-qv9A8Rvc-cDO?t}^41F_t2!j13d7^OvP6Ip|-U@;pl{5}{=>C#;hZ^03G zy?p=HJ#Fo;6&)agZmZAi!*tXsZ9`@nNvSdIS zBx@2?Nrme(*G0xe#jVQ@gW0g@5S)V&Q;DUN9H$zlnGU&3h4c<+f%<}yRN~Ax=R!8& z260P;`5MG(tlJX6XfZptpiaHu(YtjdWC|N}UM3k*Rz)w=&|%erY_^k~D&)79!H`yi zPW9^8h*1%b7@7>1BCip_&h*zK_RisF@LuG`Cdi%W4HhfYL4#?4(ak^KLZX*;xp&1&X+EL}I z+ers*qtEeA+w<#VhzxR6%4}7(VvRamuSuJvlj`J(G`(DzoW2g?$)@^EhiTARI&h09 zB*&HIpII5e?lkb*DVlT^xm#VVsvz7(_7szKbcJ^v5RDXMN~a#gThw-S&0KPgtKk~B zI;OBt&2LwbTU1!WPu95|NSM{Mo!K^G4>ztPqa@P>bwGSUF4QProtSz@#h&?Z%hLbn zr8Vog#i=71gJ$i7XE1xEZ-Il*V6V5=-+Cx`EC2ZI@74)%4|iYsgUTzxQ)V(-oZkIg z>Gxpwidvezw7q^FmR%WpeZx3MCy%oq-vXgpO@+u)it4x~DNw~3G zUoI$`e9Mmb?@QGS*Qrv-B2F*cz{p$%o2V%0tcM14{P+$3RCpa7&fm05K!+WAbO`-y zU-&zMkJyv!W5Vhzz%2A>P$s%z*t(d=)b)H|^RDUulf~xP`_56+8aWaa&kbC`4Gf>4 z%;z6kgX|I|zq5m*-qT*R3rya9Qt;cw}DP4|;%MQZYIgp#m4VZN7 z#V_~`O6Wj3Ud*q9OXwo>j^4`=X73TgI?2@7Rgp_pq(;ITh-icJ(CGP~_1N|^$BSCv zLvXwV3F!Y*oLQ{!XaFs12xJ|%wXh{f0+FbNxXsCHZ*6UIOAANPs^kic;Vv-RLUk4z zTV~Jm!4|OAn~TY5`Zb0J(>siP3LpEJk6I-|8tM<7vL4r0(knXzH~fQGB0QW@^cSm@ z=D#{MX7i*c=3^8SI@Ldt-)@25oTX>y7J2XEirh0d#xOISQSESwFDMSuP>aW23Kirp z7sq_v*>HPtOsYIh8nc!g!Y`zNv6nY}qbADDpf6ZS1e{JLd4|uIz1YM*9cVV$YRpAs zD;>kM!>91oFWYuicDWmgv&Q!cbRmrzacdfvRkj5Br?7Vk`DcMe1(-cmnK>`TEec;@ zDAu3WJM+Jrd2$pY?t09cn_+kI~LkD>R+&~ zBq6)`X2z*&WXaJvJoWeT%yU$ z;)i`OS#sN5OgtByaeP|*18(lQH|P9*=jQzG?`}#+UQxrCex!LoJ60Cj12hkwqK{Y8 zLY@{cr?_4N^P=Is3Ma7R^WTvOH&FV;p#_+OZzD73rpG^-lD}m18MR@T0~4KzhSOca zj)2bVcDNx3<@^ zLZ7vt!}-D(3_D`pfWh18(&HZfCL~!AL{q&{?Aq73@4%6YYRyMw@G@vFVK&P)SqiTF zP97n7H%TtZfH<7)2#dV8U20?W`6w+x`qWw5@qu|5unqQ{L6~Ip=|}qPyf-dCxk$cQ z!YU)z)vKbARZU0*yw$a9n{ny&pcZT4sHm%Nsn(T14}WhSW_Jw*XQEU8S1vFCw&NrB z=|bwQ1`~$OEtfJ03@f{p^>OfwVIGq7yu!B&-nvW?w~vPniJh|_zf;!v)TCQ&a0N-{Sv&K@A3ZE&8w0HGiA5(e@#7>+^9Y!GLIys zq7v#1`zyr8s!}jOX8@Q>Sf9=5nZ7m${lL#EwDh4;npIQMqd(ScG54CSW&~oLUpD{= z@J$Z>&d(78$p)^yr0H4M#t`^`qu$vR(ge&Q7=XbO*haanQjZrAxb;liS8xNOkdPO6 zlBb9uTKL?&?6rrOS@G;KtfKk!uNTRMrHqs+`LsI5qNE-LeSr$}c`9ta`r4mFMK%xx zDK5ecnyi`RNv0xC=2;Iqr@3rsa#uZA|mb9>*Y*!^zHLEuaG#}|epq>8*UeX(_W zQO*to;_Uf!Qua$m^5=hdnOD@p5$m4!YsC-VW3t@;-o-4Qgue-!=ptv*0sE;||FOvp zXTcT6beSVRk+*^KorgqG4tb_KmMn-7XN&5y@hd-eFM8rgefcz1xppuwSwbCy4N%T+ zp_%kmy1kIRm@44xUd$T+KNIY<1DKh2-od_HmaBM^rlL|D+; zRfC|bK`d^BHlUeAS+`_1iU(;i5{llB$CSb5kV3;m*|u|pDEV`63+~(*iVclNKIP@n z6F1n{o4MrYCf5ra3)0fkb}-ZXy{c67k>qW46E;9$QVYJAf>!or7G^!XyG~f=60$(Z zPGt3a9FpXBI0Ye*op8#M!zoElr%Mu)AmscFXD3?;3T19&b98cLVQmU!Ze(v_Y6>wj zH8~(KAa7!73Oqb7MrmwxWpXb@Y+-a|L}g=dWMwZ*Wo~D5Xdp2&Ha930n50rEtI`etSG^{H9BqEwr$(C zZQHhOdrjM3)3$BfyzA}XC)wvFC+X*^RHdrF?tyQ3{P_R;0?SNI3Am==_&oD3>L(m9 zpKy{WmZKFC14J{U{?~j6Hpc(Aod0VhB~~T|mj7I(??2}X@@Z!t z#CQM@k+2RE7qYsDXvKzCwW_0FH4#-&5tt?kP|;Nv)RRmqQ5DmHSk20F zJ8o5*TGg`lrj<4CsGqR^jq@#j^X9duoJWR$*~9N{_wH-Y?q^&G6MH!c(zrqVu^!?k z@ZheqqZUE~?buUd7l#r~Xf;P-v4|cK6?jDPw1~Ge&%nf0QL3jt6CbD23EzTGmkWxh zY|QLnLHz|IVHM`Djn<^4q74tGFl}J1iTVmZlw;N>N#ej z03WQXTnvOdSfwyftF5A#jiOhTZ;B)1#TkaFgNulcNz9>2sk?+l3=<&{myG02@$%*p zAmasrsg6eimlh^=ky>Y+=5>t@4kBLF6U25kT)ZN6ZcfSsMvE3E5;pdGVUx3s&fQYP znZYUTQ5MFjtv!8|Bb)E6LGOOlqT zr(zYQ{Y3af@z);!ssyN_B^3x%DcjP)3fm<&s@>AoP&WDOJ}mX$1^z=L;H_F3 zn;)9FjJ^|FCd90eIo6!+2sigz!)