mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
🎨 Tidy up proof that K is strong, add explanations
This commit is contained in:
parent
d61a4c8bfa
commit
07dffa087c
5 changed files with 300 additions and 252 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -3,3 +3,4 @@
|
||||||
*.log
|
*.log
|
||||||
Everything.agda
|
Everything.agda
|
||||||
public/
|
public/
|
||||||
|
.direnv
|
|
@ -38,7 +38,8 @@ open import Category.Construction.UniformIterationAlgebras
|
||||||
Existence of free uniform-iteration algebras yields a monad that is of interest to us, we call it **K** and want to show some of it's properties (i.e. that it is strong and an equational lifting monad):
|
Existence of free uniform-iteration algebras yields a monad that is of interest to us, we call it **K** and want to show some of it's properties (i.e. that it is strong and an equational lifting monad):
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
open import Monad.Instance.K -- TODO move to Monad.Construction.K
|
open import Monad.Instance.K
|
||||||
|
open import Monad.Instance.K.Strong
|
||||||
```
|
```
|
||||||
|
|
||||||
Later we will also show that free uniform-iteration algebras coincide with free elgot algebras
|
Later we will also show that free uniform-iteration algebras coincide with free elgot algebras
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
<!--
|
<!--
|
||||||
```agda
|
```agda
|
||||||
|
{-# OPTIONS --allow-unsolved-metas #-}
|
||||||
open import Level
|
open import Level
|
||||||
open import Category.Instance.AmbientCategory
|
open import Category.Instance.AmbientCategory
|
||||||
open import Categories.Functor
|
open import Categories.Functor
|
||||||
|
|
|
@ -1,58 +1,46 @@
|
||||||
<!--
|
<!--
|
||||||
```agda
|
```agda
|
||||||
{-# OPTIONS --allow-unsolved-metas #-}
|
|
||||||
open import Level
|
open import Level
|
||||||
open import Categories.FreeObjects.Free
|
open import Categories.FreeObjects.Free using (FreeObject; FO⇒Functor; FO⇒LAdj)
|
||||||
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _×C_)
|
open import Categories.Functor.Core using (Functor)
|
||||||
open import Categories.Category
|
open import Categories.Adjoint using (_⊣_)
|
||||||
open import Categories.Functor.Core
|
open import Categories.Adjoint.Properties using (adjoint⇒monad)
|
||||||
open import Categories.Adjoint
|
open import Categories.Monad using (Monad)
|
||||||
open import Categories.Adjoint.Properties
|
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
|
||||||
open import Categories.Monad
|
|
||||||
open import Categories.Monad.Strong
|
|
||||||
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
|
||||||
open import Categories.Monad.Construction.Kleisli
|
|
||||||
open import Category.Instance.AmbientCategory using (Ambient)
|
open import Category.Instance.AmbientCategory using (Ambient)
|
||||||
open import Categories.NaturalTransformation
|
open import Categories.Monad.Construction.Kleisli
|
||||||
open import Categories.Object.Terminal
|
|
||||||
-- open import Data.Product using (_,_; Σ; Σ-syntax)
|
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
## Summary
|
# The monad K
|
||||||
In this file I explore the monad ***K*** and its properties:
|
|
||||||
|
|
||||||
- [X] *Lemma 16* Definition of the monad
|
|
||||||
- [ ] *Lemma 16* EilenbergMoore⇒UniformIterationAlgebras (use [crude monadicity theorem](https://agda.github.io/agda-categories/Categories.Adjoint.Monadic.Crude.html))
|
|
||||||
- [ ] *Proposition 19* ***K*** is strong
|
|
||||||
- [ ] *Theorem 22* ***K*** is an equational lifting monad
|
|
||||||
- [ ] *Proposition 23* The Kleisli category of ***K*** is enriched over pointed partial orders and strict monotone maps
|
|
||||||
- [ ] *Proposition 25* ***K*** is copyable and weakly discardable
|
|
||||||
- [ ] *Theorem 29* ***K*** is an initial pre-Elgot monad and an initial strong pre-Elgot monad
|
|
||||||
|
|
||||||
|
|
||||||
## Code
|
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
open Ambient ambient
|
open Ambient ambient
|
||||||
open import Category.Construction.UniformIterationAlgebras ambient
|
open import Category.Construction.UniformIterationAlgebras ambient using (Uniform-Iteration-Algebras)
|
||||||
open import Algebra.UniformIterationAlgebra ambient
|
open import Algebra.UniformIterationAlgebra ambient using (Uniform-Iteration-Algebra)
|
||||||
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
||||||
|
|
||||||
open Equiv
|
open Equiv
|
||||||
open MR C
|
open MR C
|
||||||
open M C
|
open M C
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### *Lemma 16*: definition of monad ***K***
|
## Definition
|
||||||
|
|
||||||
|
The monad is defined by existence of free uniform-iteration algebras.
|
||||||
|
Since free objects yield and adjunctions, this yields a monad.
