bsc-leon-vatthauer/public/Categories.Adjoint.Equivalents.html

264 lines
146 KiB
HTML
Raw Normal View History

2023-08-19 16:11:22 +02:00
<!DOCTYPE HTML>
<html><head><meta charset="utf-8"><title>Categories.Adjoint.Equivalents</title><link rel="stylesheet" href="Agda.css"></head><body><pre class="Agda"><a id="1" class="Symbol">{-#</a> <a id="5" class="Keyword">OPTIONS</a> <a id="13" class="Pragma">--without-K</a> <a id="25" class="Pragma">--safe</a> <a id="32" class="Symbol">#-}</a>
<a id="36" class="Keyword">module</a> <a id="43" href="Categories.Adjoint.Equivalents.html" class="Module">Categories.Adjoint.Equivalents</a> <a id="74" class="Keyword">where</a>
<a id="81" class="Comment">-- Theorems about equivalent formulations to Adjoint</a>
<a id="134" class="Comment">-- (though some have caveats)</a>
<a id="165" class="Keyword">open</a> <a id="170" class="Keyword">import</a> <a id="177" href="Level.html" class="Module">Level</a>
<a id="184" class="Keyword">open</a> <a id="189" class="Keyword">import</a> <a id="196" href="Data.Product.html" class="Module">Data.Product</a> <a id="209" class="Keyword">using</a> <a id="215" class="Symbol">(</a><a id="216" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">_,_</a><a id="219" class="Symbol">;</a> <a id="221" href="Data.Product.html#1176" class="Function Operator">_×_</a><a id="224" class="Symbol">)</a>
<a id="226" class="Keyword">open</a> <a id="231" class="Keyword">import</a> <a id="238" href="Function.html" class="Module">Function</a> <a id="247" class="Keyword">using</a> <a id="253" class="Symbol">(</a><a id="254" href="Function.Base.html#1928" class="Function Operator">_$_</a><a id="257" class="Symbol">)</a> <a id="259" class="Keyword">renaming</a> <a id="268" class="Symbol">(</a><a id="269" href="Function.Base.html#1040" class="Function Operator">_∘_</a> <a id="273" class="Symbol">to</a> <a id="276" class="Function Operator">_∙_</a><a id="279" class="Symbol">)</a>
<a id="281" class="Keyword">open</a> <a id="286" class="Keyword">import</a> <a id="293" href="Function.Equality.html" class="Module">Function.Equality</a> <a id="311" class="Keyword">using</a> <a id="317" class="Symbol">(</a><a id="318" href="Function.Equality.html#898" class="Record">Π</a><a id="319" class="Symbol">;</a> <a id="321" href="Function.Equality.html#1227" class="Function Operator">_⟶_</a><a id="324" class="Symbol">)</a>
<a id="326" class="Keyword">import</a> <a id="333" href="Function.Inverse.html" class="Module">Function.Inverse</a> <a id="350" class="Symbol">as</a> <a id="353" class="Module">FI</a>
<a id="356" class="Keyword">open</a> <a id="361" class="Keyword">import</a> <a id="368" href="Relation.Binary.html" class="Module">Relation.Binary</a> <a id="384" class="Keyword">using</a> <a id="390" class="Symbol">(</a><a id="391" href="Relation.Binary.Core.html#891" class="Function">Rel</a><a id="394" class="Symbol">;</a> <a id="396" href="Relation.Binary.Structures.html#1531" class="Record">IsEquivalence</a><a id="409" class="Symbol">;</a> <a id="411" href="Relation.Binary.Bundles.html#1018" class="Record">Setoid</a><a id="417" class="Symbol">)</a>
<a id="420" class="Comment">-- be explicit in imports to &#39;see&#39; where the information comes from</a>
<a id="488" class="Keyword">open</a> <a id="493" class="Keyword">import</a> <a id="500" href="Categories.Adjoint.html" class="Module">Categories.Adjoint</a> <a id="519" class="Keyword">using</a> <a id="525" class="Symbol">(</a><a id="526" href="Categories.Adjoint.html#1306" class="Record">Adjoint</a><a id="533" class="Symbol">;</a> <a id="535" href="Categories.Adjoint.html#7972" class="Function Operator">_⊣_</a><a id="538" class="Symbol">)</a>
<a id="540" class="Keyword">open</a> <a id="545" class="Keyword">import</a> <a id="552" href="Categories.Category.Core.html" class="Module">Categories.Category.Core</a> <a id="577" class="Keyword">using</a> <a id="583" class="Symbol">(</a><a id="584" href="Categories.Category.Core.html#442" class="Record">Category</a><a id="592" class="Symbol">)</a>
<a id="594" class="Keyword">open</a> <a id="599" class="Keyword">import</a> <a id="606" href="Categories.Category.Product.html" class="Module">Categories.Category.Product</a> <a id="634" class="Keyword">using</a> <a id="640" class="Symbol">(</a><a id="641" href="Categories.Category.Product.html#745" class="Function">Product</a><a id="648" class="Symbol">;</a> <a id="650" href="Categories.Category.Product.html#1962" class="Function Operator">_⁂_</a><a id="653" class="Symbol">)</a>
<a id="655" class="Keyword">open</a> <a id="660" class="Keyword">import</a> <a id="667" href="Categories.Category.Instance.Setoids.html" class="Module">Categories.Category.Instance.Setoids</a>
<a id="704" class="Keyword">open</a> <a id="709" class="Keyword">import</a> <a id="716" href="Categories.Morphism.html" class="Module">Categories.Morphism</a>
<a id="736" class="Keyword">open</a> <a id="741" class="Keyword">import</a> <a id="748" href="Categories.Functor.html" class="Module">Categories.Functor</a> <a id="767" class="Keyword">using</a> <a id="773" class="Symbol">(</a><a id="774" href="Categories.Functor.Core.html#248" class="Record">Functor</a><a id="781" class="Symbol">;</a> <a id="783" href="Categories.Functor.html#747" class="Function Operator">_∘F_</a><a id="787" class="Symbol">)</a> <a id="789" class="Keyword">renaming</a> <a id="798" class="Symbol">(</a><a id="799" href="Categories.Functor.html#349" class="Function">id</a> <a id="802" class="Symbol">to</a> <a id="805" class="Function">idF</a><a id="808" class="Symbol">)</a>
<a id="810" class="Keyword">open</a> <a id="815" class="Keyword">import</a> <a id="822" href="Categories.Functor.Bifunctor.html" class="Module">Categories.Functor.Bifunctor</a> <a id="851" class="Keyword">using</a> <a id="857" class="Symbol">(</a><a id="858" href="Categories.Functor.Bifunctor.html#441" class="Function">Bifunctor</a><a id="867" class="Symbol">)</a>
<a id="869" class="Keyword">open</a> <a id="874" class="Keyword">import</a> <a id="881" href="Categories.Functor.Hom.html" class="Module">Categories.Functor.Hom</a> <a id="904" class="Keyword">using</a> <a id="910" class="Symbol">(</a><a id="911" href="Categories.Functor.Hom.html#2973" class="Function Operator">Hom[_][-,-]</a><a id="922" class="Symbol">)</a>
<a id="924" class="Keyword">open</a> <a id="929" class="Keyword">import</a> <a id="936" href="Categories.Functor.Construction.LiftSetoids.html" class="Module">Categories.Functor.Construction.LiftSetoids</a>
<a id="980" class="Keyword">open</a> <a id="985" class="Keyword">import</a> <a id="992" href="Categories.NaturalTransformation.html" class="Module">Categories.NaturalTransformation</a> <a id="1025" class="Keyword">using</a> <a id="1031" class="Symbol">(</a><a id="1032" href="Categories.NaturalTransformation.Core.html#466" class="Record">NaturalTransformation</a><a id="1053" class="Symbol">;</a> <a id="1055" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a><a id="1063" class="Symbol">;</a> <a id="1065" href="Categories.NaturalTransformation.Core.html#2919" class="Function Operator">_∘ₕ_</a><a id="1069" class="Symbol">;</a> <a id="1071" href="Categories.NaturalTransformation.Core.html#2439" class="Function Operator">_∘ᵥ_</a><a id="1075" class="Symbol">;</a> <a id="1077" href="Categories.NaturalTransformation.Core.html#3439" class="Function Operator">_∘ˡ_</a><a id="1081" class="Symbol">;</a> <a id="1083" href="Categories.NaturalTransformation.Core.html#3784" class="Function Operator">_∘ʳ_</a><a id="1087" class="Symbol">)</a>
<a id="1091" class="Keyword">renaming</a> <a id="1100" class="Symbol">(</a><a id="1101" href="Categories.NaturalTransformation.Core.html#2132" class="Function">id</a> <a id="1104" class="Symbol">to</a> <a id="1107" class="Function">idN</a><a id="1110" class="Symbol">)</a>
<a id="1112" class="Keyword">open</a> <a id="1117" class="Keyword">import</a> <a id="1124" href="Categories.NaturalTransformation.NaturalIsomorphism.html" class="Module">Categories.NaturalTransformation.NaturalIsomorphism</a>
<a id="1178" class="Keyword">using</a> <a id="1184" class="Symbol">(</a><a id="1185" href="Categories.NaturalTransformation.NaturalIsomorphism.html#651" class="Record">NaturalIsomorphism</a><a id="1203" class="Symbol">;</a> <a id="1205" href="Categories.NaturalTransformation.NaturalIsomorphism.html#6216" class="Function">unitorˡ</a><a id="1212" class="Symbol">;</a> <a id="1214" href="Categories.NaturalTransformation.NaturalIsomorphism.html#6312" class="Function">unitorʳ</a><a id="1221" class="Symbol">;</a> <a id="1223" href="Categories.NaturalTransformation.NaturalIsomorphism.html#7073" class="Function">associator</a><a id="1233" class="Symbol">;</a> <a id="1235" href="Categories.NaturalTransformation.NaturalIsomorphism.html#3600" class="Function Operator">_≃_</a><a id="1238" class="Symbol">)</a>
<a id="1240" class="Keyword">import</a> <a id="1247" href="Categories.Morphism.Reasoning.html" class="Module">Categories.Morphism.Reasoning</a> <a id="1277" class="Symbol">as</a> <a id="1280" class="Module">MR</a>
<a id="1284" class="Keyword">private</a>
<a id="1294" class="Keyword">variable</a>
<a id="1307" href="Categories.Adjoint.Equivalents.html#1307" class="Generalizable">o</a> <a id="1309" href="Categories.Adjoint.Equivalents.html#1309" class="Generalizable">o</a> <a id="1312" href="Categories.Adjoint.Equivalents.html#1312" class="Generalizable">o″</a> <a id="1315" href="Categories.Adjoint.Equivalents.html#1315" class="Generalizable"></a> <a id="1317" href="Categories.Adjoint.Equivalents.html#1317" class="Generalizable"></a> <a id="1320" href="Categories.Adjoint.Equivalents.html#1320" class="Generalizable">ℓ″</a> <a id="1323" href="Categories.Adjoint.Equivalents.html#1323" class="Generalizable">e</a> <a id="1325" href="Categories.Adjoint.Equivalents.html#1325" class="Generalizable">e</a> <a id="1328" href="Categories.Adjoint.Equivalents.html#1328" class="Generalizable">e″</a> <a id="1331" class="Symbol">:</a> <a id="1333" href="Agda.Primitive.html#591" class="Postulate">Level</a>
<a id="1343" href="Categories.Adjoint.Equivalents.html#1343" class="Generalizable">C</a> <a id="1345" href="Categories.Adjoint.Equivalents.html#1345" class="Generalizable">D</a> <a id="1347" href="Categories.Adjoint.Equivalents.html#1347" class="Generalizable">E</a> <a id="1349" class="Symbol">:</a> <a id="1351" href="Categories.Category.Core.html#442" class="Record">Category</a> <a id="1360" href="Categories.Adjoint.Equivalents.html#1307" class="Generalizable">o</a> <a id="1362" href="Categories.Adjoint.Equivalents.html#1315" class="Generalizable"></a> <a id="1364" href="Categories.Adjoint.Equivalents.html#1323" class="Generalizable">e</a>
<a id="1367" class="Comment">-- a special case of the natural isomorphism in which homsets in C and D have the same</a>
<a id="1454" class="Comment">-- universe level. therefore there is no need to lift Setoids to the same level.</a>
<a id="1535" class="Comment">-- this is helpful when combining with Yoneda lemma.</a>
<a id="1588" class="Keyword">module</a> <a id="1595" href="Categories.Adjoint.Equivalents.html#1595" class="Module">_</a> <a id="1597" class="Symbol">{</a><a id="1598" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="1600" class="Symbol">:</a> <a id="1602" href="Categories.Category.Core.html#442" class="Record">Category</a> <a id="1611" href="Categories.Adjoint.Equivalents.html#1307" class="Generalizable">o</a> <a id="1613" href="Categories.Adjoint.Equivalents.html#1315" class="Generalizable"></a> <a id="1615" href="Categories.Adjoint.Equivalents.html#1323" class="Generalizable">e</a><a id="1616" class="Symbol">}</a> <a id="1618" class="Symbol">{</a><a id="1619" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="1621" class="Symbol">:</a> <a id="1623" href="Categories.Category.Core.html#442" class="Record">Category</a> <a id="1632" href="Categories.Adjoint.Equivalents.html#1309" class="Generalizable">o</a> <a id="1635" href="Categories.Adjoint.Equivalents.html#1315" class="Generalizable"></a> <a id="1637" href="Categories.Adjoint.Equivalents.html#1323" class="Generalizable">e</a><a id="1638" class="Symbol">}</a> <a id="1640" class="Symbol">{</a><a id="1641" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a> <a id="1643" class="Symbol">:</a> <a id="1645" href="Categories.Functor.Core.html#248" class="Record">Functor</a> <a id="1653" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="1655" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a><a id="1656" class="Symbol">}</a> <a id="1658" class="Symbol">{</a><a id="1659" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a> <a id="1661" class="Symbol">:</a> <a id="1663" href="Categories.Functor.Core.html#248" class="Record">Functor</a> <a id="1671" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="1673" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a><a id="1674" class="Symbol">}</a> <a id="1676" class="Keyword">where</a>
<a id="1684" class="Keyword">private</a>
<a id="1696" class="Keyword">module</a> <a id="1703" href="Categories.Adjoint.Equivalents.html#1703" class="Module">C</a> <a id="1705" class="Symbol">=</a> <a id="1707" href="Categories.Category.Core.html#442" class="Module">Category</a> <a id="1716" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a>
<a id="1722" class="Keyword">module</a> <a id="1729" href="Categories.Adjoint.Equivalents.html#1729" class="Module">D</a> <a id="1731" class="Symbol">=</a> <a id="1733" href="Categories.Category.Core.html#442" class="Module">Category</a> <a id="1742" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a>
<a id="1748" class="Keyword">module</a> <a id="1755" href="Categories.Adjoint.Equivalents.html#1755" class="Module">L</a> <a id="1757" class="Symbol">=</a> <a id="1759" href="Categories.Functor.Core.html#248" class="Module">Functor</a> <a id="1767" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a>
<a id="1773" class="Keyword">module</a> <a id="1780" href="Categories.Adjoint.Equivalents.html#1780" class="Module">R</a> <a id="1782" class="Symbol">=</a> <a id="1784" href="Categories.Functor.Core.html#248" class="Module">Functor</a> <a id="1792" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a>
<a id="1797" class="Keyword">module</a> <a id="1804" href="Categories.Adjoint.Equivalents.html#1804" class="Module">_</a> <a id="1806" class="Symbol">(</a><a id="1807" href="Categories.Adjoint.Equivalents.html#1807" class="Bound">adjoint</a> <a id="1815" class="Symbol">:</a> <a id="1817" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a> <a id="1819" href="Categories.Adjoint.html#7972" class="Function Operator"></a> <a id="1821" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a><a id="1822" class="Symbol">)</a> <a id="1824" class="Keyword">where</a>
<a id="1834" class="Keyword">open</a> <a id="1839" href="Categories.Adjoint.html#1306" class="Module">Adjoint</a> <a id="1847" href="Categories.Adjoint.Equivalents.html#1807" class="Bound">adjoint</a>
<a id="1860" class="Comment">-- in this case, the hom functors are naturally isomorphism directly</a>
<a id="1933" href="Categories.Adjoint.Equivalents.html#1933" class="Function">Hom-NI</a> <a id="1941" class="Symbol">:</a> <a id="1943" href="Categories.NaturalTransformation.NaturalIsomorphism.html#651" class="Record">NaturalIsomorphism</a> <a id="1962" href="Categories.Adjoint.html#3095" class="Function">Hom[L-,-]</a> <a id="1972" href="Categories.Adjoint.html#3185" class="Function">Hom[-,R-]</a>
<a id="1986" href="Categories.Adjoint.Equivalents.html#1933" class="Function">Hom-NI</a> <a id="1994" class="Symbol">=</a> <a id="1996" class="Keyword">record</a>