=BMp~HQw(T&KNCNrX6oUbpBoZd-1DR3GP`Nx^; z&<%zS9hf$7L8KvoFpH7om&dJ@6`)T4h<{q4B8c(px}b7<8D{e?erF-Wv$3hV+XFYkZcTEF6zA1Pmf}xij-b0buGOdwqzX@5~R_tS}+K#>EZ%Jw{>#2+y>lYkP zC63Qf&huqw#{+{dO37n#Wb2VlQfy!ws>W|)ClJqQ6BRnyc{RI?n=nWnhXdrScxU7Za$ZTMC|eTaiP0Q&2@IH=K9 z;QZ|uL&$B-FHwboc#jacS_L@cTOEf_T@Lz6#?TR)4*YKUBh?L4hZB14ET8&X(CK&9Cs%YBUd0-UW+=fP?U&j{Lk6-OCX z*X$@uYd>*s?mzWH@LvPP{>?8U;h;B_gaF_el<>e{&D-)j8Ms6bq_KOjTKhn#ir(@J zrATPgdOWhkx7LR>LHg08r53|%j@Q^lcaKJopf?nb2Wl^m3gK6V}(Gyyhtt2dwrJ0_weq0SC`8V*LUr4C*!iid5<@CWrG8A^2-bC zcUYD~C?w|-10|_~S01!Yg8E)hq+IT~33nEV;n=J9*7`dvARS#bY!943_}C<}`npfJ z>Rx8#MMxXeND6Mv>>lFiO^jRA)|BC5SB3)?c;3b=BbR!{%b5@5ZpX=usDD+I(HI9W z2$f$h=+#i`G~3A!isFbvIBl`=wt~-S-mSpa9vC`}(?cU7@5+O_202GtRJ7{o=&&k& z;JqPJ1Dg6sU>b!D=fDmNJKn$YZTuJ{&2ZY}}md`p)Tz%lG$ZeddG;PHZ|E zFP;yrFOdK@2&4kFpo~A(xL-3sF-Y@P#xc_e+eGrykLmc1aJ+D8?g0wdyh|{MWz-X} zNx?hnr+3VskG@|q)y6OEm&A^DDL@JAc6DYr?b8$cja>7y1t3ujvJmis5{3<#AI!UlyOS30mbK7!2bzH9!9?kQrVFqXNFIu zh<9Qz#9ly4zkpV9`D`wag>S~%HjSU#-qutR#a?3dob`$>r8Rhz{EQ?;sfnJvtv=w= zidTJWhEH_SoL&HKjcSDW)(2qL$7;&5!dgA&c^ALQS-0~P{FR^Jis|r}xt=jp%ubsq z;u4wU4#LFD=u*KDNkR`Ic}Vj~&{j{RTds{c^)LUkFO8}ocbb7Ss;$Ml{nB_VuV9uL z9(Zs*4lyP{I}Pcip+2$9yWjjP+_* z@8I-b%=Gksn%30BaJ4#t zwEOVMN@uAjv<(|uue2ac3{2fTmpuVbQ{3>sWn=7xq>G#urk$wXsQ|DJ}-W zH5~`ZG_6CMHeG~{Axu@B`KnTM<F~RixWnx z>WfvLN;8Z4RKijLt3RoO3$d-BAFHJF4ZHS5|CmBziE>%G%88!h_!Z3>$BMgd6qg|U zDo{Ek&h0aBP^gcinUfq^uI1v2PlS<5yc!{!rbIV#l&oM$;qOsSrgJopRC4ufNCT`?&bzUJ5a2JArAXz_-uS^fMFc_72E{W;6vYl7iU1f6FVyNg+R^l8cYpihX!TW>frbk^pwgi+)-fiD;vFD zvX@hN{iXM}VF5Yn-ysbOGAdfSDevizk*Ima6GRLb|0Z~iz~Xm?>ij&Eej1)dw_3fK zIexJdtr8kn_)*squdA-n7nuPkZ`xsd6NB5l^S}r$c0@Y47wHDI2P4IUhD?CLi3taQ z+{kq*Uzh1qhuUEGd@!1+_qnXUT ztR-NVS|VDk^C$qg8m|v>;H1dW-_Lxrr#rldu=#8Oo(hZ4>kb;gX{Aq`704KbF+)(0 zmn&F27Vj`l#a-UE5g(09!0P2f@w8WYniXJ_ZWj_Wpn@S{imIK0xtIH+Kuosc>0 zK8X{)w+X70Qd=pm>+XL|H5z0OJG56|-~1jaVYKmrPx?Y@6@Jx@grp^-STd@_0h9TH z@*jKd`L$jh|KWc{3Brcu(bxi$#^Z+74LLa&7x5KluV=~#IiY2d#qL%Mm>2V)xk4G- z*vSN;Ax&k;zyO85$W?ZDM~ipX?V_bjyCho@`d%5d>XrX3mwG741hpj09d&POVmL2% zPXmm1({6J~hsxa?D!mr|kOB>vn>uTj>gjDxv9{+<*8i*bJA}OXJd5Fw$OC}RyypA6 zI~A*ktjdN}IKPz3fHW|cA5ntmI`Kn&;&}_dJ8m7(9>01mH}6<^b=Q7<74@WzyWZVO zau`Nuzbbnx_R9oa&*AfN!8%OMvxlfR{=A-~_VvyV5=*ZLzIorMAA|^kJ&;7l8z+SQ zUWSm;E^yDd;lP{{&FyC?&;9w>Yi`PeCL;cB^~BB-{TJ=%AyDM)c@QYitQ`zYlbj!n#Y=_7Qa*EGqPicJrK6YVRv?|`O?2O0de3V`<^dPZCM}}@e zt;v<5E-l>jTa8M%d^2~%_95A=MoX(Xaab8m4zKAc!rm2Uw`bpiOv0#_Ostt~$LM$F zgF=6Jq+;0kbe~dnFJnOUOhFF^JGjxvvpYpj1zKX<;nHzUr)Ls3wYNG16kG6#LN{=quNOcz_HEQh)g`LY%?u<$; z3pe()7kYLHe`^pL!FTq71`(+=0hE0gNTlbq82jMkH^~-{UoX zv}oK1C-?jNj!q)mhEOTAAn1~y>bFPVPbX)Z2Wh+lC$y8XqywbGm3b7NqPS>-W8@lCkTkxs8aGl}=#V zbRfF;5#symSH~T3(WXsw=f{v)W4p$F|6fuH4<06QKEUbxdb-9In&8d(kQ)^WgE7v+ zQ|_Y+fvAey`bA&C1ww>tW-z9)kkzQ@I{I+ERE4$R0G$bZR>_6bR;V@3YYdJ>BSaa^1L?Q+_mXn&A6pxrg{{Nn@jq z8(In#3n2%4hX_Q!_4PXc5`-HR(YLe=EZl>#rt&S$FzmKT$sw>JnJ*E8>$iP}#x>ca z$tnGN9*6ww0d68_21oKMu{5T~6rjVj>Zt7Qd9^VER#)4RJXoGD_mdKS zLsM%U-$MSO`f#j0ccvNDR&?KT2X8(29%O{-mzfh$P|lidj2BO@K<`hxUbD; zQ6V>1X_C}jl+0cYgjEDHo^`1$|Gp~-+(4U$4no@ru8+3|!zN(hn`n=frttDX5hDKg zr>Ym-UN})PXh^$EQZev$H3W>i2R%Cl41e+>) z`dEA5$qu4g+L%=W1A<9#90rV+uUu_!!QPoDH8o+MvA$nqAp?8)kb&v9|J0^Y?tcSd z*_i(yV)?%Vu*^*ViA-7>80;Z1u=Qr}--;h*^Xt&TWCR2Qk{bX47zBW&{nuIkBjWb| zii@(db1?qr>@8l9KFX#ac0wG55;agF*PL&;LDh{Bd-YLJ8tbn@>sP(yvae;fSvBi& z52o^2F80cuWz8r?