bsc-leon-vatthauer/ElgotAlgebras.agda

243 lines
20 KiB
Agda
Raw Normal View History

open import Level renaming (suc to -suc)
open import Function using (_$_) renaming (id to idf; _∘_ to _∘ᶠ_)
open import Data.Product using (_,_) renaming (_×_ to _∧_)
open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
open import Categories.Category.Cartesian
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Object.Terminal
open import Categories.Object.Product
open import Categories.Object.Coproduct
open import Categories.Category.BinaryProducts
open import Categories.Category
open import ElgotAlgebra
module ElgotAlgebras where
private
variable
o e : Level
module _ (CC : CocartesianCategory o e) where
open CocartesianCategory CC renaming (U to C; id to idC)
--*
-- let's define the category of elgot-algebras
--*
-- iteration preversing morphism between two elgot-algebras
module _ (E E₂ : Elgot-Algebra CC) where
open Elgot-Algebra E₁ renaming (_# to _#₁)
open Elgot-Algebra E₂ renaming (_# to _#₂; A to B)
record Elgot-Algebra-Morphism : Set (o e) where
field
h : A B
preserves : {X} {f : X A + X} h (f #₁) ((h +₁ idC) f)#₂
-- the category of elgot algebras for a given (cocartesian-)category
Elgot-Algebras : Category (o e) (o e) e
Elgot-Algebras = record
{ Obj = Elgot-Algebra CC
; _⇒_ = Elgot-Algebra-Morphism
; _≈_ = λ f g Elgot-Algebra-Morphism.h f Elgot-Algebra-Morphism.h g
; id = λ {EB} let open Elgot-Algebra EB in
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
2023-07-25 17:23:36 +02:00
idC f # ≈⟨ identityˡ
(f #) ≈⟨ sym $ #-resp-≈ identityˡ
((idC f) #) ≈⟨ sym (#-resp-≈ (∘-resp-≈ˡ +-η))
(([ i₁ , i₂ ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ ([]-cong₂ identityʳ identityʳ))
(([ i₁ idC , i₂ idC ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ []∘+₁)
((([ i₁ , i₂ ] (idC +₁ idC)) f)#) ≈⟨ #-resp-≈ assoc
2023-07-25 17:23:36 +02:00
(([ i₁ , i₂ ] (idC +₁ idC) f)#) ≈⟨ #-resp-≈ (∘-resp-≈ˡ +-η)
((idC (idC +₁ idC) f)#) ≈⟨ #-resp-≈ identityˡ
((idC +₁ idC) f) # }
; _∘_ = λ {EA} {EB} {EC} f g let
open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ)
open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin
2023-07-25 17:23:36 +02:00
(hᶠ hᵍ) (f #ᵃ) ≈⟨ assoc
(hᶠ hᵍ (f #ᵃ)) ≈⟨ ∘-resp-≈ʳ preservesᵍ
(hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ sym-assoc
((((hᶠ +₁ idC) (hᵍ +₁ idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)
2023-07-25 17:23:36 +02:00
((((hᶠ hᵍ) +₁ (idC idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ refl (identity²)))
((hᶠ hᵍ +₁ idC) f) #ᶜ }
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; assoc = assoc
; sym-assoc = sym-assoc
; equiv = record
{ refl = refl
; sym = sym
; trans = trans}
; ∘-resp-≈ = ∘-resp-≈
}
where
open Elgot-Algebra-Morphism
open HomReasoning
open Equiv
--*
-- products and exponentials of elgot-algebras
--*
-- if the carrier contains a terminal, so does elgot-algebras
Terminal-Elgot-Algebras : Terminal C Terminal Elgot-Algebras
Terminal-Elgot-Algebras T = record {
= record
{ A =
; _# = λ x !