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
||||||
field
|
field
|
||||||
freealgebras : ∀ X → FreeUniformIterationAlgebra X
|
freealgebras : ∀ X → FreeUniformIterationAlgebra X
|
||||||
|
stable : ∀ X → IsStableFreeUniformIterationAlgebra (freealgebras X)
|
||||||
|
|
||||||
|
-- helper for accessing ui-algebras
|
||||||
|
algebras : ∀ (X : Obj) → Uniform-Iteration-Algebra
|
||||||
|
algebras X = FreeObject.FX (freealgebras X)
|
||||||
|
|
||||||
freeF : Functor C Uniform-Iteration-Algebras
|
freeF : Functor C Uniform-Iteration-Algebras
|
||||||
freeF = FO⇒Functor uniformForgetfulF freealgebras
|
freeF = FO⇒Functor uniformForgetfulF freealgebras
|
||||||
|
@ -60,223 +48,13 @@ module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
adjoint : freeF ⊣ uniformForgetfulF
|
adjoint : freeF ⊣ uniformForgetfulF
|
||||||
adjoint = FO⇒LAdj uniformForgetfulF freealgebras
|
adjoint = FO⇒LAdj uniformForgetfulF freealgebras
|
||||||
|
|
||||||
K : Monad C
|
monadK : Monad C
|
||||||
K = adjoint⇒monad adjoint
|
monadK = adjoint⇒monad adjoint
|
||||||
```
|
module monadK = Monad monadK
|
||||||
|
|
||||||
### *Proposition 19* If the algebras are stable then K is strong
|
kleisliK : KleisliTriple C
|
||||||
|
kleisliK = Monad⇒Kleisli C monadK
|
||||||
```agda
|
module kleisliK = RMonad kleisliK
|
||||||
record MonadKStrong : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
|
||||||
field
|
module K = Functor monadK.F
|
||||||
freealgebras : ∀ X → FreeUniformIterationAlgebra X
|
|
||||||
stable : ∀ X → IsStableFreeUniformIterationAlgebra (freealgebras X)
|
|
||||||
|
|
||||||
algebras : ∀ (X : Obj) → Uniform-Iteration-Algebra
|
|
||||||
algebras X = FreeObject.FX (freealgebras X)
|
|
||||||
|
|
||||||
K : Monad C
|
|
||||||
K = MonadK.K (record { freealgebras = freealgebras })
|
|
||||||
|
|
||||||
open Monad K using (F; μ) renaming (identityʳ to m-identityʳ)
|
|
||||||
module kleisli = RMonad (Monad⇒Kleisli C K)
|
|
||||||
open kleisli using (extend)
|
|
||||||
open Functor F using () renaming (F₀ to K₀; F₁ to K₁)
|
|
||||||
|
|
||||||
KStrong : StrongMonad {C = C} monoidal
|
|
||||||
KStrong = record
|
|
||||||
{ M = K
|
|
||||||
; strength = record
|
|
||||||
{ strengthen = ntHelper (record { η = τ ; commute = commute' })
|
|
||||||
; identityˡ = identityˡ'
|
|
||||||
; η-comm = λ {A} {B} → τ-η (A , B)
|
|
||||||
; μ-η-comm = μ-η-comm'
|
|
||||||
; strength-assoc = strength-assoc'
|
|
||||||
}
|
|
||||||
}
|
|
||||||
where
|
|
||||||
open import Agda.Builtin.Sigma
|
|
||||||
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving; ♯-unique)
|
|
||||||
open Uniform-Iteration-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
|
|
||||||
η = λ Z → FreeObject.η (freealgebras Z)
|
|
||||||
_♯ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
|
|
||||||
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
|
|
||||||
|
|
||||||
module _ (P : Category.Obj (CProduct C C)) where
|
|
||||||
private
|
|
||||||
X = fst P
|
|
||||||
Y = snd P
|
|
||||||
τ : X × K₀ Y ⇒ K₀ (X × Y)
|
|
||||||
τ = η (X × Y) ♯
|
|
||||||
|
|
||||||
τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y)
|
|
||||||
τ-η = sym (♯-law (stable Y) (η (X × Y)))
|
|
||||||
|
|
||||||
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ h #) ≈ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
|
||||||
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X × Y)) h
|
|
||||||
|
|
||||||
K₁η : ∀ {X Y} (f : X ⇒ Y) → K₁ f ∘ η X ≈ η Y ∘ f
|
|
||||||
K₁η {X} {Y} f = begin
|
|
||||||
K₁ f ∘ η X ≈⟨ (sym (F₁⇒extend K f)) ⟩∘⟨refl ⟩
|
|
||||||
extend (η Y ∘ f) ∘ η X ≈⟨ kleisli.identityʳ ⟩
|
|
||||||
η Y ∘ f ∎
|
|
||||||
|
|
||||||
μ-η-comm' : ∀ {A B} → μ.η _ ∘ K₁ (τ _) ∘ τ (A , K₀ B) ≈ τ _ ∘ (idC ⁂ μ.η _)
|
|
||||||
μ-η-comm' {A} {B} = begin
|
|
||||||
μ.η _ ∘ K₁ (τ _) ∘ τ _ ≈⟨ ♯-unique (stable (K₀ B)) (τ (A , B)) (μ.η _ ∘ K₁ (τ _) ∘ τ _) comm₁ comm₂ ⟩
|
|
||||||