#S>dQHB=zKzaaTtFXS=bzqK5aHq`^SHP z0|S*g0EsztW`uLZIpiJ49C}X}wi36({rGkt+MhDsSRL<+a*lF>Je^NweEm$l#01rx zjFjZYx;vatXCL_K;4~S@O>AAN8FX`KW#A&whC{1!ksA%=#ztHiy;(R-ygDgJ$oMF^ zSP4mZ2}x-D%q8sHeAL_|jMTjB#9m@J2@NI3*9i}vXbd4fxvBYB`M9|G=t$I2(DPA~ zl2Py*tv*}p6Vw+)ISDV5jSofF?+KgC!$V9)N5e^uk4$JhU)FQBhB(hPBWM4?IOBe7 zu5Y62vmdL|ey)on_3M|b)iB%bv@UXTesU5*UTP9LK5{NjRxdfbU~i{=>}BSqqUBC& z^g*$ci#g^T%$!XeO`Oggvrc)3Q-@QhGJri zr>ZklGgdQNGh8!XGhj1fGiEbrGiozzav0{^=HTY!=J4c6$itB*LkPz!_Y^H#OX!@ z8Cm>!zdsc*00?(KXN}=zahR+pcNxEsF;HI@`)}cWP@QiQ)5V1GT=>!W*nDyPweDXB z_cQnTkZzDSe0q;>@bcAuMCaq-`Cm*Nfc|*)gltH+vJU*uXUaVU**MZKq1^}zoQ&oR zN0R7ydfc8vM;VmRV8OvVp?b}m(zmG2vu}7O?`rChQmP6_a-3LC1QVm9JYd0^LJ}@k zpX`qcwvfn~oKsIH%IP3Nc+=vbi_m6>LMMVXGugP)kr5?tPjOw+Dkz@Vr{XKd(*k zt_9_xrBoDX*)g104YFDMeVGy=u_v$U2X{pD#GW%s|IuU~wuP#cD&*F%1?>77gd`Yv zj|j}snVkjnPalE8E#h6{+qH4sZbikdJKAz;uAQ?&Ihv{T2$gI!ki;*QGtDp_^JkU8 zM;#x%fp`ZBz8)+r70*~q5s~?d zqzLX-Q&dux34$IsYBv`R|f{Or; z5KUSMr14POk|w1~|C}l|_F_H@z3^ER)L9o z-~M~tdm3a6TJdy{uy7=j04t4J!1H7SwW2na8=?#hv56BVXVckjGNQnKM6^;|3Pqt> zaTryUN!qmuo_1S=2FEW-mP;=luRC-sL0|iq=&turJh&O3yqQ%fN-a>Kc+%C7^Jk zKrTDHce}-qDvEEoIJqx|)F&-KFRyWZOh5y=dr~O01~`pt+mKL{rOOf$VHh{#ajIA=RK_QH@@j&4 zO}>qw)y6LO>I%{9=L>_`^!>$W zdBVVVyjav5pPQ_(StwvdX}aAHN@FT6odCH|pja_j>E|(GNYt+g0cGN@=7d!p{uhKI zN)ilz^J{x>X5$w-uVF{dFM6IaZ(=sfAM*qQuQef*>kn$l?T>z8jcV`ykJ)TxPtyHL zYnxgYAIq+}OTxXCKGR~4^z@=a{@6+c)rSq{hT;T4&Kza{J-VMS+Ud)bj=1TJF=3); z8-JDHea#Mpt}8~LO~F5zAEuC-)7ql41Htmv(Uz0#*N@Bbd({0J=?pHMim*&BCrv9& z9}AE*Wx1yq1vcDq{;tuD|xUk~r| z{GNW5b1Ag}oCF_*PMgvHxau6+iN4Kwf7JgN2(L4G?r?oa^hgMiwdq5DeqZFuKZP!5 z27Lu}odpJ22Awu}6?Asj=XcF;=rnBU!jO_6^#^rH(JB~MlG77VyCVJ}HCGfXlq*V3 z@M;lc&k;?ttgQJfQIAohwiQp28Avr3qz*-*869Ez6+QNij3oB>dn4(~nmtkOBoPeq z2@2{*74f37TlCmt@$%V%XSZVO^1~LtbB;}Z7W*eUGjW(FuNusA3c@C~uY1^LJtg_{ zof=GhlAXes#dBbsO4Ea=aEd*hdJN5ay%%dsS%GML0*PGo>BQA%Hy8urLfRK<+ty{xx^Q!NUpkvI&;Cem;E`pepi9$5 zZslYPkl0nfj|gB*ky(&#RAygVnV53!XH5^H_E__Y9U{g-utXm(9(!7(wv9;p)1KfJ zsoz;BX7*P)q61e1OW`V@n>4T%tOypT@r39N(;Uy4j9@p$s$`KhDS#Jcl2T)NnG_`% zs0$HJksf(jBqUbAWy%-7?j;yRvv6WsB@FVQjf311+W0D+FC$F@@J` zT{{4VFIw^ot1JtMa(j}I2WAGIM`_@VJW{ogE|=DFVV?;oGX_rs+KMceEmTDsIJC8zqD_g>-!B|oOa-Y}>ez@6T;tny zdlq9!C~#Z`v(Z5lw_e(}$2Awsw|pOse+Y+nMKsNXQY9rB3A5dIqqn?U4op6VHnJ(g z4r>?ug)IE51cxB#Zd3yoeh8#^8KO$pA}KpEs^Hkbc)}q>{8$m0nVg? z$=r(I8TQclkpwo%*LWfVkL8K=%P`gC?W&}tMdbmG>n9*+RtE1Eg!u#pI)pk?bg{7@ zm5%vTbgUL%vvL9HhR2XqsRgWM?M1Ic3YSUrz$U_ET+&cNlSwu6mpB_K-e*0`OhePF zD}pWez%Ryz#|8TuF~f!}9`v<|#$fQ>h&Sb2qDL&dZrBt~15^Q{Zv$%E3{4F@Om+tQ z$qetKTWe2E@E**(i6cc1W%*=vSN#MKgb6n%&o*pViTxQN5e*LexJ@ zW_E-sO2)>*=RXT@4@6#&)Rt_VmG`TMm&j)1%*@R{P}Hnh6Ep^WP5YCJA(N%k<7yF0 z?6CRf8<`Z~W`!bS5gR4XQJ+;GUpwfhA1Ei(S6 z@j?r>DK2TTLT(v*(jSCqENM|p-TXD~n@_k?EYEW_LdK!6Iu*Bk{y7!w$7m82K5F>p za8L}fgsGk$poO#{q@X5UlO6zY|KcfCGEf|4y!MKzSL@W9+TtO0b9Os^Z^MxNcUH$A zuZ@uPVWI_#6z$TzGs)-N<%^yz+;pFh*>{>jxnoF2q_%3C8b2~b8@@X^Ju6U9<$_ab znA=;Fx(n(hh=8ZyWp-s7cgx^DU3!))dr{Z2^SrX1HrkuW{Evbw&I6{j|@2pLoQaW*^l zATOmZudsOm&*0o%U=vj0I!TCCwMbIwoJ`r@v8cMTp)`wLMMTBPf@!ZxkVuC5mzwjw z>!QQ!dA_K31(Y{kBF8t7H0sM(OJjbTGNot@!A+0QojdK+y}RB)EGc>7|}m#$ux7m04^|^ zgz2An$Bal}djdl?6bziA;N|ZTyxwTyZTQn?Xu&Quj*vh@(@w?9{oZ0BpEL+UF`qRb z5c!M-h7jkn#y*!8H1=E(c`s70fRY{mi4?b<1FK3L` zgKvT)dwb<-yAQTIZ}spD;nOH(Ktb80;9g%adueS|-YFCe`4`HNtS$Qy=ClQ4n+6pS zbWS!k#?Su7UOfl0d@S;3`KB@P$pSx}cS;7Q`%YWJ-6fNo+q)vp`y$8;MxNQ{@ay2< z^GtB)_$4i?r?88Nc(ET<)x#B}!P0%gdi+Sy)kzv9kzz(NIpMvbF%|*eOuTp$s#Z-E z{}~BZp#-BWCOs25L(h0lseMpU<*>F{eN&L#>nCp^1uvA$-L_xA`SzSz1b<62r4a2r zdb~yE+`sWG{^)!