bsc-leon-vatthauer/agda/src/FreeObject.lagda.md

57 lines
1.5 KiB
Markdown
Raw Normal View History

<!--
```agda
open import Level
open import Categories.Category
open import Categories.Functor
```
-->
```agda
module FreeObject where
private
variable
o e o' ' e' : Level
```
# Free objects
The notion of free object has been formalized in agda-categories:
```agda
open import Categories.FreeObjects.Free
```
but we need a predicate expressing that an object 'is free':
```agda
record IsFreeObject {C : Category o e} {D : Category o' ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) : Set (suc (e ⊔ e' ⊔ o ⊔ ⊔ o' ⊔ ')) where
private
module C = Category C using (Obj; id; identityʳ; identityˡ; _⇒_; _∘_; equiv; module Equiv)
module D = Category D using (Obj; _⇒_; _∘_; equiv)
module U = Functor U using (₀; ₁)
field
η : C [ X , U.₀ FX ]
_* : ∀ {A : D.Obj} → C [ X , U.₀ A ] → D [ FX , A ]
*-lift : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) → C [ (U.₁ (f *) C.∘ η) ≈ f ]
*-uniq : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ FX , A ]) → C [ (U.₁ g) C.∘ η ≈ f ] → D [ g ≈ f * ]
```
and some way to convert between these notions:
```agda
IsFreeObject⇒FreeObject : ∀ {C : Category o e} {D : Category o' ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) → IsFreeObject U X FX → FreeObject U X
IsFreeObject⇒FreeObject U X FX isFO = record
{ FX = FX
; η = η
; _* = _*
; *-lift = *-lift
; *-uniq = *-uniq
}
where open IsFreeObject isFO
-- TODO FreeObject⇒IsFreeObject
```