(τ _ ♯) ≈⟨ sym (♯-unique (stable (K₀ B)) (τ (A , B)) (τ _ ∘ (idC ⁂ μ.η _)) (sym (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ identity² m-identityʳ ○ ⟨⟩-unique id-comm id-comm))) comm₃) ⟩
|
|
||||||
τ _ ∘ (idC ⁂ μ.η _) ∎
|
|
||||||
where
|
|
||||||
comm₁ : τ (A , B) ≈ (μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _)
|
|
||||||
comm₁ = sym (begin
|
|
||||||
(μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (τ-η _)) ⟩
|
|
||||||
μ.η _ ∘ K₁ (τ _) ∘ η _ ≈⟨ refl⟩∘⟨ (K₁η (τ (A , B))) ⟩
|
|
||||||
μ.η _ ∘ η _ ∘ τ _ ≈⟨ cancelˡ m-identityʳ ⟩
|
|
||||||
τ _ ∎)
|
|
||||||
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ (K₀ B) + Z) → (μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₂ {Z} h = begin
|
|
||||||
(μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (pullʳ (τ-comm h)) ⟩
|
|
||||||
μ.η _ ∘ K₁ (τ _) ∘ (((τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ≈⟨ refl⟩∘⟨ (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η _ ∘ τ _))) ⟩
|
|
||||||
μ.η _ ∘ ((K₁ (τ _) +₁ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩
|
|
||||||
((μ.η _ +₁ idC) ∘ (K₁ (τ _) +₁ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
|
||||||
((μ.η _ ∘ K₁ (τ _) +₁ idC ∘ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
|
||||||
(((μ.η _ ∘ K₁ (τ _)) ∘ τ _ +₁ (idC ∘ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (cancelʳ identity²)) ⟩∘⟨refl) ⟩
|
|
||||||
((μ.η _ ∘ K₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K₀ (K₀ B) + Z) → (τ _ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₃ {Z} h = begin
|
|
||||||
(τ _ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
|
||||||
τ _ ∘ (idC ∘ idC ⁂ μ.η _ ∘ h #) ≈⟨ refl⟩∘⟨ (⁂-cong₂ identity² (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC))) ⟩
|
|
||||||
τ _ ∘ (idC ⁂ ((μ.η _ +₁ idC) ∘ h) #) ≈⟨ τ-comm ((μ.η B +₁ idC) ∘ h) ⟩
|
|
||||||
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC) ∘ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂))) ⟩
|
|
||||||
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC)) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (pullˡ (sym (distribute₁ idC (μ.η B) idC)))) ⟩
|
|
||||||
((τ _ +₁ idC) ∘ ((idC ⁂ μ.η B +₁ idC ⁂ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))))) ⟩
|
|
||||||
(((τ _ ∘ (idC ⁂ μ.η B) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) assoc ⟩
|
|
||||||
((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
|
|
||||||
module assoc {A} {B} {C} = _≅_ (×-assoc {A} {B} {C})
|
|
||||||
|
|
||||||
strength-assoc' : ∀ {X Y Z} → K₁ assoc.to ∘ τ (X × Y , Z) ≈ τ (X , Y × Z) ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to
|
|
||||||
strength-assoc' {X} {Y} {Z} = begin
|
|
||||||
K₁ assoc.to ∘ τ _ ≈⟨ ♯-unique (stable _) (η (X × Y × Z) ∘ assoc.to) (K₁ assoc.to ∘ τ _) (sym (pullʳ (τ-η _) ○ K₁η _)) comm₁ ⟩
|
|
||||||
((η (X × Y × Z) ∘ assoc.to) ♯) ≈⟨ sym (♯-unique (stable _) (η (X × Y × Z) ∘ assoc.to) (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) comm₂ comm₃) ⟩
|
|
||||||
τ _ ∘ (idC ⁂ τ _) ∘ assoc.to ∎
|
|
||||||
where
|
|
||||||
comm₁ : ∀ {A : Obj} (h : A ⇒ K₀ Z + A) → (K₁ assoc.to ∘ τ _) ∘ (idC ⁂ h #) ≈ ((K₁ assoc.to ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₁ {A} h = begin
|
|
||||||
(K₁ assoc.to ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (τ-comm h) ⟩
|
|
||||||
K₁ assoc.to ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) _) ⟩
|
|
||||||
((K₁ assoc.to +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
|
||||||
((K₁ assoc.to ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
comm₂ : η (X × Y × Z) ∘ assoc.to ≈ (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ η _)
|
|
||||||
comm₂ = sym (begin
|
|
||||||
(τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ η _) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ η _) ≈⟨ pullʳ ⟨⟩∘ ⟩
|
|
||||||