=e=Lj@O8?_zyGf5SMIpmRjARB~|aLOsa3HGCd7;I-J`K$k}1as@rH4q9smfg*%& z?ZE-1a}(p*6`NX;AmQKl!te)S|EGe3K9AWlAIvxZjAY|Ejdh&*x~scq>|dpC=WH%J z-|Is1RpoKQDarimWAh8HDrg&y~hQkcWsiz1pGZHM<7X|k|bQ8I$4U`UA0%m*p zH!vdJ^&J}Gc#WxTwQd>J)Jz=$sjc~R$Dhkh{O)D=USZ@(g)>5*YtMlR3bApXXDFZY z>LyS`S>XP|o1QN=$7&;a6wD`EyI^}n@1OJh`FnSdUNf&I0NShvSmv}yGoy7^(W$8} zLJOdcXe0%?g#b`+&`0FVJzQtNzuMgPkCQ`Nw)jPizNQpMR8T~>d2e62@)56fwnlf} zW;Pc6N4*opwqw+9R*$Kt{#j_Uz4iOVPZUT6k``DH*GMAAa%gryhDEuEU6Jh|w=IES zL)N^Kd6ygu3!*r-QCl)#4F*0Twyi%ym3c|75>&m_a~3Iy9cHl&Fm0JRV$kjJoj6$0 zV#W+8;{(yj!plTd0+S2sgmmu0((j7e-uwo5SSW@bfTF0i5>$hb8`p*0Y4fVR^?*-+cG#ELl0b6bR_k z5%D07l3fq%h*KIrrb`jH4jcP^2gX0k#+jEIu3P(}O<{_?=d^gXee8W(xTzU5K;_4X zH`V^ohOj9Wi;`jd7===*ijH9heWpssw13Cv^i0gsT+WkhY|3-od3oJpC`G zp)Vg9had+TOkI(wBT$xH`1h@F2Ms!)M{lcFZ zEdWB%ogg;93a+PAab!7#;)JYGK&GZ*#hEQMX0bt-Eg_jtJksP-St?{SAiGyO`Yq7a zwYS?!Vrw*Lo8R_c<^kgIrS6b3DEbr_0QRP$xoJpPxpKgTGqoi0bZ#^d!rG2@doPZI|nCokCcAQO0 zcgpowWL5KEbILBa@<5eLicv!)E|3;!=B>By%U`wS#f1%#DD=!i_s~%k!FIWX0wYCc z5pdd@)1R;S1zO=sf^_1*zXKw-HnriR*O2gBH@MR11a_O|hg80i`Vd!M*)nEx6O{Ee z46+$gC5o{%uqVDJU<*3tyeiT8Qe5rHwoGKW?O)^EZ`0|u4DoW+?ND3GRh^`NxM89d|J`(T3soObOb1rPbeHf zY47(=fVtc2%dBFVxlB#nq0>udv+N~2)H`w0O=)m(x<@}}fZ#L@3M15|rJfv@po`h? z*T>d%DzZ9i&X`uz@bDoTth-OFpAKr?uaGka_LIL zBsOTHwuV+?2be{Cvh$#T1*^cCF)3z*vCi8>;o59kvutSInWkYpQCb6?Fj+qeyLi~87Bx<;Z=3+=p?Dy~a>wHF#)-Y?T3*09qzOR} zY3i1dd-irNPhS}Ak(%_56w_A7F(lj*2iwNP81?9En}6GXq~Fg*(2!;DS6h~vf@Ki^>XOMOBO>`a|i*bbS! zzyA~DQQ(87dm6Zro~LjR|9P{PoC0ygfw&0Q%er@(m)gbnH51D!0Ie}<0Iqp00|_Se zVZ6*>Ju)*x9r<9y-OOn(TsI0dV`j*V8A%EQU}@<4g9aJF=7+oVXZgdZXN3RU_HR;D zbm}AIc>PO9VJeT?pwHEtAW>rky(FumNT;SXrEv|0_7uRrOIIHg?ubEh zF`^pM?y4kvJyg+_%mwNXbi#Y|j7cq1lgm4%HBe9wMGomXqs^t@@6xECa3ItbWrVLM zbt2#;b=WJwt|;(Y?ta)Pzq#JTt-#{#Cd!o3NdrK<@rm)jWXJX0ldXd~lg@QG5%R=? zu9s1~-+bf0GZVqJp0iD~CFV36i%uz~LshFh=A)=oXE-R76)QcDO5AU~-%qFPcih(T zbjBkxxy=NBw3g=QSNRlb?j~5ZYQmTy&rW3C4v5xPC;;dEW{YR-g!Z>`BjrLMj@9nTl8ATKASoec zoXM1;hX<4R zS9C21wXj7(Ur7dq-Py7OioFn~)-jpuqQT@F5Mn;~@a+-Qf=Z>5c`x2Ez!Nr(5#VsV zu_5BAzIKjpS-v3bD=z;5PY%xvjyI+voKiiI*}GPCU-vpF9G#C4yW`|NQ11bFJmUR* zzv_5U=J|N)+w$!V^I}MzwqQM^Q|;i8rByl~fI6vf1-OVd9XNk4YL*}>dYk)k{^YOf zli{+eF2avYa1Bwxy;0?0>1$ zlYOphy$IT2J$gs0SB!a;J$$#=eFUm-rxb7lOHEBPLPMk(J*LK)GbEsf`CM9WmmysF z1L*9a(4Aa6tR;sbJrQ;aj3Nd9tS{r#c5GQ`c5G*f-P65HGJc zy@8>)l^X0N-|oBQ9;;q$Z33SH;Scms_RE1Yebh_=`p4X_6@cJ|_o>f~&iNni)42(G z&t6!6hZT+el0giFJn9(F*fr8~&NG%9XIvuqB6NoA@{&!a6sAP3VA*vwGJNH7?1z$e zBG>sig*UtN@i6xud?4?Z=Yd*hbY?&^v%T@SqcEF<9j}Z^60J??_?867<84gyh$e9F z9Xmp8I`=|O^0jtRY97?v;z_)l$W4m?S7OmV1DPUF|A{qJblC{zt?Jy{}XC$4E)!{jDa*u=LrG{RMVT#lltF`V$yxa0lsEJCIOE*v4$l5Uf{+ zktWzSuVeLV~>781!Yx&_l)gfl=4aK3mq7+QOkl?Ja>-rHT~1 zX7euSWMt8xQK-lujS(7O2d&Ml6KSoBP?