bsc-leon-vatthauer/UniformIterationAlgebras.agda

60 lines
3 KiB
Agda
Raw Normal View History

2023-08-17 18:07:14 +02:00
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
open import Categories.Category.Cocartesian
import Categories.Morphism.Reasoning as MR
open import UniformIterationAlgebra
module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open HomReasoning
open MR C
open Equiv
-- iteration preversing morphism between two elgot-algebras
module _ (E E₂ : Uniform-Iteration-Algebra D) where
open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
open Uniform-Iteration-Algebra E₂ renaming (_# to _#₂; A to B)
record Uniform-Iteration-Algebra-Morphism : Set (o e) where
field
h : A B
preserves : {X} {f : X A + X} h (f #₁) ((h +₁ idC) f)#₂
-- the category of uniform-iteration algebras for a given category
Uniform-Iteration-Algebras : Category (o e) (o e) e
Uniform-Iteration-Algebras = record
{ Obj = Uniform-Iteration-Algebra D
; _⇒_ = Uniform-Iteration-Algebra-Morphism
; _≈_ = λ f g Uniform-Iteration-Algebra-Morphism.h f Uniform-Iteration-Algebra-Morphism.h g
; id = λ {EB} let open Uniform-Iteration-Algebra EB in
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
idC f # ≈⟨ identityˡ
f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym))
((idC +₁ idC) f) # }
; _∘_ = λ {EA} {EB} {EC} f g let
open Uniform-Iteration-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Uniform-Iteration-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
open Uniform-Iteration-Algebra EA using (A) renaming (_# to _#ᵃ)
open Uniform-Iteration-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Uniform-Iteration-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin
(hᶠ hᵍ) (f #ᵃ) ≈⟨ pullʳ preservesᵍ
(hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²))))
((hᶠ hᵍ +₁ idC) f) #ᶜ }
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; assoc = assoc
; sym-assoc = sym-assoc
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where open Uniform-Iteration-Algebra-Morphism