<a id="2009" class="Symbol">{</a> <a id="2011" href="Categories.NaturalTransformation.NaturalIsomorphism.html#891" class="Field">F⇒G</a> <a id="2015" class="Symbol">=</a> <a id="2017" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="2026" class="Keyword">record</a>
<a id="2041" class="Symbol">{</a> <a id="2043" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="2051" class="Symbol">=</a> <a id="2053" class="Symbol">λ</a> <a id="2055" href="Categories.Adjoint.Equivalents.html#2055" class="Bound">_</a> <a id="2057" class="Symbol"></a> <a id="2059" href="Function.Inverse.html#1532" class="Function">Hom-inverse.to</a>
<a id="2082" class="Symbol">;</a> <a id="2084" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="2092" class="Symbol">=</a> <a id="2094" class="Symbol">λ</a> <a id="2096" href="Categories.Adjoint.Equivalents.html#2096" class="Bound">_</a> <a id="2098" href="Categories.Adjoint.Equivalents.html#2098" class="Bound">eq</a> <a id="2101" class="Symbol"></a> <a id="2103" href="Categories.Adjoint.html#4288" class="Function">Ladjunct-comm</a> <a id="2117" href="Categories.Adjoint.Equivalents.html#2098" class="Bound">eq</a>
<a id="2128" class="Symbol">}</a>
<a id="2136" class="Symbol">;</a> <a id="2138" href="Categories.NaturalTransformation.NaturalIsomorphism.html#927" class="Field">F⇐G</a> <a id="2142" class="Symbol">=</a> <a id="2144" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="2153" class="Keyword">record</a>
<a id="2168" class="Symbol">{</a> <a id="2170" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="2178" class="Symbol">=</a> <a id="2180" class="Symbol">λ</a> <a id="2182" href="Categories.Adjoint.Equivalents.html#2182" class="Bound">_</a> <a id="2184" class="Symbol"></a> <a id="2186" href="Function.Inverse.html#1559" class="Function">Hom-inverse.from</a>
<a id="2211" class="Symbol">;</a> <a id="2213" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="2221" class="Symbol">=</a> <a id="2223" class="Symbol">λ</a> <a id="2225" href="Categories.Adjoint.Equivalents.html#2225" class="Bound">_</a> <a id="2227" href="Categories.Adjoint.Equivalents.html#2227" class="Bound">eq</a> <a id="2230" class="Symbol"></a> <a id="2232" href="Categories.Adjoint.html#5443" class="Function">Radjunct-comm</a> <a id="2246" href="Categories.Adjoint.Equivalents.html#2227" class="Bound">eq</a>
<a id="2257" class="Symbol">}</a>
<a id="2265" class="Symbol">;</a> <a id="2267" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1051" class="Field">iso</a> <a id="2271" class="Symbol">=</a> <a id="2273" class="Symbol">λ</a> <a id="2275" href="Categories.Adjoint.Equivalents.html#2275" class="Bound">_</a> <a id="2277" class="Symbol"></a> <a id="2279" class="Keyword">record</a>
<a id="2294" class="Symbol">{</a> <a id="2296" href="Categories.Morphism.html#1586" class="Field">isoˡ</a> <a id="2301" class="Symbol">=</a> <a id="2303" class="Symbol">λ</a> <a id="2305" href="Categories.Adjoint.Equivalents.html#2305" class="Bound">eq</a> <a id="2308" class="Symbol"></a> <a id="2310" class="Keyword">let</a> <a id="2314" class="Keyword">open</a> <a id="2319" href="Categories.Category.Core.html#2462" class="Module">D.HomReasoning</a> <a id="2334" class="Keyword">in</a> <a id="2337" href="Categories.Adjoint.html#2072" class="Function">RLadjunct≈id</a> <a id="2350" href="Categories.Category.Core.html#3061" class="Function Operator"></a> <a id="2352" href="Categories.Adjoint.Equivalents.html#2305" class="Bound">eq</a>
<a id="2363" class="Symbol">;</a> <a id="2365" href="Categories.Morphism.html#1612" class="Field">isoʳ</a> <a id="2370" class="Symbol">=</a> <a id="2372" class="Symbol">λ</a> <a id="2374" href="Categories.Adjoint.Equivalents.html#2374" class="Bound">eq</a> <a id="2377" class="Symbol"></a> <a id="2379" class="Keyword">let</a> <a id="2383" class="Keyword">open</a> <a id="2388" href="Categories.Category.Core.html#2462" class="Module">C.HomReasoning</a> <a id="2403" class="Keyword">in</a> <a id="2406" href="Categories.Adjoint.html#2579" class="Function">LRadjunct≈id</a> <a id="2419" href="Categories.Category.Core.html#3061" class="Function Operator"></a> <a id="2421" href="Categories.Adjoint.Equivalents.html#2374" class="Bound">eq</a>
<a id="2432" class="Symbol">}</a>
<a id="2440" class="Symbol">}</a>
<a id="2445" class="Comment">-- now goes from natural isomorphism back to adjoint.</a>
<a id="2501" class="Comment">-- for simplicity, just construct the case in which homsetoids of C and D</a>
<a id="2577" class="Comment">-- are compatible.</a>
<a id="2599" class="Keyword">private</a>
<a id="2611" href="Categories.Adjoint.Equivalents.html#2611" class="Function">Hom[L-,-]</a> <a id="2621" class="Symbol">:</a> <a id="2623" href="Categories.Functor.Bifunctor.html#441" class="Function">Bifunctor</a> <a id="2633" href="Categories.Category.Core.html#3132" class="Function">C.op</a> <a id="2638" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="2640" class="Symbol">(</a><a id="2641" href="Categories.Category.Instance.Setoids.html#316" class="Function">Setoids</a> <a id="2649" class="Symbol">_</a> <a id="2651" class="Symbol">_)</a>
<a id="2658" href="Categories.Adjoint.Equivalents.html#2611" class="Function">Hom[L-,-]</a> <a id="2668" class="Symbol">=</a> <a id="2670" href="Categories.Functor.Hom.html#2973" class="Function Operator">Hom[</a> <a id="2675" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="2677" href="Categories.Functor.Hom.html#2973" class="Function Operator">][-,-]</a> <a id="2684" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="2687" class="Symbol">(</a><a id="2688" href="Categories.Functor.Core.html#816" class="Function">L.op</a> <a id="2693" href="Categories.Category.Product.html#1962" class="Function Operator"></a> <a id="2695" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a><a id="2698" class="Symbol">)</a>
<a id="2705" href="Categories.Adjoint.Equivalents.html#2705" class="Function">Hom[-,R-]</a> <a id="2715" class="Symbol">:</a> <a id="2717" href="Categories.Functor.Bifunctor.html#441" class="Function">Bifunctor</a> <a id="2727" href="Categories.Category.Core.html#3132" class="Function">C.op</a> <a id="2732" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="2734" class="Symbol">(</a><a id="2735" href="Categories.Category.Instance.Setoids.html#316" class="Function">Setoids</a> <a id="2743" class="Symbol">_</a> <a id="2745" class="Symbol">_)</a>
<a id="2752" href="Categories.Adjoint.Equivalents.html#2705" class="Function">Hom[-,R-]</a> <a id="2762" class="Symbol">=</a> <a id="2764" href="Categories.Functor.Hom.html#2973" class="Function Operator">Hom[</a> <a id="2769" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="2771" href="Categories.Functor.Hom.html#2973" class="Function Operator">][-,-]</a> <a id="2778" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="2781" class="Symbol">(</a><a id="2782" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a> <a id="2786" href="Categories.Category.Product.html#1962" class="Function Operator"></a> <a id="2788" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a><a id="2789" class="Symbol">)</a>
<a id="2794" class="Keyword">module</a> <a id="2801" href="Categories.Adjoint.Equivalents.html#2801" class="Module">_</a> <a id="2803" class="Symbol">(</a><a id="2804" href="Categories.Adjoint.Equivalents.html#2804" class="Bound">Hni</a> <a id="2808" class="Symbol">:</a> <a id="2810" href="Categories.NaturalTransformation.NaturalIsomorphism.html#651" class="Record">NaturalIsomorphism</a> <a id="2829" href="Categories.Adjoint.Equivalents.html#2611" class="Function">Hom[L-,-]</a> <a id="2839" href="Categories.Adjoint.Equivalents.html#2705" class="Function">Hom[-,R-]</a><a id="2848" class="Symbol">)</a> <a id="2850" class="Keyword">where</a>
<a id="2860" class="Keyword">open</a> <a id="2865" href="Categories.NaturalTransformation.NaturalIsomorphism.html#651" class="Module">NaturalIsomorphism</a> <a id="2884" href="Categories.Adjoint.Equivalents.html#2804" class="Bound">Hni</a>
<a id="2892" class="Keyword">open</a> <a id="2897" href="Categories.NaturalTransformation.Core.html#466" class="Module">NaturalTransformation</a>
<a id="2923" class="Keyword">open</a> <a id="2928" href="Categories.Functor.Core.html#248" class="Module">Functor</a>
<a id="2940" class="Keyword">open</a> <a id="2945" href="Function.Equality.html#898" class="Module">Π</a>
<a id="2952" class="Keyword">private</a>
<a id="2966" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="2972" class="Symbol">:</a> <a id="2974" class="Symbol"></a> <a id="2976" href="Categories.Adjoint.Equivalents.html#2976" class="Bound">X</a> <a id="2978" class="Symbol"></a> <a id="2980" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="2983" href="Categories.Adjoint.Equivalents.html#2611" class="Function">Hom[L-,-]</a> <a id="2993" class="Symbol">(</a><a id="2994" href="Categories.Adjoint.Equivalents.html#2976" class="Bound">X</a> <a id="2996" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="2998" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3003" href="Categories.Adjoint.Equivalents.html#2976" class="Bound">X</a><a id="3004" class="Symbol">)</a> <a id="3006" href="Function.Equality.html#1227" class="Function Operator"></a> <a id="3008" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="3011" href="Categories.Adjoint.Equivalents.html#2705" class="Function">Hom[-,R-]</a> <a id="3021" class="Symbol">(</a><a id="3022" href="Categories.Adjoint.Equivalents.html#2976" class="Bound">X</a> <a id="3024" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3026" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3031" href="Categories.Adjoint.Equivalents.html#2976" class="Bound">X</a><a id="3032" class="Symbol">)</a>
<a id="3040" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3046" href="Categories.Adjoint.Equivalents.html#3046" class="Bound">X</a> <a id="3048" class="Symbol">=</a> <a id="3050" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3054" class="Symbol">(</a><a id="3055" href="Categories.Adjoint.Equivalents.html#3046" class="Bound">X</a> <a id="3057" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3059" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3064" href="Categories.Adjoint.Equivalents.html#3046" class="Bound">X</a><a id="3065" class="Symbol">)</a>
<a id="3074" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="3079" class="Symbol">:</a> <a id="3081" href="Categories.NaturalTransformation.Core.html#466" class="Record">NaturalTransformation</a> <a id="3103" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a> <a id="3107" class="Symbol">(</a><a id="3108" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a> <a id="3110" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="3113" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a><a id="3114" class="Symbol">)</a>
<a id="3122" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="3127" class="Symbol">=</a> <a id="3129" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="3138" class="Keyword">record</a>
<a id="3153" class="Symbol">{</a> <a id="3155" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="3163" class="Symbol">=</a> <a id="3165" class="Symbol">λ</a> <a id="3167" href="Categories.Adjoint.Equivalents.html#3167" class="Bound">X</a> <a id="3169" class="Symbol"></a> <a id="3171" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3177" href="Categories.Adjoint.Equivalents.html#3167" class="Bound">X</a> <a id="3179" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3183" href="Categories.Category.Core.html#630" class="Function">D.id</a>
<a id="3196" class="Symbol">;</a> <a id="3198" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="3206" class="Symbol">=</a> <a id="3208" class="Symbol">λ</a> <a id="3210" class="Symbol">{</a><a id="3211" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a><a id="3212" class="Symbol">}</a> <a id="3214" class="Symbol">{</a><a id="3215" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3216" class="Symbol">}</a> <a id="3218" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3220" class="Symbol"></a> <a id="3222" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="3238" class="Symbol">(</a><a id="3239" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3245" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a> <a id="3247" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3251" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="3255" class="Symbol">)</a> <a id="3257" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3259" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3289" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="3292" href="Categories.Morphism.Reasoning.Core.html#3063" class="Function">introˡ</a> <a id="3299" href="Categories.Functor.Core.html#511" class="Field">R.identity</a> <a id="3310" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="3322" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="3327" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="3332" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3334" class="Symbol">(</a><a id="3335" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3341" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a> <a id="3344" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3348" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="3352" class="Symbol">)</a> <a id="3354" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3356" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3373" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="3377" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="3387" class="Symbol">(</a><a id="3388" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3390" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3392" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="3396" class="Symbol">)</a> <a id="3398" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a> <a id="3411" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="3423" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3427" class="Symbol">(</a><a id="3428" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3430" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3432" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3437" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3438" class="Symbol">)</a> <a id="3440" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3444" class="Symbol">(</a><a id="3445" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="3450" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="3454" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="3459" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="3463" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3468" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a><a id="3469" class="Symbol">)</a> <a id="3474" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="3477" href="Function.Equality.html#1140" class="Field">cong</a> <a id="3482" class="Symbol">(</a><a id="3483" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3487" class="Symbol">(</a><a id="3488" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3490" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3492" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3497" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3498" class="Symbol">))</a> <a id="3501" class="Symbol">(</a><a id="3502" href="Relation.Binary.Structures.html#1629" class="Function">D.Equiv.trans</a> <a id="3516" href="Categories.Category.Core.html#1096" class="Function">D.identityˡ</a> <a