_i4j!671 zvF7k2@A%5%S@hY0CthwK8l+e6mB=Gse^<+yqgcJuxn5WwaCJ_2xlowMTeiFR zT#B^83D&^QmM-^SNJEwBPkcRb@r}B~Rc<-2jfgy8%geNICh#J&L_tE~&-z=K@%P2H ztZ+A@J|6F{8G7fm-SQReGg$u4D+KpH>oSZ~e#_}=tE{Ey3JCK{@}|qliNg$NKRg9J zGdv(o83D(RQ$sKc4A|PA(JT3Bh>$uA!lUcVE@l)bya;8 zl-1Gv36FrsCxo)nddqKn8Vg#XBSTk;>`)8)_rSIK;nJ3oriepGc&5N3#!gd49FUoa z2&6@WFcuR4SW8Wt{Ztj^mh8&cYAmFemv7RR8?7(5PW8;)khiz_U%nh~ddz2dU)}vq zw>WudcyJEyJ?635j~l#9hoee(#B5h6VF``N+9I@JNJzwuaE1@h7;ZrM(9!dV_Ti-l z@$p5>(ID6T`H*Nv81$4?B=F% z{(76`M$sBNsmO#%8dplD(d++6foW?R&s9vyxI8=@Q$`Z@B*~>OUZ!%l*t95C6{ez6 zdG+M%kd!;GUlgbc(;HKtA(hGep)Orl>I|SPnHC!{C|L$u(XsSVltWLkjB#PLo?94L z?mxpQO;nsefkHJdkTr$L?P2W;m@%T3c@mqJD;pe}layq!HNohdGO5%lRmhmK;DU#j@rZt@LuO*J+&u{n7YtAIrlN2sm z3JMLXcI2^tGKj5c<0j9eDGhgOv_;!oTdicCnXICl`D8jxP6X?QQa(4R${(tUi4A7j}s|qn9Mv zVo`kTF~(ql57juqygm?dM1~Jpim=(g_1FpWW&Pfbtba&ta3c@QL6q{B)z0_={r$E- zpQl<5Se*78Q?A^jl2A)n#C|T!+3j~Q_;1SL~}Q|Aj#pSFE$!U=n?d4&0euD4domlGEj0+gUYTS%apDHOlE~ zwB>ntTaOmvrWB7GwIR3`G^7cgig*hM+lyx(3UHtEa85#*m>JB zCZ@W61toHsZr<`o;8$VIu~P4DmbK>s8SfcU^nw?U6Ugj^&-=-#PaoE6^09*|oBE*) z97n|kxCzI)>I*YRp5WV~R~Q(yRN%05i>XzFFsuV6(*pU2p0PU2iEks6ewdEYhSMvp!aY>PjTi{e2mAZI@!0bnge>Zk>HC3#-Mo9g7tqfvvzJvHzDrK>5`nJ^~-oUg(O2fFZp|Z4T3)}h%HdHFaY6OZ8wV9KP?%g@`3BLuz3sQ|l zwiuMIAi@?U9O=PK@$rPhF)!OGT5s_5b1sQQ_Lnv&PR_vnw>+|_o7tI-9wM>h2{6W+ zz<)0*Jqs&X1#L2nCU6UKLHlLq4vMHrp+{7BU2fAnoIbJ-v+E#}Brd1E9$3Xvda_o_ zN4;+SkkiK_A!TE+tTkUw04gN{qC^mlLL#K$hySLJL)5G1C;lgf-j{8%a{h|sSwYGq>uG}d%G!*>Kfo!EfCk9H`E<7ir|4URU$V`pg;k5*Lr8j#w+jDLu}S3^sfa;dz1r-x2LGmJ~^$fIR6>$dEINTa2_X<>zDLF`u(bU&;94q z6fBCBke8scvUL^QX=5lMRd@VgclS7_hh5xkZpdO|6+mYKswSXQsX4$=h?)iH9H%Uq z+ay~6srSRU`dZ9~lThY1yLE{beZXh>9esZbzmM1s?}zLwgX2Mzr!D{TV;Ze5Y%c># zxZgBl66t_rP!ARsE&iwqXGaX)m>Zr0)HvuqXf+9t1kpFN8F3F=SIxAUecL*`j1&p} z2EWr9&NZ8Oc#rZ!l|OL)3`+ffD|+nzVVC{?sj2@%{$*_d02l}iBLfA)0|o;JfXD}U z`(KCt4_({;wVtxE{m*i$q%EOri1QoAZO0YQjElv!-FpSMxn5rc9aPFOJ_)6ph`2QG z+tq$J!*x1E$xG8{;N~JDI`n=ZJXK+c4pRa|O%qX4UI2}+>R94Cho(EwAIXr~ivO)?Qx1F#7J^LU4bTT7ZMB;_7W z#6CkIz5H(P|2gwsnBAT$}V8L7=dWTO)&-x!VrX1kEs$|CqU>Tvfsxq z?xO?Gbs>z%NCLM!Pq(^5M#nW24kU=U(xKyhrNsk*ZMin_6xPv>04GRx5M0A@RZtin zU1bAtb3jxN4vM(~&&mH(q|87@pcep`7cCmP&GG~$3>4$+gHf3&PGbae6xA=vi1v8Es)w3xRs*) zeA9I5lVB$f%3>#FWT#JR#OKEqLXlJxnEL3`@m3P$;-h5h6jpqx<7Fe{O2+3;9I9W~ z<9Y!0|MlGehtl$Yzfz3<Z;vRQ&Z!9<@&lAsj*pi>6Uz(O+tRU<9zZv`#!4! zh=vdV2@=F8onEt0HqO$JSal>-tX1}ijqY&R-WOnyRm>QN=&*peWh`Xp1Av81vxSf2 zU=GT~BG>$y&Rx`JkWoOe3aZ*$^L`*@!O??n0v**%cZIDn81it80@XxQMo!UzKu z7#{p`II~+KABMA!v4STOaFJPkKa?Mv&)2z9nbrwnGx>Z+Sbka6xY(sSMbc6#r7eqW8Woi{|c z5!dwn=~pinOsr!3WB-yF$QvxyThM@I2l56F8!|Je*Z{UdXovL#4IAFCki6k=!Y0!Sr?cvUADOOr2bn9&e$PYmS z3j-AcRf*4FTVi?oEu|>33PK0-1$hg#QzcV7)2nnE#86*dtvZ|xL+cR*Qhz8tl(E6F z2f9j;o>i6a^Y{R`khv^+qtva|6z65qduwiYFJD{QIK7gj0FGRrS6P(D!Ht($UoHY7BSEt@#WQbdHyVSY2AT#9p<(;(55~ z_hwj-40kw{rF)C5ngm7V8>k^X>!dk)5oiI4%k%*TrPs;NsV(2<#F1r-TzY$t8eGlb z*7v@zT`Y>dLcE5A0vkYF-P1U+>@xA4--sdMTF$7@lO`S8?0k~3W3FdUav-@)R5`#Y>Ch_(8xuU z@4@kgkqcYo=j73F9<01HYRzDFW;GF0F5BGR>d(vU^9O_S7m6Ao7@wweKr!Lk6GnA` z-~k}`|0;Xu;NF6+O*FP`+qR7p^Tf98oLDEe?c^8RPEKswwl#TY{xJezI%X2-hDCEFWQp6>OYEsva5 zW=>1fC4q$4u}T9y!%h%5K%M|w{StN`wW{-D4vCn4zn#GBHU#|eC#a4}si*tOYZC|K zjzNj%pCgh#M=cdN>_Z3~v?aJO-x=kJO-W(wU?ap)YqKtb8Y2gN2LD@np`?gIA0lzq z*tar>?}G12K+3(*rD246yN})pQ6(GH=J&IKj9n08E7)af{^19c{Nd14ppR_+s)T~_ zkY={3_{R#)lM40zZ+_Jr^QIhaj$yb0}DZ~@0a;}Mz`X08Ax zDjX2~6hG--2ND|y@fWGr5rq-+(<1<%Ea4Zr$B`3JpCD+ul0}cPTby?