bsc-leon-vatthauer/slides/sections/01_abstracting.tex

103 lines
3.6 KiB
TeX
Raw Normal View History

2024-01-11 13:38:32 +01:00
\section{Categorical Notions of Partiality}
2024-01-14 18:12:29 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Moggi's categorical semantics~\cite{moggi}}
Goal: interpret an effectul programming language in a category $\mathcal{C}$
2024-01-11 13:38:32 +01:00
\begin{itemize}
2024-01-14 18:12:29 +01:00
\item<2-> Take a Monad $T$ on $\mathcal{C}$, then values are denoted by objects $A$ and programs by $TA$
\item<3-> Programs form a category $\mathcal{C}_T$ with $\mathcal{C}_T(X,Y) := \mathcal{C}(X, TY)$
\end{itemize}
2024-01-11 13:38:32 +01:00
2024-01-14 18:12:29 +01:00
\onslide<4->
What properties should a partiality monad $T$ have?
2024-01-11 13:38:32 +01:00
2024-01-14 18:12:29 +01:00
\begin{enumerate}
\item<5-> Commutativity (also entails strength), i.e. the following programs should yield equal results:
\begin{multicols}{2}
\begin{minted}{haskell}
do x <- p
y <- q
return (x, y)
\end{minted}
\begin{minted}{haskell}
do y <- q
x <- p
return (x, y)
\end{minted}
\end{multicols}
where p and q are programs.
\item<6-> Morphisms in $\mathcal{C}_T$ should be partial maps (How?)
\end{enumerate}
\end{frame}
\newcommand{\tdom}{\text{dom}}
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Restriction Categories~\cite{restriction}}
\begin{definition}<1->
A restriction structure on $\mathcal{C}$ is a mapping $\tdom : \mathcal{C}(X,Y) \rightarrow \mathcal{C}(X,X)$ with the following properties:
\begin{alignat}{1}
f \circ (\tdom f) &= f\\
(\tdom f) \circ (\tdom g) &= (\tdom g) \circ (\tdom f)\\
\tdom(g \circ (\tdom f)) &= (\tdom g) \circ (\tdom f)\\
(\tdom h) \circ f &= f \circ \tdom (h \circ f)
\end{alignat}
for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow KY, g : X \rightarrow KZ, h: Y \rightarrow KZ$.
\end{definition}
Intuitively $\tdom f$ captures the domain of definiteness of $f$.
\begin{block}{Remark}<2->
Every category has a trivial restriction structure $\tdom f = id$, we call categories with a non-trivial restriction structure \textit{restriction categories}.
\end{block}
\end{frame}
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Equational Lifting Monads~\cite{eqlm}}
The following criterion is sufficient for guaranteeing that the kleisli category is a restriction category:
\begin{definition}
A commutative monad $T$ is called an \textit{equational lifting monad} if the following diagram commutes:
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJUWCJdLFsyLDAsIlRYIFxcdGltZXMgVFgiXSxbMiwyLCJUKFRYIFxcdGltZXMgWCkiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiXFx0YXUiXSxbMCwyLCJUIFxcbGFuZ2xlIFxcZXRhICwgaWQgXFxyYW5nbGUiLDJdXQ==
\[\begin{tikzcd}
TX && {TX \times TX} \\
\\
&& {T(TX \times X)}
\arrow["\Delta", from=1-1, to=1-3]
\arrow["\tau", from=1-3, to=3-3]
\arrow["{T \langle \eta , id \rangle}"', from=1-1, to=3-3]
\end{tikzcd}\]
\end{definition}
\pause
\begin{theorem}
The Kleisli category of an equational lifting monad is a restriction category.
\end{theorem}
2024-01-11 13:38:32 +01:00
\end{frame}
2024-01-14 18:12:29 +01:00
% TODO is the maybe monad an equational lifting monad? Ask sergey
2024-01-11 13:38:32 +01:00
\begin{frame}[t, fragile]{The Maybe Monad}
\begin{itemize}
\item Short definition
\item is equational lifting monad
\end{itemize}
\end{frame}
2024-01-14 18:12:29 +01:00
% TODO is delay equational lifting?? maybe rethink the story here...
2024-01-11 13:38:32 +01:00
\begin{frame}[t, fragile]{The Delay Monad}
\begin{itemize}
\item Definition
\item Strong-Bisimilarity
\item Weak-Bisimilarity (Monad?)
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{Iteration}
\begin{itemize}
\item Elgot-Algebras
\item Free Elgot-Algebras yield monad K
\item K is equational lifting
\item K instantiates to maybe and delay
\end{itemize}
\end{frame}