id="3528" href="Categories.Category.Core.html#1096" class="Function">D.identityˡ</a><a id="3539" class="Symbol">)</a> <a id="3541" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="3553" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3557" class="Symbol">(</a><a id="3558" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3560" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3562" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3567" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3568" class="Symbol">)</a> <a id="3570" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3574" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3579" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3604" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="3607" href="Function.Equality.html#1140" class="Field">cong</a> <a id="3612" class="Symbol">(</a><a id="3613" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3617" class="Symbol">(</a><a id="3618" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3620" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3622" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3627" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3628" class="Symbol">))</a> <a id="3631" class="Symbol">(</a><a id="3632" href="Categories.Morphism.Reasoning.Core.html#2899" class="Function">MR.introʳ</a> <a id="3642" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="3644" class="Symbol">(</a><a id="3645" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="3654" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="3656" href="Categories.Functor.Core.html#511" class="Function">L.identity</a><a id="3666" class="Symbol">))</a> <a id="3669" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="3681" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="3685" class="Symbol">(</a><a id="3686" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3688" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3690" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="3695" href="Categories.Adjoint.Equivalents.html#3215" class="Bound">Y</a><a id="3696" class="Symbol">)</a> <a id="3698" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3702" class="Symbol">(</a><a id="3703" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3708" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a> <a id="3710" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="3714" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="3719" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="3723" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3728" href="Categories.Category.Core.html#630" class="Function">id</a><a id="3730" class="Symbol">)</a> <a id="3732" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="3735" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="3745" class="Symbol">(</a><a id="3746" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="3751" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="3753" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3758" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a><a id="3759" class="Symbol">)</a> <a id="3761" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a> <a id="3774" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="3786" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="3791" class="Symbol">(</a><a id="3792" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3797" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a><a id="3798" class="Symbol">)</a> <a id="3800" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3802" class="Symbol">(</a><a id="3803" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3809" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3811" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3815" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="3819" class="Symbol">)</a> <a id="3821" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3823" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="3837" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="3840" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="3848" href="Categories.Category.Core.html#1145" class="Function">identityʳ</a> <a id="3858" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="3870" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="3875" class="Symbol">(</a><a id="3876" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="3881" href="Categories.Adjoint.Equivalents.html#3218" class="Bound">f</a><a id="3882" class="Symbol">)</a> <a id="3884" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="3886" class="Symbol">(</a><a id="3887" href="Categories.Adjoint.Equivalents.html#2966" class="Function">unitη</a> <a id="3893" href="Categories.Adjoint.Equivalents.html#3211" class="Bound">X</a> <a id="3895" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="3899" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="3903" class="Symbol">)</a> <a id="3921" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="3931" class="Symbol">}</a>
<a id="3941" class="Keyword">where</a> <a id="3947" class="Keyword">open</a> <a id="3952" href="Categories.Adjoint.Equivalents.html#1703" class="Module">C</a>
<a id="3968" class="Keyword">open</a> <a id="3973" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="4000" class="Keyword">open</a> <a id="4005" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="4008" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a>
<a id="4017" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4025" class="Symbol">:</a> <a id="4027" class="Symbol"></a> <a id="4029" href="Categories.Adjoint.Equivalents.html#4029" class="Bound">X</a> <a id="4031" class="Symbol"></a> <a id="4033" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="4036" href="Categories.Adjoint.Equivalents.html#2705" class="Function">Hom[-,R-]</a> <a id="4046" class="Symbol">(</a><a id="4047" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4052" href="Categories.Adjoint.Equivalents.html#4029" class="Bound">X</a> <a id="4054" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4056" href="Categories.Adjoint.Equivalents.html#4029" class="Bound">X</a><a id="4057" class="Symbol">)</a> <a id="4059" href="Function.Equality.html#1227" class="Function Operator"></a> <a id="4061" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="4064" href="Categories.Adjoint.Equivalents.html#2611" class="Function">Hom[L-,-]</a> <a id="4074" class="Symbol">(</a><a id="4075" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4080" href="Categories.Adjoint.Equivalents.html#4029" class="Bound">X</a> <a id="4082" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4084" href="Categories.Adjoint.Equivalents.html#4029" class="Bound">X</a><a id="4085" class="Symbol">)</a>
<a id="4093" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4101" href="Categories.Adjoint.Equivalents.html#4101" class="Bound">X</a> <a id="4103" class="Symbol">=</a> <a id="4105" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4109" class="Symbol">(</a><a id="4110" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4115" href="Categories.Adjoint.Equivalents.html#4101" class="Bound">X</a> <a id="4117" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4119" href="Categories.Adjoint.Equivalents.html#4101" class="Bound">X</a><a id="4120" class="Symbol">)</a>
<a id="4129" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="4136" class="Symbol">:</a> <a id="4138" href="Categories.NaturalTransformation.Core.html#466" class="Record">NaturalTransformation</a> <a id="4160" class="Symbol">(</a><a id="4161" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a> <a id="4163" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="4166" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a><a id="4167" class="Symbol">)</a> <a id="4169" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a>
<a id="4179" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="4186" class="Symbol">=</a> <a id="4188" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="4197" class="Keyword">record</a>
<a id="4212" class="Symbol">{</a> <a id="4214" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="4222" class="Symbol">=</a> <a id="4224" class="Symbol">λ</a> <a id="4226" href="Categories.Adjoint.Equivalents.html#4226" class="Bound">X</a> <a id="4228" class="Symbol"></a> <a id="4230" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4238" href="Categories.Adjoint.Equivalents.html#4226" class="Bound">X</a> <a id="4240" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4244" href="Categories.Category.Core.html#630" class="Function">C.id</a>
<a id="4257" class="Symbol">;</a> <a id="4259" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="4267" class="Symbol">=</a> <a id="4269" class="Symbol">λ</a> <a id="4271" class="Symbol">{</a><a id="4272" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a><a id="4273" class="Symbol">}</a> <a id="4275" class="Symbol">{</a><a id="4276" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4277" class="Symbol">}</a> <a id="4279" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4281" class="Symbol"></a> <a id="4283" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="4299" class="Symbol">(</a><a id="4300" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4308" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a> <a id="4310" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4314" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="4318" class="Symbol">)</a> <a id="4320" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4322" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="4327" class="Symbol">(</a><a id="4328" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4333" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a><a id="4334" class="Symbol">)</a> <a id="4350" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="4354" href="Categories.Category.Core.html#1096" class="Function">identityˡ</a> <a id="4364" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="4376" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="4379" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4381" class="Symbol">(</a><a id="4382" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4390" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a> <a id="4392" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4396" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="4400" class="Symbol">)</a> <a id="4402" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4404" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="4409" class="Symbol">(</a><a id="4410" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4415" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a><a id="4416" class="Symbol">)</a> <a id="4427" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="4431" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="4441" class="Symbol">(</a><a id="4442" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4447" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4449" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4451" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="4455" class="Symbol">)</a> <a id="4457" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a> <a id="4470" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="4482" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4486" class="Symbol">(</a><a id="4487" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4492" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4494" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4496" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4497" class="Symbol">)</a> <a id="4499" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4503" class="Symbol">(</a><a id="4504" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4509" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="4512" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="4516" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="4521" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="4525" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4530" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a><a id="4531" class="Symbol">)</a> <a id="4533" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="4536" href="Function.Equality.html#1140" class="Field">cong</a> <a id="4541" class="Symbol">(</a><a id="4542" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4546" class="Symbol">(</a><a id="4547" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4552" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4554" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4556" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4557" class="Symbol">))</a> <a id="4560" class="Symbol">(</a><a id="4561" href="Relation.Binary.Structures.html#1629" class="Function">C.Equiv.trans</a> <a id="4575" class="Symbol">(</a><a id="4576" href="Categories.Morphism.Reasoning.Core.html#2948" class="Function">MR.elimˡ</a> <a id="4585" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="4587" href="Categories.Functor.Core.html#511" class="Field">R.identity</a><a id="4597" class="Symbol">)</a> <a id="4599" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="4610" class="Symbol">)</a> <a id="4612" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="4624" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4628" class="Symbol">(</a><a id="4629" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4634" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4636" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4638" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4639" class="Symbol">)</a> <a id="4641" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4645" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4650" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4675" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="4678" href="Function.Equality.html#1140" class="Field">cong</a> <a id="4683" class="Symbol">(</a><a id="4684" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4688" class="Symbol">(</a><a id="4689" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4694" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4696" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4698" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4699" class="Symbol">))</a> <a id="4702" class="Symbol">(</a><a id="4703" href="Categories.Morphism.Reasoning.Core.html#2899" class="Function">MR.introʳ</a> <a id="4713" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="4715" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="4726" class="Symbol">)</a> <a id="4728" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="4740" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="4744" class="Symbol">(</a><a id="4745" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="4750" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4752" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4754" href="Categories.Adjoint.Equivalents.html#4276" class="Bound">Y</a><a id="4755" class="Symbol">)</a> <a id="4757" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4761" class="Symbol">(</a><a id="4762" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="4767" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4769" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="4773" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="4778" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="4782" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="4786" class="Symbol">)</a> <a id="4791" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="4794" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="4804" class="Symbol">(</a><a id="4805" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="4810" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="4812" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a><a id="4813" class="Symbol">)</a> <a id="4815" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a> <a id="4828" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="4840" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4842" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4844" class="Symbol">(</a><a id="4845" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4853" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4855" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4859" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="4863" class="Symbol">)</a> <a id="4865" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4867" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="4872" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="4891" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="4894" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="4902" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">elimʳ</a> <a id="4908" href="Categories.Functor.Core.html#511" class="Function">L.identity</a> <a id="4919" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="4931" href="Categories.Adjoint.Equivalents.html#4279" class="Bound">f</a> <a id="4933" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="4935" class="Symbol">(</a><a id="4936" href="Categories.Adjoint.Equivalents.html#4017" class="Function">counitη</a> <a id="4944" href="Categories.Adjoint.Equivalents.html#4272" class="Bound">X</a> <a id="4946" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="4950" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="4954" class="Symbol">)</a> <a id="4982" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="4992" class="Symbol">}</a>