#7!(ZT%!uhG zRafR45;zkjB(zi(o4G10C@2NEEKc$Q? zZFE?)hLnyqyK;Gaw9{te^m((q?r0?JE`rgtbS0~eO7w17zKBUGrkH;Y=>~9aSHHqj zZ@H_$fSJLvGzaaYQ1~5AR~7hbXHb{EO1|cvICooRv+YrKvCNMMQrV8`r8B@1S<>yK zw{>U>OD46sX#HC1{cw$&tP(lnD!hs*GbsS+d(H`H=VPhe+Ta6*Cki8suI63&7KP6M zKk#3LEGoid2on1fcP?>{rmpDhE-_J?OR~CM4qy9zw#QFeX4`!Oc^Nd#7gSRea)-aG zn;w%V*|Y+gB7lGSCQ#7SVcpn9l@>MRM_X3hFL;*M^s0h_hPZ=}SL#WH7e$blP&*^! zR@L}Cv)n5wOIYI9KbVxsdyQ3TU+`MKaX}ZQ3?C%a z?vM{|5dPy5b$M1(smsw^k0ITDOyymdDXgpuRC6u8gVRUbAr)p8X%^g?u)8Jh9aH|} z(Z7FF7T>P+_xts|XUL@MXTU@&WCC`RWdKKNoh~NorNx~6+w#M)4hs5rtel^KS6jKe ztKGJ#KVt=%!$oi=6&f$J^sx(q0wrC<+q53DR!jgUV86pWAbHu5s)eND2K_L2Q$(V7-&_xxz!rQ;HtiulnhSs=0(o{6Z)jXb|G+ObQ9Ar~my)OwkI5TQaJz?0?i zO<1P;7es&^uQUSr_^F%!z#cm>7WEZu;F6?so!*@gmS}JmwP%)vF!uNJU8i}JxBSe_ z_48L77#%ZQMkFI}{gw$&Ls!QQk!w|tYi)L&Ang%)i4!d5BuuOBh8T2I>F*^_A*;nF z6#By9^=kNamQkO~MVkW3JQlK0yZ9kX*ObI7-@JG;$8(AxThinzU3pz_G^Bt}i%lp}`Meobl(2Xq~ysPF9J1*HD^h@zhXGdyp`FX`^o^{N} zI=(nAMj{641Q~r9C@jdOf!t0Y!&H=HG=IUTQFW`Ma4bc8NHxtWfzHIyj*dk>h`peI zM^RbE3t?jt0h+D=ZA*K|`*~4QZ4oXhFIU{tH0Fb+0?=4dpY#fR^@@Cne3+V&;gMLF zzs|Me!($l|S4KBlK$#R_OK7(8a z1m4S|gsflt$HhI+%%7yQRZAUs#BA$Tv5-Amf$RtYpiQl1y+EfUa@xFV#j`3gFtjm2^9;CZktKk?CESv5R&@aL2OG$FA{+sPVr#d0 z!YisA+91ytg6uW+kqSE?@t#%Yad<<2GaOoXeyBRsF7N&X+RGSRlTx^Y2;UH;$E}e5 z+bhL?LA?LZHx(Av|B7t?Pv%)18=TI<-fZotDKZf53RuN|H#paSK^FdR?<*{<%>SF* zShc#hDyjxfE)s>Bblp(NA~r8;hufm% zGb&0yFHtNK3<&cdab_*T5Sb>s%O}H*OK#sRf#%ZI^_@@1va*8$i8QiH^glci(`2(%d-X4K|jX=@zk8(MW znYhlzbxO!^X__nZ1cqaYh;E+RD0ZDpzfFW;^AOYeB6#0#?grIrBbFkTI+iFUb7tzf z&0jg{6|*d>IIdg7m-fbKXz4oRXl3j$6fa9s$;x%=G=_JoDCMEEV?`6ryooAl(N@VZ z(n;nrYFgB&_>)Xp<>@r6jK6ZHzHfaGyX@0*j4}=s**V z+cX6PsSIv@L?%U)LyhJ5BA2nBL{=(4$oz;lB5HbR!L7jpye}FG%mP*&8@2;L<2TIB z1Ua{-GdqWlk#uORIDiXNOxZDLMymYP8gY=R_V)ii>%l&>xX#u$&lVW6>^wGc&Tf**86$wCKS#I~MMcXfQ`!^s zc;HRhp5)uV=sCJ4j(Fd(;GP^SStf(4)*pe#t1QC>Pz(Qo)DTG!d<1V1WrJ|d@529M z!2m3A7IA!I9Wf0A9|2-PZxjz#+)EDaaLP;Q#n7YR?^Jz%&qE?MsEP28mb%f0(91!C zuUx9i^OPu?1BAgHsZcNN4tuaHcDr-eH|XR1)V$zy;~xyHp$*Wb94jEMoP-aMIRBMZ4%YfNAX%9x{V>QNP zX%8zTMfUz?C%Ejc+ZWnbA%SqHH+T#8CA)lq+%!f5T84H&YCX7+_(^PF`*5LfnJUe{ zA#b!*giS^}yk+aB0erugqFl%UB8W?k*NxuNg0(o^f4jgm>U8Wy)}LS!%_WPGo4Cu7gyK&*eaoRmu`cnb!w zEO?zOiMh=hs?~7f=sK>M{AH3!f~k`=~_fZw*b;W{g?f86-RQ zzzWjf`pTjK*EzrLh;}$zj~eTXO2)B7A+54H9GQ7b=ExD+M$`0^)7D|b<2H&j_ECua z;hr}m9tLXo$wk7varR`>?PYeS$PB}w>huEz{&$t%a;*7&zbOQRZ#t|zVej%F?_M@? zck@o{aRCsl?$;;}Z0+CiEzP}9t;gD}I1)-Hjt{L=O37IbnMs${zSga{q27!$8eSt1 zQ}H9ySR7Iag${C7CuxNXKt<-Qn2@ly8V;&pr0U%d@0aiBAzEi1y8#$u3J0M_8)HM! z>M4`t(GYnwi8QVq&C!7FT=V22fATHmE&Ydl8eu`{$Q5DLsP@7i97_QbHpjv4y= zBN;9pY7(y)xt1P7w6XQI5VBx=6nZBC4$)=nFJ)NRPwY+rpvyT4`?OTg^I zxhV_t9x#4&{q}Iq`P%`CUx2`r!7f7$nGC3=pKhAs&ZwrEM`iDJLsRLo}Pt)(pa^Tgz6fzWYzL0{#hI4d$nsx=B zf(x55<|zD!)ai_4JO;!h8#1>j0IJ`#=ZCm`s<76tv+}z?5f3;^|XjFk9S_4hRse<%{H?S?(maQFUqa8ym+tcZNS7c;&SB|wl`)@pCDRebKq7XgyJuIq(w#bk{w)>cG2@gw{QiGjtY;Lr;Jhsm2tLIH zwfMG!M@rt2C}&G;Cpe{Po{|)CTI0rt+_ z5bfamPy!Pj`)uNRUut*HKs%Zr+p11KmZj0D!