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ η _) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ η _) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ η _) , π₂ ∘ (idC ⁂ η _) ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂))) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , η _ ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (refl⟩∘⟨ ((⟨⟩-cong₂ (sym identityˡ) refl) ○ sym ⁂∘⟨⟩))) ⟩
|
|
||||||
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (τ-η (Y , Z)))) ⟩
|
|
||||||
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , η _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
|
|
||||||
τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ pullˡ (τ-η _) ⟩
|
|
||||||
η _ ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) refl) ⟩
|
|
||||||
η (X × Y × Z) ∘ assoc.to ∎)
|
|
||||||
comm₃ : ∀ {A : Obj} (h : A ⇒ K₀ Z + A) → (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ τ _) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₃ {A} h = begin
|
|
||||||
(τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ h #) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⟨⟩∘ ⟩
|
|
||||||
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ h #) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ h #) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ h #) , π₂ ∘ (idC ⁂ h #) ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl))) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ idC ∘ π₂ ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ (sym ⁂∘⟨⟩)) ⟩
|
|
||||||
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ h #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ (τ-comm h))) ⟩
|
|
||||||
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , (((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
|
|
||||||
τ _ ∘ (idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ assoc.to ≈⟨ pullˡ (τ-comm _) ⟩
|
|
||||||
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) # ∘ assoc.to ≈⟨ sym (#-Uniformity (algebras _) (begin
|
|
||||||
(idC +₁ assoc.to) ∘ (τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
|
||||||
(idC ∘ τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ assoc.to ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ idC ∘ assoc.to) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈˘⟨ (+₁∘+₁ ○ +₁-cong₂ assoc refl) ⟩∘⟨refl ⟩
|
|
||||||
((τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (assoc.to +₁ assoc.to)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹-assoc)) ⟩
|
|
||||||
(τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ assoc²' ⟩
|
|
||||||
(τ _ ∘ (idC ⁂ τ _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈˘⟨ (+₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈˘⟨ assoc ○ assoc ⟩
|
|
||||||
(((τ _ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ _≅_.to ×-assoc ∘ (idC ⁂ h) ≈˘⟨ pullˡ (pullˡ (pullˡ +₁∘+₁)) ⟩
|
|
||||||
(τ _ +₁ idC) ∘ ((((idC ⁂ τ _) +₁ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ ((distribute₁ idC (τ (Y , Z)) idC) ⟩∘⟨refl) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ +₁ idC) ∘ ((distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC))) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (assoc ○ assoc ○ refl⟩∘⟨ sym-assoc) ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC)) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩∘⟨refl ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ (sym (⟨⟩-unique id-comm id-comm)) refl ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assoc.to ∘ ((idC ⁂ idC) ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ assocˡ∘⁂ ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h)) ∘ assoc.to ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h))) ∘ assoc.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂∘⁂ ⟩∘⟨refl ⟩
|
|
||||||
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ∘ idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) ∘ assoc.to ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ((⁂-cong₂ identity² assoc) ⟩∘⟨refl) ○ sym-assoc) ○ sym-assoc ⟩
|
|
||||||