<a id="5002" class="Keyword">where</a> <a id="5008" class="Keyword">open</a> <a id="5013" href="Categories.Adjoint.Equivalents.html#1729" class="Module">D</a>
<a id="5029" class="Keyword">open</a> <a id="5034" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="5061" class="Keyword">open</a> <a id="5066" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="5069" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a>
<a id="5076" href="Categories.Adjoint.Equivalents.html#5076" class="Function">Hom-NI⇒Adjoint</a> <a id="5091" class="Symbol">:</a> <a id="5093" href="Categories.Adjoint.Equivalents.html#1641" class="Bound">L</a> <a id="5095" href="Categories.Adjoint.html#7972" class="Function Operator"></a> <a id="5097" href="Categories.Adjoint.Equivalents.html#1659" class="Bound">R</a>
<a id="5103" href="Categories.Adjoint.Equivalents.html#5076" class="Function">Hom-NI⇒Adjoint</a> <a id="5118" class="Symbol">=</a> <a id="5120" class="Keyword">record</a>
<a id="5133" class="Symbol">{</a> <a id="5135" href="Categories.Adjoint.html#1519" class="Field">unit</a> <a id="5142" class="Symbol">=</a> <a id="5144" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a>
<a id="5155" class="Symbol">;</a> <a id="5157" href="Categories.Adjoint.html#1567" class="Field">counit</a> <a id="5164" class="Symbol">=</a> <a id="5166" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a>
<a id="5179" class="Symbol">;</a> <a id="5181" href="Categories.Adjoint.html#1715" class="Field">zig</a> <a id="5188" class="Symbol">=</a> <a id="5190" class="Symbol">λ</a> <a id="5192" class="Symbol">{</a><a id="5193" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5194" class="Symbol">}</a> <a id="5196" class="Symbol"></a>
<a id="5206" class="Keyword">let</a> <a id="5210" class="Keyword">open</a> <a id="5215" href="Categories.Adjoint.Equivalents.html#1729" class="Module">D</a>
<a id="5229" class="Keyword">open</a> <a id="5234" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="5259" class="Keyword">open</a> <a id="5264" href="Categories.Category.Core.html#1530" class="Module">Equiv</a>
<a id="5282" class="Keyword">open</a> <a id="5287" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="5290" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a>
<a id="5300" class="Keyword">in</a> <a id="5303" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="5319" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5321" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="5328" class="Symbol">(</a><a id="5329" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="5334" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5335" class="Symbol">)</a> <a id="5337" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="5339" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="5344" class="Symbol">(</a><a id="5345" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5347" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5352" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5353" class="Symbol">)</a> <a id="5360" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="5364" href="Categories.Category.Core.html#1096" class="Function">identityˡ</a> <a id="5374" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="5386" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="5389" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="5391" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5393" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="5400" class="Symbol">(</a><a id="5401" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="5406" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5407" class="Symbol">)</a> <a id="5409" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="5411" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="5416" class="Symbol">(</a><a id="5417" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5419" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5424" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5425" class="Symbol">)</a> <a id="5427" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="5431" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="5441" class="Symbol">(</a><a id="5442" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5444" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5449" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a> <a id="5451" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="5453" href="Categories.Category.Core.html#630" class="Function">id</a><a id="5455" class="Symbol">)</a> <a id="5457" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a> <a id="5470" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="5482" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="5486" class="Symbol">(</a><a id="5487" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a> <a id="5489" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="5491" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="5496" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5497" class="Symbol">)</a> <a id="5499" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="5503" class="Symbol">(</a><a id="5504" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="5509" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="5512" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="5516" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="5521" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="5525" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5527" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5532" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5533" class="Symbol">)</a>
<a id="5586" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="5589" href="Function.Equality.html#1140" class="Field">cong</a> <a id="5594" class="Symbol">(</a><a id="5595" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="5599" class="Symbol">(</a><a id="5600" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a> <a id="5602" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="5604" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="5609" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5610" class="Symbol">))</a> <a id="5613" class="Symbol">(</a><a id="5614" href="Relation.Binary.Structures.html#1629" class="Function">C.Equiv.trans</a> <a id="5628" class="Symbol">(</a><a id="5629" href="Categories.Morphism.Reasoning.Core.html#2948" class="Function">MR.elimˡ</a> <a id="5638" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a> <a id="5640" href="Categories.Functor.Core.html#511" class="Field">R.identity</a><a id="5650" class="Symbol">)</a> <a id="5652" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="5663" class="Symbol">)</a> <a id="5665" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="5677" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="5681" class="Symbol">(</a><a id="5682" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a> <a id="5684" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="5686" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="5691" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a><a id="5692" class="Symbol">)</a> <a id="5694" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="5698" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5700" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5705" href="Categories.Adjoint.Equivalents.html#5193" class="Bound">A</a> <a id="5718" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="5721" href="Categories.Morphism.html#1586" class="Function">isoˡ</a> <a id="5726" href="Relation.Binary.Structures.html#1577" class="Function">refl</a> <a id="5731" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="5743" href="Categories.Category.Core.html#630" class="Function">id</a>
<a id="5797" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="5805" class="Symbol">;</a> <a id="5807" href="Categories.Adjoint.html#1788" class="Field">zag</a> <a id="5814" class="Symbol">=</a> <a id="5816" class="Symbol">λ</a> <a id="5818" class="Symbol">{</a><a id="5819" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="5820" class="Symbol">}</a> <a id="5822" class="Symbol"></a>
<a id="5832" class="Keyword">let</a> <a id="5836" class="Keyword">open</a> <a id="5841" href="Categories.Adjoint.Equivalents.html#1703" class="Module">C</a>
<a id="5855" class="Keyword">open</a> <a id="5860" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="5885" class="Keyword">open</a> <a id="5890" href="Categories.Category.Core.html#1530" class="Module">Equiv</a>
<a id="5908" class="Keyword">open</a> <a id="5913" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="5916" href="Categories.Adjoint.Equivalents.html#1598" class="Bound">C</a>
<a id="5926" class="Keyword">in</a> <a id="5929" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="5945" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="5950" class="Symbol">(</a><a id="5951" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5953" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="5960" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="5961" class="Symbol">)</a> <a id="5963" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="5965" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="5967" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="5972" class="Symbol">(</a><a id="5973" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="5978" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="5979" class="Symbol">)</a> <a id="5986" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="5990" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="5998" href="Categories.Category.Core.html#1145" class="Function">identityʳ</a> <a id="6008" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="6020" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="6025" class="Symbol">(</a><a id="6026" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="6028" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="6035" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6036" class="Symbol">)</a> <a id="6038" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="6040" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="6042" href="Categories.Adjoint.Equivalents.html#3074" class="Function">unit</a> <a id="6047" class="Symbol">(</a><a id="6048" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="6053" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6054" class="Symbol">)</a> <a id="6056" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="6058" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="6061" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="6065" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="6075" class="Symbol">(</a><a id="6076" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="6079" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="6081" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="6083" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="6090" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6091" class="Symbol">)</a> <a id="6093" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a> <a id="6106" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="6118" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="6122" class="Symbol">(</a><a id="6123" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="6128" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a> <a id="6130" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="6132" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6133" class="Symbol">)</a> <a id="6135" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="6139" class="Symbol">(</a><a id="6140" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="6142" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="6149" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a> <a id="6151" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="6155" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="6160" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="6164" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="6169" href="Categories.Category.Core.html#630" class="Function">id</a><a id="6171" class="Symbol">)</a>
<a id="6224" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="6227" href="Function.Equality.html#1140" class="Field">cong</a> <a id="6232" class="Symbol">(</a><a id="6233" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="6237" class="Symbol">(</a><a id="6238" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="6243" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a> <a id="6245" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="6247" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6248" class="Symbol">))</a> <a id="6251" class="Symbol">(</a><a id="6252" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="6261" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="6263" class="Symbol">(</a><a id="6264" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="6273" href="Categories.Adjoint.Equivalents.html#1619" class="Bound">D</a> <a id="6275" href="Categories.Functor.Core.html#511" class="Function">L.identity</a><a id="6285" class="Symbol">))</a> <a id="6288" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="6300" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="6304" class="Symbol">(</a><a id="6305" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="6310" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a> <a id="6312" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="6314" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a><a id="6315" class="Symbol">)</a> <a id="6317" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="6321" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="6323" href="Categories.Adjoint.Equivalents.html#4129" class="Function">counit</a> <a id="6330" href="Categories.Adjoint.Equivalents.html#5819" class="Bound">B</a> <a id="6341" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="6344" href="Categories.Morphism.html#1612" class="Function">isoʳ</a> <a id="6349" href="Relation.Binary.Structures.html#1577" class="Function">refl</a> <a id="6354" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="6366" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="6407" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="6415" class="Symbol">}</a>
