2023-08-19 12:15:34 +02:00
|
|
|
|
<!--
|
|
|
|
|
```agda
|
|
|
|
|
open import Level
|
|
|
|
|
open import Categories.FreeObjects.Free
|
2023-10-09 16:45:55 +02:00
|
|
|
|
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _×C_)
|
|
|
|
|
open import Categories.Category
|
2023-08-19 12:15:34 +02:00
|
|
|
|
open import Categories.Functor.Core
|
|
|
|
|
open import Categories.Adjoint
|
|
|
|
|
open import Categories.Adjoint.Properties
|
|
|
|
|
open import Categories.Monad
|
2023-10-09 16:45:55 +02:00
|
|
|
|
open import Categories.Monad.Strong
|
2023-09-12 16:03:20 +02:00
|
|
|
|
open import Category.Instance.AmbientCategory using (Ambient)
|
2023-10-09 16:45:55 +02:00
|
|
|
|
open import Categories.NaturalTransformation
|
|
|
|
|
-- open import Data.Product using (_,_; Σ; Σ-syntax)
|
2023-08-19 12:15:34 +02:00
|
|
|
|
```
|
|
|
|
|
-->
|
|
|
|
|
|
|
|
|
|
## Summary
|
|
|
|
|
In this file I explore the monad ***K*** and its properties:
|
|
|
|
|
|
|
|
|
|
- [X] *Lemma 16* Definition of the monad
|
|
|
|
|
- [ ] *Lemma 16* EilenbergMoore⇒UniformIterationAlgebras (use [crude monadicity theorem](https://agda.github.io/agda-categories/Categories.Adjoint.Monadic.Crude.html))
|
|
|
|
|
- [ ] *Proposition 19* ***K*** is strong
|
|
|
|
|
- [ ] *Theorem 22* ***K*** is an equational lifting monad
|
|
|
|
|
- [ ] *Proposition 23* The Kleisli category of ***K*** is enriched over pointed partial orders and strict monotone maps
|
|
|
|
|
- [ ] *Proposition 25* ***K*** is copyable and weakly discardable
|
|
|
|
|
- [ ] *Theorem 29* ***K*** is an initial pre-Elgot monad and an initial strong pre-Elgot monad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Code
|
|
|
|
|
|
|
|
|
|
```agda
|
2023-09-12 16:03:20 +02:00
|
|
|
|
module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
|
|
|
|
open Ambient ambient
|
|
|
|
|
open import Category.Construction.UniformIterationAlgebras ambient
|
2023-10-09 16:45:55 +02:00
|
|
|
|
open import Algebra.UniformIterationAlgebra
|
|
|
|
|
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
2023-08-19 12:15:34 +02:00
|
|
|
|
|
2023-10-05 16:22:05 +02:00
|
|
|
|
open Equiv
|
2023-08-19 12:15:34 +02:00
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### *Lemma 16*: definition of monad ***K***
|
|
|
|
|
|
|
|
|
|
```agda
|
|
|
|
|
record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
|
|
|
|
field
|
|
|
|
|
algebras : ∀ X → FreeUniformIterationAlgebra X
|
|
|
|
|
|
2023-09-12 16:03:20 +02:00
|
|
|
|
freeF : Functor C Uniform-Iteration-Algebras
|
2023-10-05 16:22:05 +02:00
|
|
|
|
freeF = FO⇒Functor uniformForgetfulF algebras
|
2023-08-19 12:15:34 +02:00
|
|
|
|
|
2023-10-05 16:22:05 +02:00
|
|
|
|
adjoint : freeF ⊣ uniformForgetfulF
|
|
|
|
|
adjoint = FO⇒LAdj uniformForgetfulF algebras
|
2023-08-19 12:15:34 +02:00
|
|
|
|
|
|
|
|
|
K : Monad C
|
|
|
|
|
K = adjoint⇒monad adjoint
|
|
|
|
|
|
|
|
|
|
-- EilenbergMoore⇒UniformIterationAlgebras : StrongEquivalence (EilenbergMoore K) (Uniform-Iteration-Algebras D)
|
|
|
|
|
-- EilenbergMoore⇒UniformIterationAlgebras = {! !}
|
|
|
|
|
```
|
2023-10-09 16:45:55 +02:00
|
|
|
|
|
|
|
|
|
### *Proposition 19* If the algebras are stable then K is strong
|
|
|
|
|
|
|
|
|
|
```agda
|
|
|
|
|
record MonadKStrong : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
|
|
|
|
field
|
|
|
|
|
algebras : ∀ X → FreeUniformIterationAlgebra X
|
|
|
|
|
stable : ∀ X → IsStableFreeUniformIterationAlgebra (algebras X)
|
|
|
|
|
|
|
|
|
|
K : Monad C
|
|
|
|
|
K = MonadK.K (record { algebras = algebras })
|
|
|
|
|
|
|
|
|
|
open Monad K using (F)
|
|
|
|
|
open Functor F using () renaming (F₀ to K₀; F₁ to K₁)
|
|
|
|
|
|
|
|
|
|
KStrong : StrongMonad {C = C} monoidal
|
|
|
|
|
KStrong = record
|
|
|
|
|
{ M = K
|
|
|
|
|
; strength = record
|
|
|
|
|
{ strengthen = ntHelper (record { η = τ ; commute = λ f → {! !} })
|
|
|
|
|
; identityˡ = {! !}
|
|
|
|
|
; η-comm = {! !}
|
|
|
|
|
; μ-η-comm = {! !}
|
|
|
|
|
; strength-assoc = {! !}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
where
|
|
|
|
|
open import Agda.Builtin.Sigma
|
|
|
|
|
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving)
|
|
|
|
|
|
|
|
|
|
module _ (P : Category.Obj (CProduct C C)) where
|
|
|
|
|
η = λ Z → FreeObject.η (algebras Z)
|
|
|
|
|
[_,_,_]♯ = λ {A} X Y f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} Y f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X = fst P
|
|
|
|
|
Y = snd P
|
|
|
|
|
τ : X × K₀ Y ⇒ K₀ (X × Y)
|
|
|
|
|
τ = [ Y , FreeObject.FX (algebras (X × Y)) , η (X × Y) ]♯
|
|
|
|
|
|
|
|
|
|
τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y)
|
|
|
|
|
τ-η = sym (♯-law (stable Y) (η (X × Y)))
|
|
|
|
|
|
|
|
|
|
[_,_]# : ∀ (A : Uniform-Iteration-Algebra ambient) {X} → (X ⇒ ((Uniform-Iteration-Algebra.A A) + X)) → (X ⇒ Uniform-Iteration-Algebra.A A)
|
|
|
|
|
[ A , f ]# = Uniform-Iteration-Algebra._# A f
|
|
|
|
|
|
|
|
|
|
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ [ FreeObject.FX (algebras Y) , h ]#) ≈ [ FreeObject.FX (algebras (X × Y)) , (τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ]#
|
|
|
|
|
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X , Y) (X × Y)) h
|
|
|
|
|
```
|