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) ∘ assoc.to ∎)) ⟩
|
|
||||||
((τ _ ∘ (idC ⁂ τ _) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
|
|
||||||
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂)
|
|
||||||
→ τ P₂ ∘ ((fst fg) ⁂ K₁ (snd fg)) ≈ K₁ ((fst fg) ⁂ (snd fg)) ∘ τ P₁
|
|
||||||
commute' {(U , V)} {(W , X)} (f , g) = begin
|
|
||||||
τ _ ∘ (f ⁂ K₁ g) ≈⟨ ♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (τ _ ∘ (f ⁂ K₁ g)) comm₁ comm₂ ⟩
|
|
||||||
(η _ ∘ (f ⁂ g)) ♯ ≈⟨ sym (♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (K₁ (f ⁂ g) ∘ τ _) comm₃ comm₄) ⟩
|
|
||||||
K₁ (f ⁂ g) ∘ τ _ ∎
|
|
||||||
where
|
|
||||||
comm₁ : η (W × X) ∘ (f ⁂ g) ≈ (τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ η V)
|
|
||||||
comm₁ = sym (begin
|
|
||||||
(τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ η V) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
|
||||||
τ (W , X) ∘ (f ∘ idC ⁂ K₁ g ∘ η V) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm (K₁η g)) ⟩
|
|
||||||
τ (W , X) ∘ (idC ∘ f ⁂ η X ∘ g) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
|
|
||||||
τ (W , X) ∘ (idC ⁂ η X) ∘ (f ⁂ g) ≈⟨ pullˡ (τ-η (W , X)) ⟩
|
|
||||||
η (W × X) ∘ (f ⁂ g) ∎)
|
|
||||||
comm₃ : η (W × X) ∘ (f ⁂ g) ≈ (K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V)
|
|
||||||
comm₃ = sym (begin
|
|
||||||
(K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V) ≈⟨ pullʳ (τ-η (U , V)) ⟩
|
|
||||||
K₁ (f ⁂ g) ∘ η (U × V) ≈⟨ K₁η (f ⁂ g) ⟩
|
|
||||||
η (W × X) ∘ (f ⁂ g) ∎)
|
|
||||||
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ V + Z) → (τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ h #) ≈ ((τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
|
||||||
comm₂ {Z} h = begin
|
|
||||||
(τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
|
||||||
τ (W , X) ∘ (f ∘ idC ⁂ K₁ g ∘ (h #)) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm ((Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η X ∘ g))) ○ sym identityʳ)) ⟩
|
|
||||||
τ (W , X) ∘ (idC ∘ f ⁂ ((K₁ g +₁ idC) ∘ h) # ∘ idC) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
|
|
||||||
τ (W , X) ∘ (idC ⁂ ((K₁ g +₁ idC) ∘ h) #) ∘ (f ⁂ idC) ≈⟨ pullˡ (♯-preserving (stable _) (η _) ((K₁ g +₁ idC) ∘ h)) ⟩
|
|
||||||
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K₁ g +₁ idC) ∘ h)) # ∘ (f ⁂ idC) ≈⟨ sym (#-Uniformity (algebras _) (begin
|
|
||||||
(idC +₁ f ⁂ idC) ∘ (τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
|
||||||
(idC ∘ τ (W , X) ∘ (f ⁂ K₁ g) +₁ (f ⁂ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
|
|
||||||
(τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC ∘ (f ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl ⟩
|
|
||||||
((τ (W , X) +₁ idC) ∘ ((f ⁂ K₁ g) +₁ (f ⁂ idC))) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (distribute₁ f (K₁ g) idC)) ⟩
|
|
||||||
(τ (W , X) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (f ⁂ (K₁ g +₁ idC))) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityʳ refl)) ⟩
|
|
||||||
(τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (f ⁂ (K₁ g +₁ idC) ∘ h) ≈˘⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityˡ identityʳ)) ⟩
|
|
||||||
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K₁ g +₁ idC) ∘ h)) ∘ (f ⁂ idC) ∎)) ⟩
|
|
||||||
((τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
|
||||||
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K₀ V + Z) → (K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ h #) ≈ ((K₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₄ {Z} h = begin
|
|
||||||
(K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ (h #)) ≈⟨ pullʳ (τ-comm h) ⟩
|
|
||||||
K₁ (f ⁂ g) ∘ ((τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η (W × X) ∘ (f ⁂ g))) ⟩
|
|
||||||
((K₁ (f ⁂ g) +₁ idC) ∘ (τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras (W × X)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
|
||||||