<a id="6423" class="Keyword">where</a> <a id="6429" class="Keyword">module</a> <a id="6436" href="Categories.Adjoint.Equivalents.html#6436" class="Module">i</a> <a id="6438" class="Symbol">{</a><a id="6439" href="Categories.Adjoint.Equivalents.html#6439" class="Bound">X</a><a id="6440" class="Symbol">}</a> <a id="6442" class="Symbol">=</a> <a id="6444" href="Categories.Morphism.html#1528" class="Module">Iso</a> <a id="6448" class="Symbol">(</a><a id="6449" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1051" class="Field">iso</a> <a id="6453" href="Categories.Adjoint.Equivalents.html#6439" class="Bound">X</a><a id="6454" class="Symbol">)</a>
<a id="6468" class="Keyword">open</a> <a id="6473" href="Categories.Adjoint.Equivalents.html#6436" class="Module">i</a>
<a id="6476" class="Comment">-- the general case from isomorphic Hom setoids to adjoint functors</a>
<a id="6544" class="Keyword">module</a> <a id="6551" href="Categories.Adjoint.Equivalents.html#6551" class="Module">_</a> <a id="6553" class="Symbol">{</a><a id="6554" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="6556" class="Symbol">:</a> <a id="6558" href="Categories.Category.Core.html#442" class="Record">Category</a> <a id="6567" href="Categories.Adjoint.Equivalents.html#1307" class="Generalizable">o</a> <a id="6569" href="Categories.Adjoint.Equivalents.html#1315" class="Generalizable"></a> <a id="6571" href="Categories.Adjoint.Equivalents.html#1323" class="Generalizable">e</a><a id="6572" class="Symbol">}</a> <a id="6574" class="Symbol">{</a><a id="6575" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="6577" class="Symbol">:</a> <a id="6579" href="Categories.Category.Core.html#442" class="Record">Category</a> <a id="6588" href="Categories.Adjoint.Equivalents.html#1309" class="Generalizable">o</a> <a id="6591" href="Categories.Adjoint.Equivalents.html#1317" class="Generalizable"></a> <a id="6594" href="Categories.Adjoint.Equivalents.html#1325" class="Generalizable">e</a><a id="6596" class="Symbol">}</a> <a id="6598" class="Symbol">{</a><a id="6599" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a> <a id="6601" class="Symbol">:</a> <a id="6603" href="Categories.Functor.Core.html#248" class="Record">Functor</a> <a id="6611" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="6613" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a><a id="6614" class="Symbol">}</a> <a id="6616" class="Symbol">{</a><a id="6617" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a> <a id="6619" class="Symbol">:</a> <a id="6621" href="Categories.Functor.Core.html#248" class="Record">Functor</a> <a id="6629" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="6631" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a><a id="6632" class="Symbol">}</a> <a id="6634" class="Keyword">where</a>
<a id="6642" class="Keyword">private</a>
<a id="6654" class="Keyword">module</a> <a id="6661" href="Categories.Adjoint.Equivalents.html#6661" class="Module">C</a> <a id="6663" class="Symbol">=</a> <a id="6665" href="Categories.Category.Core.html#442" class="Module">Category</a> <a id="6674" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a>
<a id="6680" class="Keyword">module</a> <a id="6687" href="Categories.Adjoint.Equivalents.html#6687" class="Module">D</a> <a id="6689" class="Symbol">=</a> <a id="6691" href="Categories.Category.Core.html#442" class="Module">Category</a> <a id="6700" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a>
<a id="6706" class="Keyword">module</a> <a id="6713" href="Categories.Adjoint.Equivalents.html#6713" class="Module">L</a> <a id="6715" class="Symbol">=</a> <a id="6717" href="Categories.Functor.Core.html#248" class="Module">Functor</a> <a id="6725" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a>
<a id="6731" class="Keyword">module</a> <a id="6738" href="Categories.Adjoint.Equivalents.html#6738" class="Module">R</a> <a id="6740" class="Symbol">=</a> <a id="6742" href="Categories.Functor.Core.html#248" class="Module">Functor</a> <a id="6750" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a>
<a id="6756" class="Keyword">open</a> <a id="6761" href="Categories.Functor.Core.html#248" class="Module">Functor</a>
<a id="6773" class="Keyword">open</a> <a id="6778" href="Function.Equality.html#898" class="Module">Π</a>
<a id="6785" href="Categories.Adjoint.Equivalents.html#6785" class="Function">Hom[L-,-]</a> <a id="6795" class="Symbol">:</a> <a id="6797" href="Categories.Functor.Bifunctor.html#441" class="Function">Bifunctor</a> <a id="6807" href="Categories.Category.Core.html#3132" class="Function">C.op</a> <a id="6812" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="6814" class="Symbol">(</a><a id="6815" href="Categories.Category.Instance.Setoids.html#316" class="Function">Setoids</a> <a id="6823" class="Symbol">_</a> <a id="6825" class="Symbol">_)</a>
<a id="6832" href="Categories.Adjoint.Equivalents.html#6785" class="Function">Hom[L-,-]</a> <a id="6842" class="Symbol">=</a> <a id="6844" href="Categories.Functor.Construction.LiftSetoids.html#957" class="Function">LiftSetoids</a> <a id="6856" href="Categories.Adjoint.Equivalents.html#6569" class="Bound"></a> <a id="6858" href="Categories.Adjoint.Equivalents.html#6571" class="Bound">e</a> <a id="6860" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="6863" href="Categories.Functor.Hom.html#2973" class="Function Operator">Hom[</a> <a id="6868" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="6870" href="Categories.Functor.Hom.html#2973" class="Function Operator">][-,-]</a> <a id="6877" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="6880" class="Symbol">(</a><a id="6881" href="Categories.Functor.Core.html#816" class="Function">L.op</a> <a id="6886" href="Categories.Category.Product.html#1962" class="Function Operator"></a> <a id="6888" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a><a id="6891" class="Symbol">)</a>
<a id="6898" href="Categories.Adjoint.Equivalents.html#6898" class="Function">Hom[-,R-]</a> <a id="6908" class="Symbol">:</a> <a id="6910" href="Categories.Functor.Bifunctor.html#441" class="Function">Bifunctor</a> <a id="6920" href="Categories.Category.Core.html#3132" class="Function">C.op</a> <a id="6925" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="6927" class="Symbol">(</a><a id="6928" href="Categories.Category.Instance.Setoids.html#316" class="Function">Setoids</a> <a id="6936" class="Symbol">_</a> <a id="6938" class="Symbol">_)</a>
<a id="6945" href="Categories.Adjoint.Equivalents.html#6898" class="Function">Hom[-,R-]</a> <a id="6955" class="Symbol">=</a> <a id="6957" href="Categories.Functor.Construction.LiftSetoids.html#957" class="Function">LiftSetoids</a> <a id="6969" href="Categories.Adjoint.Equivalents.html#6591" class="Bound"></a> <a id="6972" href="Categories.Adjoint.Equivalents.html#6594" class="Bound">e</a> <a id="6975" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="6978" href="Categories.Functor.Hom.html#2973" class="Function Operator">Hom[</a> <a id="6983" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="6985" href="Categories.Functor.Hom.html#2973" class="Function Operator">][-,-]</a> <a id="6992" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="6995" class="Symbol">(</a><a id="6996" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a> <a id="7000" href="Categories.Category.Product.html#1962" class="Function Operator"></a> <a id="7002" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a><a id="7003" class="Symbol">)</a>
<a id="7008" class="Keyword">module</a> <a id="7015" href="Categories.Adjoint.Equivalents.html#7015" class="Module">_</a> <a id="7017" class="Symbol">(</a><a id="7018" href="Categories.Adjoint.Equivalents.html#7018" class="Bound">Hni</a> <a id="7022" class="Symbol">:</a> <a id="7024" href="Categories.Adjoint.Equivalents.html#6785" class="Function">Hom[L-,-]</a> <a id="7034" href="Categories.NaturalTransformation.NaturalIsomorphism.html#3600" class="Function Operator"></a> <a id="7036" href="Categories.Adjoint.Equivalents.html#6898" class="Function">Hom[-,R-]</a><a id="7045" class="Symbol">)</a> <a id="7047" class="Keyword">where</a>
<a id="7057" class="Keyword">open</a> <a id="7062" href="Categories.NaturalTransformation.NaturalIsomorphism.html#651" class="Module">NaturalIsomorphism</a> <a id="7081" href="Categories.Adjoint.Equivalents.html#7018" class="Bound">Hni</a> <a id="7085" class="Keyword">using</a> <a id="7091" class="Symbol">(</a><a id="7092" class="Keyword">module</a> <a id="7099" href="Categories.NaturalTransformation.NaturalIsomorphism.html#969" class="Module"></a><a id="7100" class="Symbol">;</a> <a id="7102" class="Keyword">module</a> <a id="7109" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1008" class="Module"></a><a id="7110" class="Symbol">;</a> <a id="7112" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1051" class="Field">iso</a><a id="7115" class="Symbol">)</a>
<a id="7121" class="Keyword">private</a>
<a id="7135" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="7141" class="Symbol">:</a> <a id="7143" class="Symbol"></a> <a id="7145" href="Categories.Adjoint.Equivalents.html#7145" class="Bound">X</a> <a id="7147" class="Symbol"></a> <a id="7149" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="7152" href="Categories.Adjoint.Equivalents.html#6785" class="Function">Hom[L-,-]</a> <a id="7162" class="Symbol">(</a><a id="7163" href="Categories.Adjoint.Equivalents.html#7145" class="Bound">X</a> <a id="7165" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7167" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7172" href="Categories.Adjoint.Equivalents.html#7145" class="Bound">X</a><a id="7173" class="Symbol">)</a> <a id="7175" href="Function.Equality.html#1227" class="Function Operator"></a> <a id="7177" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="7180" href="Categories.Adjoint.Equivalents.html#6898" class="Function">Hom[-,R-]</a> <a id="7190" class="Symbol">(</a><a id="7191" href="Categories.Adjoint.Equivalents.html#7145" class="Bound">X</a> <a id="7193" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7195" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7200" href="Categories.Adjoint.Equivalents.html#7145" class="Bound">X</a><a id="7201" class="Symbol">)</a>
<a id="7209" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="7215" href="Categories.Adjoint.Equivalents.html#7215" class="Bound">X</a> <a id="7217" class="Symbol">=</a> <a id="7219" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7223" class="Symbol">(</a><a id="7224" href="Categories.Adjoint.Equivalents.html#7215" class="Bound">X</a> <a id="7226" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7228" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7233" href="Categories.Adjoint.Equivalents.html#7215" class="Bound">X</a><a id="7234" class="Symbol">)</a>
<a id="7243" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a> <a id="7248" class="Symbol">:</a> <a id="7250" href="Categories.NaturalTransformation.Core.html#466" class="Record">NaturalTransformation</a> <a id="7272" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a> <a id="7276" class="Symbol">(</a><a id="7277" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a> <a id="7279" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="7282" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a><a id="7283" class="Symbol">)</a>
<a id="7291" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a> <a id="7296" class="Symbol">=</a> <a id="7298" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="7307" class="Keyword">record</a>
<a id="7322" class="Symbol">{</a> <a id="7324" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="7332" class="Symbol">=</a> <a id="7334" class="Symbol">λ</a> <a id="7336" href="Categories.Adjoint.Equivalents.html#7336" class="Bound">X</a> <a id="7338" class="Symbol"></a> <a id="7340" href="Level.html#479" class="Field">lower</a> <a id="7346" class="Symbol">(</a><a id="7347" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="7353" href="Categories.Adjoint.Equivalents.html#7336" class="Bound">X</a> <a id="7355" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7359" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7364" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="7368" class="Symbol">)</a>
<a id="7378" class="Symbol">;</a> <a id="7380" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="7388" class="Symbol">=</a> <a id="7390" class="Symbol">λ</a> <a id="7392" class="Symbol">{</a><a id="7393" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7395" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7396" class="Symbol">}</a> <a id="7398" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a> <a id="7400" class="Symbol"></a> <a id="7402" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="7418" href="Level.html#479" class="Field">lower</a> <a id="7424" class="Symbol">(</a><a id="7425" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="7431" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a> <a id="7433" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7437" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7442" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="7446" class="Symbol">)</a> <a id="7448" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="7450" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a>
<a id="7464" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="7467" href="Categories.Morphism.Reasoning.Core.html#3063" class="Function">introˡ</a> <a id="7474" href="Categories.Functor.Core.html#511" class="Field">R.identity</a> <a id="7485" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="7497" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="7502" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="7507" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="7509" href="Level.html#479" class="Field">lower</a> <a id="7515" class="Symbol">(</a><a id="7516" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="7522" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a> <a id="7524" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7528" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7533" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="7537" class="Symbol">)</a> <a id="7539" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="7541" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a>
