bsc-leon-vatthauer/Monad/ElgotMonad.agda

96 lines
4.2 KiB
Agda
Raw Normal View History

2023-08-16 17:29:13 +02:00
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.Extensive
open import ElgotAlgebra
import Categories.Morphism.Reasoning as MR
module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open HomReasoning
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products hiding (η)
open MR C
open Equiv
open import Categories.Monad
open import Categories.Functor
record IsPreElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- every TX needs to be equipped with an elgot algebra structure
field
elgotalgebras : {X} Elgot-Algebra-on ED (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
-- with the following associativity
field
assoc : {X Y Z} (f : Z T₀ X + Z) (h : X T₀ Y) elgotalgebras._# (((μ.η _ T₁ h) +₁ idC) f) (μ.η _ T₁ h) (elgotalgebras._# {X}) f
record PreElgotMonad : Set (o e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
record IsElgot (T : Monad C) : Set (o e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- iteration operator
field
_† : {X Y} X T₀ (Y + X) X T₀ Y
-- laws
field
Fixpoint : {X Y} {f : X T₀ (Y + X)} f (μ.η _ T₁ [ η.η _ , f ]) f
Naturality : {X Y Z} {f : X T₀ (Y + X)} {g : Y T₀ Z} (μ.η _ T₁ g) f ((μ.η _ T₁ [ (T₁ i₁) g , η.η _ i₂ ]) f)
Codiagonal : {X Y} {f : X T₀ ((Y + X) + X)} (T₁ [ idC , i₂ ] f ) f
Uniformity : {X Y Z} {f : X T₀ (Y + X)} {g : Z T₀ (Y + Z)} {h : Z X} f h (T₁ (idC +₁ h)) g f h g
record ElgotMonad : Set (o e) where
field
T : Monad C
isElgot : IsElgot T
open IsElgot isElgot public
-- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad PreElgotMonad
Elgot⇒PreElgot EM = record
{ T = T
; isPreElgot = record
{ elgotalgebras = λ {X} record
{ _# = λ f ([ T₁ i₁ , η.η _ i₂ ] f)
; #-Fixpoint = λ {Y} {f} begin
([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ Fixpoint
(μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) ([ T₁ i₁ , η.η _ i₂ ] f) ≈⟨ pullˡ ∘[]
[ (μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) T₁ i₁
, (μ.η _ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]) η.η _ i₂ ] f ≈⟨ []-cong₂ (pullʳ (sym homomorphism)) (pullˡ (pullʳ (η.sym-commute [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ]))) ⟩∘⟨refl
[ μ.η _ T₁ ([ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ] i₁)
, (μ.η _ (η.η _ [ η.η _ , ([ T₁ i₁ , η.η _ i₂ ] f) ])) i₂ ] f ≈⟨ []-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (pullʳ (pullʳ inject₂)) ⟩∘⟨refl
[ μ.η _ (T₁ (η.η _))
, μ.η _ η.η _ ([ T₁ i₁ , η.η _ i₂ ] f) ] f ≈⟨ []-cong₂ (T.identityˡ) (cancelˡ T.identityʳ) ⟩∘⟨refl
[ idC , ([ T₁ i₁ , η.η _ i₂ ] f) ] f
; #-Uniformity = {! !}
; #-Folding = {! !}
; #-resp-≈ = {! !}
}
; assoc = {! !}
}
}
where
open ElgotMonad EM
module T = Monad T
open T
open Functor F renaming (F₀ to T₀; F₁ to T₁)