((K₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
|
|
||||||
identityˡ' : ∀ {X : Obj} → K₁ π₂ ∘ τ _ ≈ π₂
|
|
||||||
identityˡ' {X} = begin
|
|
||||||
K₁ π₂ ∘ τ _ ≈⟨ ♯-unique (stable X) (η X ∘ π₂) (K₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) comm₁ comm₂ ⟩
|
|
||||||
(η X ∘ π₂) ♯ ≈⟨ sym (♯-unique (stable X) (η X ∘ π₂) π₂ (sym π₂∘⁂) comm₃) ⟩
|
|
||||||
π₂ ∎
|
|
||||||
where
|
|
||||||
comm₁ : η X ∘ π₂ ≈ (K₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ η X)
|
|
||||||
comm₁ = sym (begin
|
|
||||||
(K₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ η X) ≈⟨ pullʳ (τ-η (Terminal.⊤ terminal , X)) ⟩
|
|
||||||
K₁ π₂ ∘ η (Terminal.⊤ terminal × X) ≈⟨ (sym (F₁⇒extend K π₂)) ⟩∘⟨refl ⟩
|
|
||||||
extend (η _ ∘ π₂) ∘ η _ ≈⟨ kleisli.identityʳ ⟩
|
|
||||||
η X ∘ π₂ ∎)
|
|
||||||
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ X + Z) → (K₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ h # ) ≈ ((K₁ π₂ ∘ τ (Terminal.⊤ terminal , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
|
||||||
comm₂ {Z} h = begin
|
|
||||||
(K₁ π₂ ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (♯-preserving (stable X) (η _) h) ⟩
|
|
||||||
K₁ π₂ ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves ((freealgebras (Terminal.⊤ terminal × X) FreeObject.*) (η X ∘ π₂)) ⟩
|
|
||||||
((K₁ π₂ +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras X) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
|
||||||
((K₁ π₂ ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
|
||||||
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K₀ X + Z) → π₂ ∘ (idC ⁂ h #) ≈ ((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
|
||||||
comm₃ {Z} h = begin
|
|
||||||
π₂ ∘ (idC ⁂ h #) ≈⟨ π₂∘⁂ ⟩
|
|
||||||
h # ∘ π₂ ≈⟨ sym (#-Uniformity (algebras X) (begin
|
|
||||||
(idC +₁ π₂) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
|
||||||
(idC ∘ π₂ +₁ π₂ ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ identityʳ) ⟩∘⟨refl ⟩
|
|
||||||
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ dstr-law₅ ⟩
|
|
||||||
π₂ ∘ (idC ⁂ h) ≈⟨ project₂ ⟩
|
|
||||||
h ∘ π₂ ∎)) ⟩
|
|
||||||
((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
|
||||||
```
|
```
|
||||||
|
|
267
src/Monad/Instance/K/Strong.lagda.md
Normal file
267
src/Monad/Instance/K/Strong.lagda.md
Normal file
|
@ -0,0 +1,267 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.FreeObjects.Free
|
||||||
|
open import Categories.Category.Product using () renaming (Product to CProduct; _⁂_ to _×C_)
|
||||||
|
open import Data.Product using (_,_; proj₁; proj₂)
|
||||||
|
open import Categories.Category
|
||||||
|
open import Categories.Functor.Core
|
||||||
|
open import Categories.Adjoint
|
||||||
|
open import Categories.Adjoint.Properties
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Monad.Strong
|
||||||
|
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||||
|
open import Category.Instance.AmbientCategory using (Ambient)
|
||||||
|
open import Categories.NaturalTransformation
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
|
||||||
|
import Monad.Instance.K as MIK
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.K.Strong {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
||||||
|
open Ambient ambient
|
||||||
|
open import Category.Construction.UniformIterationAlgebras ambient
|
||||||
|
open import Algebra.UniformIterationAlgebra ambient
|
||||||
|
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
||||||
|
|
||||||
|
open MIK ambient
|
||||||
|
open MonadK MK
|
||||||
|
open Equiv
|
||||||
|
open MR C
|
||||||
|
open M C
|
||||||
|
open HomReasoning
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
# The monad K is strong
|
||||||
|
|
||||||
|
K is a strong monad with the strength defined as `η ♯`, where ♯ is the operator we get from stability.
|
||||||
|
Verifying the axioms of strength is straightforward once you know the procedure, since the proofs are all very similar.