<a id="7555" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="7559" href="Level.html#479" class="Field">lower</a> <a id="7565" class="Symbol">(</a><a id="7566" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="7576" class="Symbol">(</a><a id="7577" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a> <a id="7579" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7581" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="7585" class="Symbol">)</a> <a id="7587" class="Symbol">(</a><a id="7588" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7593" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a><a id="7605" class="Symbol">))</a> <a id="7608" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="7620" href="Level.html#479" class="Field">lower</a> <a id="7626" class="Symbol">(</a><a id="7627" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7631" class="Symbol">(</a><a id="7632" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7634" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7636" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7641" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7642" class="Symbol">)</a> <a id="7644" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7648" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7653" class="Symbol">(</a><a id="7654" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="7659" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="7663" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="7668" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="7672" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="7677" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a><a id="7678" class="Symbol">))</a>
<a id="7693" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="7696" href="Level.html#479" class="Field">lower</a> <a id="7702" class="Symbol">(</a><a id="7703" href="Function.Equality.html#1140" class="Field">cong</a> <a id="7708" class="Symbol">(</a><a id="7709" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7713" class="Symbol">(</a><a id="7714" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7716" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7718" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7723" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7724" class="Symbol">))</a> <a id="7727" class="Symbol">(</a><a id="7728" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7733" class="Symbol">(</a><a id="7734" href="Relation.Binary.Structures.html#1629" class="Function">D.Equiv.trans</a> <a id="7748" href="Categories.Category.Core.html#1096" class="Function">D.identityˡ</a> <a id="7760" href="Categories.Category.Core.html#1096" class="Function">D.identityˡ</a><a id="7771" class="Symbol">)))</a> <a id="7775" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="7787" href="Level.html#479" class="Field">lower</a> <a id="7793" class="Symbol">(</a><a id="7794" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7798" class="Symbol">(</a><a id="7799" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7801" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7803" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7808" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7809" class="Symbol">)</a> <a id="7811" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7815" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7820" class="Symbol">(</a><a id="7821" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="7826" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a><a id="7827" class="Symbol">))</a>
<a id="7842" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="7845" href="Level.html#479" class="Field">lower</a> <a id="7851" class="Symbol">(</a><a id="7852" href="Function.Equality.html#1140" class="Field">cong</a> <a id="7857" class="Symbol">(</a><a id="7858" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7862" class="Symbol">(</a><a id="7863" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7865" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7867" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7872" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7873" class="Symbol">))</a> <a id="7876" class="Symbol">(</a><a id="7877" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7882" class="Symbol">(</a><a id="7883" href="Categories.Morphism.Reasoning.Core.html#2899" class="Function">MR.introʳ</a> <a id="7893" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="7895" class="Symbol">(</a><a id="7896" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="7905" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="7907" href="Categories.Functor.Core.html#511" class="Function">L.identity</a><a id="7917" class="Symbol">))))</a> <a id="7922" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="7934" href="Level.html#479" class="Field">lower</a> <a id="7940" class="Symbol">(</a><a id="7941" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="7945" class="Symbol">(</a><a id="7946" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="7948" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="7950" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="7955" href="Categories.Adjoint.Equivalents.html#7395" class="Bound">Y</a><a id="7956" class="Symbol">)</a> <a id="7958" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="7962" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="7967" class="Symbol">(</a><a id="7968" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="7973" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a> <a id="7975" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="7979" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="7984" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="7988" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="7993" href="Categories.Category.Core.html#630" class="Function">id</a><a id="7995" class="Symbol">))</a>
<a id="8010" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="8013" href="Level.html#479" class="Field">lower</a> <a id="8019" class="Symbol">(</a><a id="8020" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="8030" class="Symbol">(</a><a id="8031" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="8036" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8038" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="8043" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a><a id="8044" class="Symbol">)</a> <a id="8046" class="Symbol">(</a><a id="8047" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8052" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a><a id="8064" class="Symbol">))</a> <a id="8067" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="8079" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8084" class="Symbol">(</a><a id="8085" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="8090" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a><a id="8091" class="Symbol">)</a> <a id="8093" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8095" href="Level.html#479" class="Field">lower</a> <a id="8101" class="Symbol">(</a><a id="8102" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="8106" class="Symbol">(</a><a id="8107" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="8109" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8111" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="8116" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a><a id="8117" class="Symbol">)</a> <a id="8119" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8123" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8128" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="8132" class="Symbol">)</a> <a id="8134" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8136" href="Categories.Category.Core.html#630" class="Function">id</a>
<a id="8151" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="8154" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="8162" href="Categories.Category.Core.html#1145" class="Function">identityʳ</a> <a id="8172" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="8184" href="Categories.Functor.Core.html#455" class="Field">F₁</a> <a id="8187" class="Symbol">(</a><a id="8188" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a> <a id="8190" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="8193" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a><a id="8194" class="Symbol">)</a> <a id="8196" href="Categories.Adjoint.Equivalents.html#7398" class="Bound">f</a> <a id="8198" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8200" href="Level.html#479" class="Field">lower</a> <a id="8206" class="Symbol">(</a><a id="8207" href="Categories.Adjoint.Equivalents.html#7135" class="Function">unitη</a> <a id="8213" href="Categories.Adjoint.Equivalents.html#7393" class="Bound">X</a> <a id="8215" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8219" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8224" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="8228" class="Symbol">)</a> <a id="8245" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="8255" class="Symbol">}</a>
<a id="8265" class="Keyword">where</a> <a id="8271" class="Keyword">open</a> <a id="8276" href="Categories.Adjoint.Equivalents.html#6661" class="Module">C</a>
<a id="8292" class="Keyword">open</a> <a id="8297" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="8324" class="Keyword">open</a> <a id="8329" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="8332" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a>
<a id="8341" href="Categories.Adjoint.Equivalents.html#8341" class="Function">counitη</a> <a id="8349" class="Symbol">:</a> <a id="8351" class="Symbol"></a> <a id="8353" href="Categories.Adjoint.Equivalents.html#8353" class="Bound">X</a> <a id="8355" class="Symbol"></a> <a id="8357" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="8360" href="Categories.Adjoint.Equivalents.html#6898" class="Function">Hom[-,R-]</a> <a id="8370" class="Symbol">(</a><a id="8371" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8376" href="Categories.Adjoint.Equivalents.html#8353" class="Bound">X</a> <a id="8378" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8380" href="Categories.Adjoint.Equivalents.html#8353" class="Bound">X</a><a id="8381" class="Symbol">)</a> <a id="8383" href="Function.Equality.html#1227" class="Function Operator"></a> <a id="8385" href="Categories.Functor.Core.html#432" class="Field">F₀</a> <a id="8388" href="Categories.Adjoint.Equivalents.html#6785" class="Function">Hom[L-,-]</a> <a id="8398" class="Symbol">(</a><a id="8399" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8404" href="Categories.Adjoint.Equivalents.html#8353" class="Bound">X</a> <a id="8406" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8408" href="Categories.Adjoint.Equivalents.html#8353" class="Bound">X</a><a id="8409" class="Symbol">)</a>
<a id="8417" href="Categories.Adjoint.Equivalents.html#8341" class="Function">counitη</a> <a id="8425" href="Categories.Adjoint.Equivalents.html#8425" class="Bound">X</a> <a id="8427" class="Symbol">=</a> <a id="8429" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="8433" class="Symbol">(</a><a id="8434" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8439" href="Categories.Adjoint.Equivalents.html#8425" class="Bound">X</a> <a id="8441" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8443" href="Categories.Adjoint.Equivalents.html#8425" class="Bound">X</a><a id="8444" class="Symbol">)</a>
<a id="8453" href="Categories.Adjoint.Equivalents.html#8453" class="Function">counit</a> <a id="8460" class="Symbol">:</a> <a id="8462" href="Categories.NaturalTransformation.Core.html#466" class="Record">NaturalTransformation</a> <a id="8484" class="Symbol">(</a><a id="8485" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a> <a id="8487" href="Categories.Functor.html#747" class="Function Operator">∘F</a> <a id="8490" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a><a id="8491" class="Symbol">)</a> <a id="8493" href="Categories.Adjoint.Equivalents.html#805" class="Function">idF</a>
<a id="8503" href="Categories.Adjoint.Equivalents.html#8453" class="Function">counit</a> <a id="8510" class="Symbol">=</a> <a id="8512" href="Categories.NaturalTransformation.Core.html#1750" class="Function">ntHelper</a> <a id="8521" class="Keyword">record</a>
<a id="8536" class="Symbol">{</a> <a id="8538" href="Categories.NaturalTransformation.Core.html#1637" class="Field">η</a> <a id="8546" class="Symbol">=</a> <a id="8548" class="Symbol">λ</a> <a id="8550" href="Categories.Adjoint.Equivalents.html#8550" class="Bound">X</a> <a id="8552" class="Symbol"></a> <a id="8554" href="Level.html#479" class="Field">lower</a> <a id="8560" class="Symbol">(</a><a id="8561" href="Categories.Adjoint.Equivalents.html#8341" class="Function">counitη</a> <a id="8569" href="Categories.Adjoint.Equivalents.html#8550" class="Bound">X</a> <a id="8571" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8575" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8580" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="8584" class="Symbol">)</a>
<a id="8594" class="Symbol">;</a> <a id="8596" href="Categories.NaturalTransformation.Core.html#1681" class="Field">commute</a> <a id="8604" class="Symbol">=</a> <a id="8606" class="Symbol">λ</a> <a id="8608" class="Symbol">{</a><a id="8609" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a><a id="8610" class="Symbol">}</a> <a id="8612" class="Symbol">{</a><a id="8613" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="8614" class="Symbol">}</a> <a id="8616" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a> <a id="8618" class="Symbol"></a> <a id="8620" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="8636" href="Level.html#479" class="Field">lower</a> <a id="8642" class="Symbol">(</a><a id="8643" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="8647" class="Symbol">(</a><a id="8648" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8653" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a> <a id="8655" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8657" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="8658" class="Symbol">)</a> <a id="8660" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8664" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8669" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="8673" class="Symbol">)</a> <a id="8675" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8677" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="8682" class="Symbol">(</a><a id="8683" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8688" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a><a id="8689" class="Symbol">)</a>
<a id="8703" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="8707" href="Categories.Category.Core.html#1096" class="Function">identityˡ</a> <a id="8717" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="8729" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="8732" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8734" href="Level.html#479" class="Field">lower</a> <a id="8740" class="Symbol">(</a><a id="8741" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="8745" class="Symbol">(</a><a id="8746" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8751" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a> <a id="8753" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8755" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="8756" class="Symbol">)</a> <a id="8758" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8762" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8767" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="8771" class="Symbol">)</a> <a id="8773" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="8775" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="8780" class="Symbol">(</a><a id="8781" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8786" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a><a id="8787" class="Symbol">)</a>
