bsc-leon-vatthauer/src/Monad/Instance/K.lagda.md

111 lines
4 KiB
Markdown
Raw Normal View History

2023-08-19 12:15:34 +02:00
<!--
```agda
open import Level
open import Categories.FreeObjects.Free
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _×C_)
open import Categories.Category
2023-08-19 12:15:34 +02:00
open import Categories.Functor.Core
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Monad
open import Categories.Monad.Strong
open import Category.Instance.AmbientCategory using (Ambient)
open import Categories.NaturalTransformation
-- open import Data.Product using (_,_; Σ; Σ-syntax)
2023-08-19 12:15:34 +02:00
```
-->
## Summary
In this file I explore the monad ***K*** and its properties:
- [X] *Lemma 16* Definition of the monad
- [ ] *Lemma 16* EilenbergMoore⇒UniformIterationAlgebras (use [crude monadicity theorem](https://agda.github.io/agda-categories/Categories.Adjoint.Monadic.Crude.html))
- [ ] *Proposition 19* ***K*** is strong
- [ ] *Theorem 22* ***K*** is an equational lifting monad
- [ ] *Proposition 23* The Kleisli category of ***K*** is enriched over pointed partial orders and strict monotone maps
- [ ] *Proposition 25* ***K*** is copyable and weakly discardable
- [ ] *Theorem 29* ***K*** is an initial pre-Elgot monad and an initial strong pre-Elgot monad
## Code
```agda
module Monad.Instance.K {o e} (ambient : Ambient o e) where
open Ambient ambient
open import Category.Construction.UniformIterationAlgebras ambient
open import Algebra.UniformIterationAlgebra
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
2023-08-19 12:15:34 +02:00
2023-10-05 16:22:05 +02:00
open Equiv
2023-08-19 12:15:34 +02:00
```
### *Lemma 16*: definition of monad ***K***
```agda
record MonadK : Set (suc o ⊔ suc ⊔ suc e) where
field
algebras : ∀ X → FreeUniformIterationAlgebra X
freeF : Functor C Uniform-Iteration-Algebras
2023-10-05 16:22:05 +02:00
freeF = FO⇒Functor uniformForgetfulF algebras
2023-08-19 12:15:34 +02:00
2023-10-05 16:22:05 +02:00
adjoint : freeF ⊣ uniformForgetfulF
adjoint = FO⇒LAdj uniformForgetfulF algebras
2023-08-19 12:15:34 +02:00
K : Monad C
K = adjoint⇒monad adjoint
-- EilenbergMoore⇒UniformIterationAlgebras : StrongEquivalence (EilenbergMoore K) (Uniform-Iteration-Algebras D)
-- EilenbergMoore⇒UniformIterationAlgebras = {! !}
```
### *Proposition 19* If the algebras are stable then K is strong
```agda
record MonadKStrong : Set (suc o ⊔ suc ⊔ suc e) where
field
algebras : ∀ X → FreeUniformIterationAlgebra X
stable : ∀ X → IsStableFreeUniformIterationAlgebra (algebras X)
K : Monad C
K = MonadK.K (record { algebras = algebras })
open Monad K using (F)
open Functor F using () renaming (F₀ to K₀; F₁ to K₁)
KStrong : StrongMonad {C = C} monoidal
KStrong = record
{ M = K
; strength = record
{ strengthen = ntHelper (record { η = τ ; commute = λ f → {! !} })
; identityˡ = {! !}
; η-comm = {! !}
; μ-η-comm = {! !}
; strength-assoc = {! !}
}
}
where
open import Agda.Builtin.Sigma
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving)
module _ (P : Category.Obj (CProduct C C)) where
η = λ Z → FreeObject.η (algebras Z)
[_,_,_]♯ = λ {A} X Y f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} Y f
X = fst P
Y = snd P
τ : X × K₀ Y ⇒ K₀ (X × Y)
τ = [ Y , FreeObject.FX (algebras (X × Y)) , η (X × Y) ]♯
τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y)
τ-η = sym (♯-law (stable Y) (η (X × Y)))
[_,_]# : ∀ (A : Uniform-Iteration-Algebra ambient) {X} → (X ⇒ ((Uniform-Iteration-Algebra.A A) + X)) → (X ⇒ Uniform-Iteration-Algebra.A A)
[ A , f ]# = Uniform-Iteration-Algebra._# A f
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ [ FreeObject.FX (algebras Y) , h ]#) ≈ [ FreeObject.FX (algebras (X × Y)) , (τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ]#
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X , Y) (X × Y)) h
```