; #-Fixpoint = λ {_ f} !-unique ([ idC , ! ] f)
; #-Uniformity = λ {_ _ _ _ h} _ !-unique (! h)
; #-Folding = refl
; #-resp-≈ = λ _ refl
} ;
-is-terminal = record
{ ! = λ {A} record { h = ! ; preserves = λ {X} {f} sym (!-unique (! (A Elgot-Algebra.#) f)) }
; !-unique = λ {A} f !-unique (Elgot-Algebra-Morphism.h f) } }
where
open Terminal T
open Equiv
-- if the carriers of the algebra form a product, so do the algebras
A×B-Helper : {EA EB : Elgot-Algebra CC} Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) Elgot-Algebra CC
A×B-Helper {EA} {EB} p = record
{ A = A×B
; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ
; #-Fixpoint = λ {X} {f} begin
2023-07-25 17:23:36 +02:00
((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc
([ idC , ((π₁ +₁ idC) f)#ᵃ ] (π₁ +₁ idC)) f , ([ idC , ((π₂ +₁ idC) f)#ᵇ ] (π₂ +₁ idC)) f ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁)
2023-07-25 17:23:36 +02:00
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ∘-distribʳ-⟨⟩
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique
(begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
2023-07-25 17:23:36 +02:00
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₁ , ((π₁ +₁ idC) f)#ᵃ ] ≈⟨ sym ([]-cong₂ identityʳ project₁)
[ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
(begin
π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂
2023-07-25 17:23:36 +02:00
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂)
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
)
([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f)
; #-Uniformity = λ {X Y f g h} uni unique (
begin
2023-07-25 17:23:36 +02:00
π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁
(((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity (
begin
2023-07-25 17:23:36 +02:00
(idC +₁ h) (π₁ +₁ idC) f ≈⟨ sym-assoc
((idC +₁ h) (π₁ +₁ idC)) f ≈⟨ ∘-resp-≈ˡ +₁∘+₁
2023-07-25 17:23:36 +02:00
(idC π₁ +₁ h idC) f ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₁ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
(((π₁ idC +₁ idC h)) f) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₁ +₁ idC) (idC +₁ h)) f ≈⟨ assoc
(π₁ +₁ idC) ((idC +₁ h) f) ≈⟨ ∘-resp-≈ʳ uni
2023-07-25 17:23:36 +02:00
(π₁ +₁ idC) g h ≈⟨ sym-assoc
((π₁ +₁ idC) g) h
)
2023-07-25 17:23:36 +02:00
(((π₁ +₁ idC) g)#ᵃ h) ≈⟨ sym (∘-resp-≈ˡ project₁)
((π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
2023-07-25 17:23:36 +02:00
π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
) (
begin
2023-07-25 17:23:36 +02:00
π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂
((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity (
begin
2023-07-25 17:23:36 +02:00
(idC +₁ h) (π₂ +₁ idC) f ≈⟨ sym-assoc
(((idC +₁ h) (π₂ +₁ idC)) f) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
2023-07-25 17:23:36 +02:00
((idC π₂ +₁ h idC) f) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₂ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
((((π₂ idC +₁ idC h)) f)) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₂ +₁ idC) ((idC +₁ h))) f ≈⟨ assoc
2023-07-25 17:23:36 +02:00
(π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ ∘-resp-≈ʳ uni
(π₂ +₁ idC) g h ≈⟨ sym-assoc
((π₂ +₁ idC) g) h
)
((π₂ +₁ idC) g)#ᵇ h ≈⟨ sym (∘-resp-≈ˡ project₂)
((π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
2023-07-25 17:23:36 +02:00
π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
)
; #-Folding = λ {X} {Y} {f} {h} ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Product C p
open HomReasoning
open Equiv
foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ +₁∘+₁
2023-07-25 17:23:36 +02:00
((π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-cong₂ project₁ identityˡ)
((((π₁ +₁ idC) f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding
([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₁ +₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₁ +₁ i₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₁ +₁ i₁)) f , i₂ h ] #ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₁ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₁ +₁ idC) (idC +₁ i₁)) f , ((π₁ +₁ idC) i₂) h ])#ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₁ +₁ idC) (idC +₁ i₁) f , (π₁ +₁ idC) i₂ h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ∘[])
((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingʳ : {X} {Y} {f} {h} ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ +₁∘+₁
2023-07-25 17:23:36 +02:00
((π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵇ) ≈⟨ #ᵇ-resp-≈ (+₁-cong₂ project₂ identityˡ)
((((π₂ +₁ idC) f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding
[ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₂ +₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₂ +₁ i₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₂ +₁ i₁)) f , i₂ h ] #ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₂ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₂ +₁ idC) (idC +₁ i₁)) f , ((π₂ +₁ idC) i₂) h ])#ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₂ +₁ idC) (idC +₁ i₁) f , (π₂ +₁ idC) i₂ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[])
((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
Product-Elgot-Algebras : (EA EB : Elgot-Algebra CC) Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB p = record
{ A×B = A×B-Helper {EA} {EB} p
; π₁ = record { h = π₁ ; preserves = λ {X} {f} project₁ }
; π₂ = record { h = π₂ ; preserves = λ {X} {f} project₂ }
; ⟨_,_⟩ = λ {E} f g let
open Elgot-Algebra-Morphism f renaming (h to f; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to g; preserves to preservesᵍ)
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = f , g ; preserves = λ {X} {h}
begin
2023-07-25 17:23:36 +02:00
f , g (h #ᵉ) ≈⟨ ∘-distribʳ-⟨⟩
f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)))
(((π₁ +₁ idC) ( f , g +₁ idC)) h) #ᵃ , (((π₂ +₁ idC) ( f , g +₁ idC)) h) #ᵇ ≈⟨ (⟨⟩-cong₂ (#ᵃ-resp-≈ assoc) (#ᵇ-resp-≈ assoc))
2023-07-25 17:23:36 +02:00
((π₁ +₁ idC) ( f , g +₁ idC) h) #ᵃ , ((π₂ +₁ idC) ( f , g +₁ idC) h) #ᵇ }
; project₁ = project₁
; project₂ = project₂
; unique = unique
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (A×B-Helper {EA} {EB} p) using () renaming (_# to _#ᵖ)
open Product C p
open HomReasoning
open Equiv
-- if the carrier is cartesian, so is the category of algebras
Cartesian-Elgot-Algebras : Cartesian C Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras CaC = record {
terminal = Terminal-Elgot-Algebras terminal;
products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB product }
}
where
open Cartesian CaC using (terminal; products)
open BinaryProducts products using (product)
open Equiv