<a id="8801" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="8805" href="Level.html#479" class="Field">lower</a> <a id="8811" class="Symbol">(</a><a id="8812" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="8822" class="Symbol">(</a><a id="8823" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8828" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a> <a id="8830" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8832" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="8836" class="Symbol">)</a> <a id="8838" class="Symbol">(</a><a id="8839" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8844" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a><a id="8856" class="Symbol">))</a> <a id="8859" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="8871" href="Level.html#479" class="Field">lower</a> <a id="8877" class="Symbol">(</a><a id="8878" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="8882" class="Symbol">(</a><a id="8883" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8888" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="8890" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8892" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="8893" class="Symbol">)</a> <a id="8895" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="8899" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8904" class="Symbol">(</a><a id="8905" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8910" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="8913" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="8917" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="8922" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="8926" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="8931" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a><a id="8932" class="Symbol">))</a>
<a id="8947" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="8950" href="Level.html#479" class="Field">lower</a> <a id="8956" class="Symbol">(</a><a id="8957" href="Function.Equality.html#1140" class="Field">cong</a> <a id="8962" class="Symbol">(</a><a id="8963" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="8967" class="Symbol">(</a><a id="8968" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="8973" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="8975" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="8977" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="8978" class="Symbol">))</a> <a id="8981" class="Symbol">(</a><a id="8982" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="8987" class="Symbol">(</a><a id="8988" href="Relation.Binary.Structures.html#1629" class="Function">C.Equiv.trans</a> <a id="9002" class="Symbol">(</a><a id="9003" href="Categories.Morphism.Reasoning.Core.html#2948" class="Function">MR.elimˡ</a> <a id="9012" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="9014" href="Categories.Functor.Core.html#511" class="Field">R.identity</a><a id="9024" class="Symbol">)</a> <a id="9026" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="9037" class="Symbol">)))</a> <a id="9041" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="9053" href="Level.html#479" class="Field">lower</a> <a id="9059" class="Symbol">(</a><a id="9060" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="9064" class="Symbol">(</a><a id="9065" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="9070" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="9072" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9074" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="9075" class="Symbol">)</a> <a id="9077" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9081" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9086" class="Symbol">(</a><a id="9087" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="9092" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a><a id="9093" class="Symbol">))</a>
<a id="9108" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="9111" href="Level.html#479" class="Field">lower</a> <a id="9117" class="Symbol">(</a><a id="9118" href="Function.Equality.html#1140" class="Field">cong</a> <a id="9123" class="Symbol">(</a><a id="9124" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="9128" class="Symbol">(</a><a id="9129" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="9134" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="9136" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9138" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="9139" class="Symbol">))</a> <a id="9142" class="Symbol">(</a><a id="9143" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9148" class="Symbol">(</a><a id="9149" href="Categories.Morphism.Reasoning.Core.html#2899" class="Function">MR.introʳ</a> <a id="9159" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="9161" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="9172" class="Symbol">)))</a> <a id="9176" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="9188" href="Level.html#479" class="Field">lower</a> <a id="9194" class="Symbol">(</a><a id="9195" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="9199" class="Symbol">(</a><a id="9200" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="9205" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="9207" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9209" href="Categories.Adjoint.Equivalents.html#8613" class="Bound">Y</a><a id="9210" class="Symbol">)</a> <a id="9212" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9216" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9221" class="Symbol">(</a><a id="9222" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="9227" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a> <a id="9229" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="9233" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="9238" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="9242" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="9246" class="Symbol">))</a>
<a id="9261" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="9264" href="Level.html#479" class="Field">lower</a> <a id="9270" class="Symbol">(</a><a id="9271" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="9281" class="Symbol">(</a><a id="9282" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="9287" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9289" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a><a id="9290" class="Symbol">)</a> <a id="9292" class="Symbol">(</a><a id="9293" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9298" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a><a id="9310" class="Symbol">))</a> <a id="9313" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="9325" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a> <a id="9327" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9329" href="Level.html#479" class="Field">lower</a> <a id="9335" class="Symbol">(</a><a id="9336" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="9340" class="Symbol">(</a><a id="9341" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="9346" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="9348" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9350" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a><a id="9351" class="Symbol">)</a> <a id="9353" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9357" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9362" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="9366" class="Symbol">)</a> <a id="9368" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9370" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="9375" href="Categories.Category.Core.html#630" class="Function">C.id</a>
<a id="9392" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="9395" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="9403" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">elimʳ</a> <a id="9409" href="Categories.Functor.Core.html#511" class="Function">L.identity</a> <a id="9420" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="9432" href="Categories.Adjoint.Equivalents.html#8616" class="Bound">f</a> <a id="9434" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9436" href="Level.html#479" class="Field">lower</a> <a id="9442" class="Symbol">(</a><a id="9443" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="9447" class="Symbol">(</a><a id="9448" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="9453" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a> <a id="9455" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="9457" href="Categories.Adjoint.Equivalents.html#8609" class="Bound">X</a><a id="9458" class="Symbol">)</a> <a id="9460" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9464" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9469" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="9473" class="Symbol">)</a>
<a id="9487" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="9497" class="Symbol">}</a>
<a id="9507" class="Keyword">where</a> <a id="9513" class="Keyword">open</a> <a id="9518" href="Categories.Adjoint.Equivalents.html#6687" class="Module">D</a>
<a id="9534" class="Keyword">open</a> <a id="9539" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="9566" class="Keyword">open</a> <a id="9571" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="9574" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a>
<a id="9581" href="Categories.Adjoint.Equivalents.html#9581" class="Function">Hom-NI⇒Adjoint</a> <a id="9597" class="Symbol">:</a> <a id="9599" href="Categories.Adjoint.Equivalents.html#6599" class="Bound">L</a> <a id="9601" href="Categories.Adjoint.html#7972" class="Function Operator"></a> <a id="9603" href="Categories.Adjoint.Equivalents.html#6617" class="Bound">R</a>
<a id="9609" href="Categories.Adjoint.Equivalents.html#9581" class="Function">Hom-NI⇒Adjoint</a> <a id="9625" class="Symbol">=</a> <a id="9627" class="Keyword">record</a>
<a id="9640" class="Symbol">{</a> <a id="9642" href="Categories.Adjoint.html#1519" class="Field">unit</a> <a id="9649" class="Symbol">=</a> <a id="9651" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a>
<a id="9662" class="Symbol">;</a> <a id="9664" href="Categories.Adjoint.html#1567" class="Field">counit</a> <a id="9671" class="Symbol">=</a> <a id="9673" href="Categories.Adjoint.Equivalents.html#8453" class="Function">counit</a>
<a id="9686" class="Symbol">;</a> <a id="9688" href="Categories.Adjoint.html#1715" class="Field">zig</a> <a id="9695" class="Symbol">=</a> <a id="9697" class="Symbol">λ</a> <a id="9699" class="Symbol">{</a><a id="9700" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="9701" class="Symbol">}</a> <a id="9703" class="Symbol"></a>
<a id="9713" class="Keyword">let</a> <a id="9717" class="Keyword">open</a> <a id="9722" href="Categories.Adjoint.Equivalents.html#6687" class="Module">D</a>
<a id="9736" class="Keyword">open</a> <a id="9741" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="9766" class="Keyword">open</a> <a id="9771" href="Categories.Category.Core.html#1530" class="Module">Equiv</a>
<a id="9789" class="Keyword">open</a> <a id="9794" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="9797" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a>
<a id="9807" class="Keyword">in</a> <a id="9810" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="9826" href="Level.html#479" class="Field">lower</a> <a id="9832" class="Symbol">(</a><a id="9833" href="Categories.Adjoint.Equivalents.html#8341" class="Function">counitη</a> <a id="9841" class="Symbol">(</a><a id="9842" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="9847" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="9848" class="Symbol">)</a> <a id="9850" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9854" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9859" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="9863" class="Symbol">)</a> <a id="9865" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9867" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="9872" class="Symbol">(</a><a id="9873" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="9875" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a> <a id="9880" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="9881" class="Symbol">)</a>
<a id="9895" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="9899" href="Categories.Category.Core.html#1096" class="Function">identityˡ</a> <a id="9909" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="9921" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="9924" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9926" href="Level.html#479" class="Field">lower</a> <a id="9932" class="Symbol">(</a><a id="9933" href="Categories.Adjoint.Equivalents.html#8341" class="Function">counitη</a> <a id="9941" class="Symbol">(</a><a id="9942" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="9947" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="9948" class="Symbol">)</a> <a id="9950" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="9954" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="9959" href="Categories.Category.Core.html#630" class="Function">C.id</a><a id="9963" class="Symbol">)</a> <a id="9965" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="9967" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="9972" class="Symbol">(</a><a id="9973" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="9975" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a> <a id="9980" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="9981" class="Symbol">)</a>
<a id="9995" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="9999" href="Level.html#479" class="Field">lower</a> <a id="10005" class="Symbol">(</a><a id="10006" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇐.commute</a> <a id="10016" class="Symbol">(</a><a id="10017" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="10019" href="Categories.Adjoint.Equivalents.html#7243" class="Function">unit</a> <a id="10024" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10026" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10028" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10030" class="Symbol">)</a> <a id="10032" class="Symbol">(</a><a id="10033" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10038" href="Relation.Binary.Structures.html#1577" class="Function">C.Equiv.refl</a><a id="10050" class="Symbol">))</a> <a id="10053" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="10065" href="Level.html#479" class="Field">lower</a> <a id="10071" class="Symbol">(</a><a id="10072" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10076" class="Symbol">(</a><a id="10077" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10079" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10081" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10086" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="10087" class="Symbol">)</a> <a id="10089" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10093" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10098" class="Symbol">(</a><a id="10099" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="10104" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="10107" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="10111" href="Categories.Category.Core.html#630" class="Function">C.id</a> <a id="10116" href="Categories.Category.Core.html#656" class="Function Operator">C.∘</a> <a id="10120" href="Level.html#479" class="Field">lower</a> <a id="10126" class="Symbol">(</a><a id="10127" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10131" class="Symbol">(</a><a id="10132" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10134" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10136" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10141" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="10142" class="Symbol">)</a> <a id="10144" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10148" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10153" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10155" class="Symbol">)))</a>