|
||||||
|
|
||||||
|
For example the proof of `identityˡ` i.e. `K₁ π₂ ∘ τ ≈ π₂` goes as follows:
|
||||||
|
|
||||||
|
1. find a morphism `f` such that `K₁ π₂ ∘ τ ≈ f ♯ ≈ π₂`
|
||||||
|
2. show that `K₁ π₂ ∘ τ` is iteration preserving and satisfies the stabiltiy law
|
||||||
|
3. show that `π₂` is iteration preserving and satisfies the stabiltiy law
|
||||||
|
|
||||||
|
=> by uniqueness of `f ♯` we are done
|
||||||
|
|
||||||
|
The following diagram demonstrates this:
|
||||||
|
|
||||||
|
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJYXFx0aW1lcyBLWSJdLFsxLDEsIksoWFxcdGltZXMgWSkiXSxbMCwyLCJYXFx0aW1lcyBZIl0sWzIsMCwiS1kiXSxbMCwxLCJcXGV0YV57XFwjfSJdLFsyLDAsImlkXFx0aW1lc1xcZXRhIl0sWzIsMSwiXFxldGEiLDJdLFsxLDMsIktcXHBpXzIiXSxbMCwzLCJcXHBpXzI9KFxcZXRhXFxjaXJjXFxwaV8yKV57XFwjfSJdLFsyLDMsIlxcZXRhXFxjaXJjXFxwaV8yIiwyLHsiY3VydmUiOjR9XV0= -->
|
||||||
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJYXFx0aW1lcyBLWSJdLFsxLDEsIksoWFxcdGltZXMgWSkiXSxbMCwyLCJYXFx0aW1lcyBZIl0sWzIsMCwiS1kiXSxbMCwxLCJcXGV0YV57XFwjfSJdLFsyLDAsImlkXFx0aW1lc1xcZXRhIl0sWzIsMSwiXFxldGEiLDJdLFsxLDMsIktcXHBpXzIiXSxbMCwzLCJcXHBpXzI9KFxcZXRhXFxjaXJjXFxwaV8yKV57XFwjfSJdLFsyLDMsIlxcZXRhXFxjaXJjXFxwaV8yIiwyLHsiY3VydmUiOjR9XV0=&embed" width="571" height="432" style="border-radius: 8px; border: none;"></iframe>
|
||||||
|
|
||||||
|
```agda
|
||||||
|
-- we use properties of the kleisli representation as well as the 'normal' monad representation
|
||||||
|
open kleisliK using (extend)
|
||||||
|
open monadK using (μ)
|
||||||
|
|
||||||
|
KStrength : Strength monoidal monadK
|
||||||
|
KStrength = record
|
||||||
|
{ strengthen = ntHelper (record { η = τ ; commute = commute' })
|
||||||
|
; identityˡ = identityˡ'
|
||||||
|
; η-comm = λ {A} {B} → τ-η (A , B)
|
||||||
|
; μ-η-comm = μ-η-comm'
|
||||||
|
; strength-assoc = strength-assoc'
|
||||||
|
}
|
||||||
|
where
|
||||||
|
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving; ♯-unique)
|
||||||
|
open Uniform-Iteration-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
|
||||||
|
|
||||||
|
-- some helper definitions to make our life easier
|
||||||
|
η = λ Z → FreeObject.η (freealgebras Z)
|
||||||
|
_♯ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
|
||||||
|
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
|
||||||
|
|
||||||
|
-- defining τ
|
||||||
|
module _ (P : Category.Obj (CProduct C C)) where
|
||||||
|
private
|
||||||
|
X = proj₁ P
|
||||||
|
Y = proj₂ P
|
||||||
|
τ : X × K.₀ Y ⇒ K.₀ (X × Y)
|
||||||
|
τ = η (X × Y) ♯
|
||||||
|
|
||||||
|
τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y)
|
||||||
|
τ-η = sym (♯-law (stable Y) (η (X × Y)))
|
||||||
|
|
||||||
|
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K.₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ h #) ≈ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
||||||
|
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X × Y)) h
|
||||||
|
|
||||||
|
K₁η : ∀ {X Y} (f : X ⇒ Y) → K.₁ f ∘ η X ≈ η Y ∘ f
|
||||||
|
K₁η {X} {Y} f = begin
|
||||||
|
K.₁ f ∘ η X ≈⟨ (sym (F₁⇒extend monadK f)) ⟩∘⟨refl ⟩
|
||||||
|
extend (η Y ∘ f) ∘ η X ≈⟨ kleisliK.identityʳ ⟩
|
||||||
|
η Y ∘ f ∎
|
||||||
|
|
||||||
|
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂)
|
||||||
|
→ τ P₂ ∘ ((proj₁ fg) ⁂ K.₁ (proj₂ fg)) ≈ K.₁ ((proj₁ fg) ⁂ (proj₂ fg)) ∘ τ P₁
|
||||||
|
commute' {(U , V)} {(W , X)} (f , g) = begin
|
||||||
|
τ _ ∘ (f ⁂ K.₁ g) ≈⟨ ♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (τ _ ∘ (f ⁂ K.₁ g)) comm₁ comm₂ ⟩
|
||||||
|
(η _ ∘ (f ⁂ g)) ♯ ≈⟨ sym (♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (K.₁ (f ⁂ g) ∘ τ _) comm₃ comm₄) ⟩
|
||||||
|
K.₁ (f ⁂ g) ∘ τ _ ∎
|
||||||
|
where
|
||||||
|
comm₁ : η (W × X) ∘ (f ⁂ g) ≈ (τ (W , X) ∘ (f ⁂ K.₁ g)) ∘ (idC ⁂ η V)
|
||||||
|
comm₁ = sym (begin
|
||||||