&Y&>rWv}7dzad3*M{it&2;+T8{WWG z`^x4vo9ot){_#a$_$LYN=mF?sH>m4R%zL>QhX3}Y^$mM|Znf2W z3)gX0s0%DtIagP8^`kKjSNJ8FvtP$q*Ma9%=-a<3EyP@Kwz=(jF|EQbJI7C`bZbNL z0kGhtgRUeY`1w&pdj;1<#C24eVqHCT77%5kDckarGr!GE}kmT z25HlCo{2oTLjQPOq8v;>5NGRPH-?6RB#PVNBIw62FT7GY1{<< zI)Qn7KY2bz*d*g8&*|33GPZ$Pvc!VeqVQz<#ESMzAi6|SV=oD{9s_N&hzQ1*aG@Q_ zlBNK(b`}e;fe;~ZfjmLYzX|Pea42;QVAeNv3}k_tkq5cXW}`$v_==#oSo&v)Gd@g2 zxShhFRL}(XqPd-6_RS0}H`pf>NbFlHCA&Zsx=_%$6-WITDd<4tK2!mLx5!Me@q`t_ z*o`PDxJ2D?%J?Be2U6VV59omd0R>nSXn8WsOZDT0L&%EZ4r(Vb_!Rv~JBppu7e!193{kSi!d z=EMnUdE-k|OwHS=)XIBZ(TobB(0O%9)T;;RB4+9vCrxM_5oPZcONu=ykmukCmX62Z z$+BVUjs{)0U)KIvKraJBM5;my-IJRN$nLW&EtnZ3rknuDvcabBQ0)g`8cYWFcf@eW z$uk#IGudSn?e5p&04S4UM$18(7I7E6%QL`F)r5P6D!^!a9uTmAVWE>%R**5%$?hmd z97)3LbD${JnLJToT<}4vRS6S-ATo*=)%YKrfce~9K>I{#9=HSI`s6;Kk;@89MC-~) zjRuj-5qg_M;8bAtRM7MC6#@}~g{irHeDG#qwxM5@rQ)}MS?7$grBD zhd`3&9{W3P5%?*6urXyIQ%~$q)pkqx+K79o=S>|jgb@8AMn~Zfnto>^?xv6yafhh{ z_4tDyQ+P#t$$3q7GJKtf5t`Mcq*hL2UZjRHRGG9WI;_z&zk^Cc2?vL zt6F9mE?VhIM`Jaa1EiywN+e+`nTe$%{}|~KozAw|q9q0EndQR+94dB`s;XuMEU3xp zWfNki6frUsaxxSM@o4~QimG%en)IRxGE)j_R_S!4_0!sGzO~bGKRZlph@!_2?{TPOr?f*!_iLo6JKamfurrx-W4$TpzseR;GQ>o8`(F>!s8dQ!GwFjKXjE4%Bi!^Qz^JlXqUDmLA;W>`6TEVes&LiO z(tbMD1PoT%zFNjmZ+d;G9$VD4l_OYA9O07TyH@Z?qbq96EtJ;=ELn>^DLuI? ztP?$FAbW0Cwz$_=!X8@EwZ5}qZ)ihpXj$SwJgY7lEqI)<=e)7eEG0eX+E6WZPWAby z|FLj*!pZU_V9%!WR>%k|NxU>uPPSEVJW~2rzt~Dl&i5a`a`-+f#EGWh5IB8KiDR3z z#(Okfh#W6MHy1SVv>5U<9>NLkg4oRy=4vG3OJi$P?3^yj7r(xge*a}bz=nhvQTiD% zLVVjw44|EbBDgq_xpB zl8<3I@X7E%GcjS-g1ll^sKPba`88P3r2+O!TfPW0F~dd%#Cg}(CTYOpq3OO7TQ-bV zDrEI|(9&VPDey7{rPhH02y$LACWv(JlLmv!LF_4jr`-dSb<38YWOBI<&q|VmD~H+ zBHK)fbIH|q@fKmb3Aa-SS0T0{LV@op$k%XD5OQ(;{nI+<=9Og|t1z2e{i2v}s0AKM^@KRBb3F4kJqvwS-%{0RuQzW8Lz&oq+<$x$Kfc+2It%=f z>PIN9j_s3F?L)LU@M47lgUq>RBj_)kp&)LraY(|EZ>+31KTwPzCuN%MDuP)|r7>XR6L^#0pP5e`r zUh0YDB&MvjB%BBoht$KbMlS^|f3WHUm#QtwE*`(~XK$_Rq);h&1^rvmd@6DH)-ilZ%;?hW}fSb=aBEQ zO$uoje!e!XEzg&2s0knOoNDmOyX?AerXxc4%o%+@t(nj&EL@ zqybrR?aq0eXJ|w05@Y8Cd8W9-eei)$q;4=@SU{c?7qR)WBpbPs-`sZz89jVQxhDwh|$WXVGRGr8ld0!sPF zBFEbv+Yx0ZrBa+&fW3BzE8rW^dQ#1;TNTG?!_{8qw8T&a)Zen;+9- zOux`ML0s(>EGW62O6MQqrC1&DW2(t+E#rr=*R8xzEJZ*}{a_6d~+y4I?4rGwrj|3hxr*((lz>Y$?Qyx>I%txS*NI z_iqL{Fyt2Udt_j-e-F=mF)Qb{aw$hF&tn&j778ii3=V}w#RLMu{zCs(acsa<+sOU^ zR>4KZb4(M@zHB=cO45vvDBMaB-d)(E?#l-464(#+OLW+QmuyG%XtvRs`oMPggr3SS z^9=pXW;sveuQ5D!1+!ZIfQwAAbXT&@5gqt>YV(OFBX}9_DXIEd7l*WpbMhpK`ld4N z7 zB3)=p@6bSx7w{wTh(0?WeNHQSMx|GV> zhv8n;Cnj;mBwDV4gLofOs~x+5E>NTte3!b1YywznWZJtpccU^XJ`E@(Fyq}!R3066 zs2tSF(iR}5-97*g;B2g#K_Vw4C>M67t~43af_wIk#2f$7$m(rMmvf4EOynS*6Zjuk z4vHd}MEwCb+9-yqJ?I{=7R(09N$U|OF;~zKbm8HyHOX~$iywz}5 zWT5y5vt#W-u0J^4E6H!IlA=1>e~5MoyXqDk%t)<3V@3U?Xbezqz+p?2opJaUfbu{v zi5DLF7D#{>$#}4WiHX?eHef}J{uG^1lf-LSL2}8neS^iIDiAvHvBC-ip*Z1(S4}WF zfc{nNPs)eFWr`lvR@DE?SCaYyZmsSPtSe(kgEp35={D>!Ob1ez-8DgiM=x$gb0Fet zNrTR*T!_aoLBo^+Tc80Buw2K|h|3pOo#&$(w=)9y$LKQmhbXsLoYjUc5OQ zE_+MXcqzt4U``NG3+P4 zHAi6?j-D_{s1>Y-kdN%Phg$8L;{B6}wencQxKvS^VgaO(DdGsz;UW1VWw??~T0~zU zpApQwjF~~4WZA0s=h7&XgQ3e%XmvX174vh5Bu%>gPH$4BahfqiVVmh(Fbo)VqiRi? zpT?1_92u)E(owS3mBPJ9o&hm2J*9~oEUhpACWgdWSUZf=>V>NG)*=f~zfW{tXkPL?3otBd92 zY~^9t^pF2#^j1GrV_Yydr$>JgJ{r+HRRhz1v(3N#ZTar%;&ABnZtvn_AiK1b>TMeE z)gHAf;QQA4k?0L{wAJ;mZ{YB-BdS56tYaNnYsnIE`v&XyLXLN@qob?ted6NlkXLz} zVrpgl30Y+30?X&qJ{9&~mx4lyIpLRu@zwYHKxTsq+EcG3`6DSOSWN4^*Py7S7Z+xG zCck*P$J5obu__{`_|K1%0@lT&xQ&X>X4_u$2cyMo3D%%d5#(?VfG ztnAm75MsJ=t?bpR2WS0D(?5inMWvd+Ldu43ZvPgZ5G^xpUpbdjN(0j&TZ+v-->$dE z54ghA4fFQ+RL2*-_t(qB_gJr#D&9B8$J+<(osvtXs~riuAY80THix?