<a id="10171" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="10174" href="Level.html#479" class="Field">lower</a> <a id="10180" class="Symbol">(</a><a id="10181" href="Function.Equality.html#1140" class="Field">cong</a> <a id="10186" class="Symbol">(</a><a id="10187" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10191" class="Symbol">(</a><a id="10192" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10194" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10196" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10201" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="10202" class="Symbol">))</a> <a id="10205" class="Symbol">(</a><a id="10206" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10211" class="Symbol">(</a><a id="10212" href="Relation.Binary.Structures.html#1629" class="Function">C.Equiv.trans</a> <a id="10226" class="Symbol">(</a><a id="10227" href="Categories.Morphism.Reasoning.Core.html#2948" class="Function">MR.elimˡ</a> <a id="10236" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a> <a id="10238" href="Categories.Functor.Core.html#511" class="Field">R.identity</a><a id="10248" class="Symbol">)</a> <a id="10250" href="Categories.Category.Core.html#1096" class="Function">C.identityˡ</a><a id="10261" class="Symbol">)))</a> <a id="10265" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="10277" href="Level.html#479" class="Field">lower</a> <a id="10283" class="Symbol">(</a><a id="10284" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10288" class="Symbol">(</a><a id="10289" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10291" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10293" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10298" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="10299" class="Symbol">)</a> <a id="10301" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10305" class="Symbol">(</a><a id="10306" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10310" class="Symbol">(</a><a id="10311" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a> <a id="10313" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10315" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10320" href="Categories.Adjoint.Equivalents.html#9700" class="Bound">A</a><a id="10321" class="Symbol">)</a> <a id="10323" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10327" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10332" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10334" class="Symbol">))</a>
<a id="10349" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="10352" href="Level.html#479" class="Field">lower</a> <a id="10358" class="Symbol">(</a><a id="10359" href="Categories.Morphism.html#1586" class="Function">isoˡ</a> <a id="10364" class="Symbol">(</a><a id="10365" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10370" href="Relation.Binary.Structures.html#1577" class="Function">refl</a><a id="10374" class="Symbol">))</a> <a id="10377" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="10389" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="10392" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="10400" class="Symbol">;</a> <a id="10402" href="Categories.Adjoint.html#1788" class="Field">zag</a> <a id="10409" class="Symbol">=</a> <a id="10411" class="Symbol">λ</a> <a id="10413" class="Symbol">{</a><a id="10414" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10415" class="Symbol">}</a> <a id="10417" class="Symbol"></a>
<a id="10427" class="Keyword">let</a> <a id="10431" class="Keyword">open</a> <a id="10436" href="Categories.Adjoint.Equivalents.html#6661" class="Module">C</a>
<a id="10450" class="Keyword">open</a> <a id="10455" href="Categories.Category.Core.html#2462" class="Module">HomReasoning</a>
<a id="10480" class="Keyword">open</a> <a id="10485" href="Categories.Category.Core.html#1530" class="Module">Equiv</a>
<a id="10503" class="Keyword">open</a> <a id="10508" href="Categories.Morphism.Reasoning.html" class="Module">MR</a> <a id="10511" href="Categories.Adjoint.Equivalents.html#6554" class="Bound">C</a>
<a id="10521" class="Keyword">in</a> <a id="10524" href="Relation.Binary.Reasoning.Base.Single.html#1925" class="Function Operator">begin</a>
<a id="10540" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="10545" class="Symbol">(</a><a id="10546" href="Level.html#479" class="Field">lower</a> <a id="10552" class="Symbol">(</a><a id="10553" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10557" class="Symbol">(</a><a id="10558" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10563" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10565" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10567" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10568" class="Symbol">)</a> <a id="10570" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10574" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10579" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10581" class="Symbol">))</a> <a id="10584" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="10586" href="Level.html#479" class="Field">lower</a> <a id="10592" class="Symbol">(</a><a id="10593" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10597" class="Symbol">(</a><a id="10598" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10603" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10605" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10607" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10612" class="Symbol">(</a><a id="10613" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10618" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10619" class="Symbol">))</a> <a id="10622" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10626" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10631" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="10635" class="Symbol">)</a>
<a id="10649" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="10653" href="Categories.Category.Core.html#2734" class="Function Operator">refl⟩∘⟨</a> <a id="10661" href="Categories.Category.Core.html#1145" class="Function">identityʳ</a> <a id="10671" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="10683" href="Categories.Functor.Core.html#455" class="Field">R.F₁</a> <a id="10688" class="Symbol">(</a><a id="10689" href="Level.html#479" class="Field">lower</a> <a id="10695" class="Symbol">(</a><a id="10696" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10700" class="Symbol">(</a><a id="10701" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10706" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10708" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10710" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10711" class="Symbol">)</a> <a id="10713" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10717" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10722" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10724" class="Symbol">))</a> <a id="10727" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="10729" href="Level.html#479" class="Field">lower</a> <a id="10735" class="Symbol">(</a><a id="10736" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10740" class="Symbol">(</a><a id="10741" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10746" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10748" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10750" href="Categories.Functor.Core.html#432" class="Function">L.F₀</a> <a id="10755" class="Symbol">(</a><a id="10756" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10761" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10762" class="Symbol">))</a> <a id="10765" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10769" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10774" href="Categories.Category.Core.html#630" class="Function">D.id</a><a id="10778" class="Symbol">)</a> <a id="10780" href="Categories.Category.Core.html#656" class="Function Operator"></a> <a id="10782" href="Categories.Category.Core.html#630" class="Function">id</a>
<a id="10797" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function">≈˘⟨</a> <a id="10801" href="Level.html#479" class="Field">lower</a> <a id="10807" class="Symbol">(</a><a id="10808" href="Categories.NaturalTransformation.Core.html#827" class="Function">⇒.commute</a> <a id="10818" class="Symbol">(</a><a id="10819" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="10822" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10824" href="Categories.NaturalTransformation.Core.html#783" class="Field">η</a> <a id="10826" href="Categories.Adjoint.Equivalents.html#8453" class="Function">counit</a> <a id="10833" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10834" class="Symbol">)</a> <a id="10836" class="Symbol">(</a><a id="10837" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10842" href="Relation.Binary.Structures.html#1577" class="Function">D.Equiv.refl</a><a id="10854" class="Symbol">))</a> <a id="10857" href="Relation.Binary.Reasoning.Setoid.html#1162" class="Function"></a>
<a id="10869" href="Level.html#479" class="Field">lower</a> <a id="10875" class="Symbol">(</a><a id="10876" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10880" class="Symbol">(</a><a id="10881" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10886" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10888" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10890" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10891" class="Symbol">)</a> <a id="10893" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10897" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10902" class="Symbol">(</a><a id="10903" href="Level.html#479" class="Field">lower</a> <a id="10909" class="Symbol">(</a><a id="10910" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="10914" class="Symbol">(</a><a id="10915" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="10920" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="10922" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="10924" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="10925" class="Symbol">)</a> <a id="10927" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="10931" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="10936" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10938" class="Symbol">)</a> <a id="10940" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="10944" href="Categories.Category.Core.html#630" class="Function">D.id</a> <a id="10949" href="Categories.Category.Core.html#656" class="Function Operator">D.∘</a> <a id="10953" href="Categories.Functor.Core.html#455" class="Function">L.F₁</a> <a id="10958" href="Categories.Category.Core.html#630" class="Function">id</a><a id="10960" class="Symbol">))</a>
<a id="10975" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="10978" href="Level.html#479" class="Field">lower</a> <a id="10984" class="Symbol">(</a><a id="10985" href="Function.Equality.html#1140" class="Field">cong</a> <a id="10990" class="Symbol">(</a><a id="10991" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="10995" class="Symbol">(</a><a id="10996" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="11001" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="11003" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="11005" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="11006" class="Symbol">))</a> <a id="11009" class="Symbol">(</a><a id="11010" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="11015" class="Symbol">(</a><a id="11016" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="11025" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="11027" class="Symbol">(</a><a id="11028" href="Categories.Morphism.Reasoning.Core.html#2786" class="Function">MR.elimʳ</a> <a id="11037" href="Categories.Adjoint.Equivalents.html#6575" class="Bound">D</a> <a id="11039" href="Categories.Functor.Core.html#511" class="Function">L.identity</a><a id="11049" class="Symbol">))))</a> <a id="11054" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="11066" href="Level.html#479" class="Field">lower</a> <a id="11072" class="Symbol">(</a><a id="11073" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇒.η</a> <a id="11077" class="Symbol">(</a><a id="11078" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="11083" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="11085" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="11087" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="11088" class="Symbol">)</a> <a id="11090" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="11094" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="11099" class="Symbol">(</a><a id="11100" href="Level.html#479" class="Field">lower</a> <a id="11106" class="Symbol">(</a><a id="11107" href="Categories.NaturalTransformation.Core.html#783" class="Function">⇐.η</a> <a id="11111" class="Symbol">(</a><a id="11112" href="Categories.Functor.Core.html#432" class="Field">R.F₀</a> <a id="11117" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a> <a id="11119" href="Agda.Builtin.Sigma.html#218" class="InductiveConstructor Operator">,</a> <a id="11121" href="Categories.Adjoint.Equivalents.html#10414" class="Bound">B</a><a id="11122" class="Symbol">)</a> <a id="11124" href="Function.Equality.html#1073" class="Field Operator">⟨$⟩</a> <a id="11128" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="11133" href="Categories.Category.Core.html#630" class="Function">id</a><a id="11135" class="Symbol">)))</a>
<a id="11151" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function">≈⟨</a> <a id="11154" href="Level.html#479" class="Field">lower</a> <a id="11160" class="Symbol">(</a><a id="11161" href="Categories.Morphism.html#1612" class="Function">isoʳ</a> <a id="11166" class="Symbol">(</a><a id="11167" href="Level.html#466" class="InductiveConstructor">lift</a> <a id="11172" href="Relation.Binary.Structures.html#1577" class="Function">refl</a><a id="11176" class="Symbol">))</a> <a id="11179" href="Relation.Binary.Reasoning.Setoid.html#1061" class="Function"></a>
<a id="11191" href="Categories.Category.Core.html#630" class="Function">id</a> <a id="11194" href="Relation.Binary.Reasoning.Base.Single.html#2564" class="Function Operator"></a>
<a id="11202" class="Symbol">}</a>
<a id="11210" class="Keyword">where</a> <a id="11216" class="Keyword">open</a> <a id="11221" href="Categories.NaturalTransformation.Core.html#466" class="Module">NaturalTransformation</a>
<a id="11255" class="Keyword">module</a> <a id="11262" href="Categories.Adjoint.Equivalents.html#11262" class="Module">_</a> <a id="11264" class="Symbol">{</a><a id="11265" href="Categories.Adjoint.Equivalents.html#11265" class="Bound">X</a><a id="11266" class="Symbol">}</a> <a id="11268" class="Keyword">where</a>
<a id="11288" class="Keyword">open</a> <a id="11293" href="Categories.Morphism.html#1528" class="Module">Iso</a> <a id="11297" class="Symbol">(</a><a id="11298" href="Categories.NaturalTransformation.NaturalIsomorphism.html#1051" class="Field">iso</a> <a id="11302" href="Categories.Adjoint.Equivalents.html#11265" class="Bound">X</a><a id="11303" class="Symbol">)</a> <a id="11305" class="Keyword">public</a>
</pre></body></html>