(DZ_w)Z8s_Y zI7CKn7(6n{KTBj@ckn0Jn0p8|{XiVIKr4R}1ko5x!5F_BIy=2?cWysRwL5)8HRhYE z-HBA}K+~yI!i7&ZB;Y`K zK0cmiYm#&K6P>*}?GKF}_--)t0(+99ZXHpWsBJ(Ypm&fJUe?gCGkspp7|c{d*TXHZ z?V6EL5rihN9z|#82su}Uqwr!*d!=+p9m=c+x(YH7ZI%iEn z%}cwR!_t#>5cKwd7+--pe@!|tnax3&?d7C7;`$Nre;nRUEA+g3x;Bvn>Q_x^@J4N^ zdHt^WaB~2$DX^@Kch!3FdVDz@z@*Gw8voL!%TJ@hWop}dpWw0$C`VW`;Sz41K_jjw zwQJT)ng2CAGMgkZdoa=Sr^HARe|P`Je?@p+u3ooLavJXuXrHm;Aa3HNMEVI>`I|KZ zpQv~s;9ebLZZL+>U}OWS{etYz9XwD*(kTT0 zE|1p%(8I5(T1=M>D3`lk$Me#CbNkrX9&bM0?cDZdBE38%B-yaTrGMR**1k2 zIO}hvp-Yz$95P(VoE{E%3f`~gy*#7NF2v`=+jD!eHvA#7O9^Ib$ljwPPXvbA;rhcK z(~+yc%cRn3C#je23zxp{Lx+n&g7OUQX=c+3Z*E&_zh6FE_V+2bb#=NW-`w!2xi|hs zMXx2w@ykr$keW%hNiI+yU0xD{+kv#kH1h=X1xLbV6QP6x;iOf6yV3DdIr ze42A-(Lto(b#n@=?KRlYy~@hOP#azeNkYs>LkgK21qQXSO-L1-bQ>t_FBU@fbn9N% z4ccQLJ(4YAcqOzg#&m2mPTZqiA?sJIW6eQ%*|ouQ5clE_Cg~26d5#3e+_Q_Pz!OLqkWVjf@PB1dm3qdq$BpqF7zUOgAxW z;N|7bT%EY+UXeDtGvee;Ouy*b-rmog{y6ggdTu+;xz9SrL&!Py?D@X(?(5nz(m`X{ z#Bv<+IXz$I&PkJxue&*J_o~r5Tx&m2pn?QvEmj$P9vO zAo_PuVg)PHK;>`0#os=&6+CSNS(}jRI{4-xO`9;seBVm9_oWCzBNVs(sTFcIr#jp=TGCu{_W_d&yREo$Kq(~u@e2U76%nyuYSxg) zJA<=o&bIh?T@v6PLYt^f-liL(97xs_bN&g-L;PmLXAV~f^0?dU3nclJ+ za*p@w82ujR>y$>cOoy~IO~Y$)QKfvF$Uj)rG0pQBRd;&iVS}P{*8$H^PY!U7Ej^8Y zPtfR+tfYDsFS(E9=Zzg|wiCn;aHh*f9NlNy>~t4yaplt{Or+cqyYGIj{Z3qYOUepJ z#MWm$AWNp^LN8Sk3_@2e*@wIT`qJP$`Zeq$pA*tB`A$A%`x#u#IOgoYFvWV^qPfhP zn=?I{o@T249lGBBr}}yn))ARunB0uH9N!cGv>xd2*W^Y}hbIias#3%KU z){Dh;AhqkCYz1#I;yB7vuhp3t@Y#srt?jLnjCmi<#?!90?{MJ6*dw50k$tVTx-1ry zVi@*qB}Cj2Zg{u?d?S4}jkPby+&~cwDf5Mn+=5vp^ICEo({gHY7cP?LicCh%dq6Z% zsP1v|**6yz;_iZwS{!zUtCgKUvz%pg88u&Zy)UQ<6tk;q9J($fd!Sa{Vq|MMH&U{f zo!=sCiR)TFD{0J&Hhe%mN5^6bpEmUqpZ4a1z~@p zd(xG((Hv}%*MN`0fW(dMeYfpgp`eGqEpb(0yWPwD?Cjd;$vV2yy*NkgDs*gR^J7PO zc|Is->L6zY*4voyzEGics@uhl{CVJutM}t&7+_Aszd07DRNA=+C@uFhCcJSk-Kv+*kcfXLkIj2N2>OF`v!XPyJqh=uaMN z$(yp*9-o)RVjKAEN&VdR$ed>v0)-t%x`9N^7<3Pq=^e|e!3GZm#vRY9{wNP@#@$j6 z@R~jL&KS;Hh^>CB`|s49r?ybv9EI*^_Zx<-f%g|A!W~kdz}Q=Afe~|z@EDkF@H6pN zd+1HmkN%s#@NHPBdp|2XKk*UY`uP%o+>MD-_L$!UNeM?-_{LObyzclrW7qDN55iuc z2h7;#CcxXtM0Rde||L9G9oWNO*| zH#pArf3iE6C5&0|{)(O~&&v1ZbHU9!@JtPQK0qp(Q=($-{ScHvJ;J9H6noqmtg>EP zkvVtGHUgWNaa(o`>H0`t2pA3UtNO=(wrAJ2GpHTr%!t1#Hsd}c-CpT_WPn1IWK@p% zhu}-z+#kRd{snQM`T^zYc4Umf&@2AHNya!_yaJnP4C^(VNEk<|Wd2Gl&_D75mb=Hg zkTvV$5s)E>nwF@970tZzw_0v=vW~oYxY;Hh4K?3`MriWJ<|r)ByvTvoUh`a z|C|rFFCb+NsD>}k%B#<+s?@XhBPna_&;H@7l6oZNupe+dSlBfVlefZYb^-wHoN z*aC9xI?>f9ets+1+JVp0w+DyZMUq&TA_zMzbI$ix zv|nHcG?c4}nCp-Dz~!FBf}SpLmh33f;EwWS@+9!E@UK?u=wX2utRzP(-?4U7-mF-2ibeXj$Vacw;*&9Q2TxdnC zP}k;So1!V3Rd;l8cW%{l9d?;FK!6v#bdN17rXBV?x>DWJcO01JEqB~VC-4n-m*_0Q zjx9#`a*PYsL=Z}_=8A9XUYSQ>_Oz4x*KrTWDW7a<2X=Ba_s`7hfbJc6uX;rm_+{O9 zH(N2E4Uo^$PO2_NKN&uI42WMbQuZttvfDw%Z%NLu^H3`5U>Nu1I)75~^edM{tNJ?1 z%wsuUpmKLueWDp}(Dz>sT3)!jORs+4l%`$@>U&LN^lE8B;udTzi|-KG#6;Io4;%2E z!E4jn1mQDb?APK_7)V|O>ndIsCMemrd+h>U1bsRHpLNX}{2ID_VMZ8|x#`@uVPn4Pb)b0-5U!QtG7q!B_xzRQjJim0(|-3N@?pA4)9 zsNW96hGwW~-YIuxNY$)0iXOM7)103=oKs|Q@~j5`<{Cak&G%V6bjA3%sv1Ac|Ikle z*1k~??C@C&+>Ukf3pK_-kn_xom@Pe VOwC|eS-7}ZIAO@i#T6uA{s;Kn9Ay9i literal 0 HcmV?d00001