|
(τ (W , X) ∘ (f ⁂ K.₁ g)) ∘ (idC ⁂ η V) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
||||||
|
τ (W , X) ∘ (f ∘ idC ⁂ K.₁ g ∘ η V) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm (K₁η g)) ⟩
|
||||||
|
τ (W , X) ∘ (idC ∘ f ⁂ η X ∘ g) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
|
||||||
|
τ (W , X) ∘ (idC ⁂ η X) ∘ (f ⁂ g) ≈⟨ pullˡ (τ-η (W , X)) ⟩
|
||||||
|
η (W × X) ∘ (f ⁂ g) ∎)
|
||||||
|
comm₃ : η (W × X) ∘ (f ⁂ g) ≈ (K.₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V)
|
||||||
|
comm₃ = sym (begin
|
||||||
|
(K.₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V) ≈⟨ pullʳ (τ-η (U , V)) ⟩
|
||||||
|
K.₁ (f ⁂ g) ∘ η (U × V) ≈⟨ K₁η (f ⁂ g) ⟩
|
||||||
|
η (W × X) ∘ (f ⁂ g) ∎)
|
||||||
|
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K.₀ V + Z) → (τ (W , X) ∘ (f ⁂ K.₁ g)) ∘ (idC ⁂ h #) ≈ ((τ (W , X) ∘ (f ⁂ K.₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
||||||
|
comm₂ {Z} h = begin
|
||||||
|
(τ (W , X) ∘ (f ⁂ K.₁ g)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
||||||
|
τ (W , X) ∘ (f ∘ idC ⁂ K.₁ g ∘ (h #)) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm ((Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η X ∘ g))) ○ sym identityʳ)) ⟩
|
||||||
|
τ (W , X) ∘ (idC ∘ f ⁂ ((K.₁ g +₁ idC) ∘ h) # ∘ idC) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
|
||||||
|
τ (W , X) ∘ (idC ⁂ ((K.₁ g +₁ idC) ∘ h) #) ∘ (f ⁂ idC) ≈⟨ pullˡ (♯-preserving (stable _) (η _) ((K.₁ g +₁ idC) ∘ h)) ⟩
|
||||||
|
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K.₁ g +₁ idC) ∘ h)) # ∘ (f ⁂ idC) ≈⟨ sym (#-Uniformity (algebras _) uni-helper) ⟩
|
||||||
|
((τ (W , X) ∘ (f ⁂ K.₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
||||||
|
where
|
||||||
|
uni-helper = begin
|
||||||
|
(idC +₁ f ⁂ idC) ∘ (τ (W , X) ∘ (f ⁂ K.₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||||
|
(idC ∘ τ (W , X) ∘ (f ⁂ K.₁ g) +₁ (f ⁂ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
|
||||||
|
(τ (W , X) ∘ (f ⁂ K.₁ g) +₁ idC ∘ (f ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl ⟩
|
||||||
|
((τ (W , X) +₁ idC) ∘ ((f ⁂ K.₁ g) +₁ (f ⁂ idC))) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (distribute₁ f (K.₁ g) idC)) ⟩
|
||||||
|
(τ (W , X) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (f ⁂ (K.₁ g +₁ idC))) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityʳ refl)) ⟩
|
||||||
|
(τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (f ⁂ (K.₁ g +₁ idC) ∘ h) ≈˘⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityˡ identityʳ)) ⟩
|
||||||
|
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K.₁ g +₁ idC) ∘ h)) ∘ (f ⁂ idC) ∎
|
||||||
|
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ V + Z) → (K.₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ h #) ≈ ((K.₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₄ {Z} h = begin
|
||||||
|
(K.₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ (h #)) ≈⟨ pullʳ (τ-comm h) ⟩
|
||||||
|
K.₁ (f ⁂ g) ∘ ((τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η (W × X) ∘ (f ⁂ g))) ⟩
|
||||||
|
((K.₁ (f ⁂ g) +₁ idC) ∘ (τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras (W × X)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((K.₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
|
||||||
|
identityˡ' : ∀ {X : Obj} → K.₁ π₂ ∘ τ _ ≈ π₂
|
||||||
|
identityˡ' {X} = begin
|
||||||
|
K.₁ π₂ ∘ τ _ ≈⟨ ♯-unique (stable X) (η X ∘ π₂) (K.₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) comm₁ comm₂ ⟩
|
||||||
|
(η X ∘ π₂) ♯ ≈⟨ sym (♯-unique (stable X) (η X ∘ π₂) π₂ (sym π₂∘⁂) comm₃) ⟩
|
||||||
|
π₂ ∎
|
||||||
|
where
|
||||||
|
comm₁ : η X ∘ π₂ ≈ (K.₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ η X)
|
||||||
|
comm₁ = sym (begin
|
||||||
|
(K.₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ η X) ≈⟨ pullʳ (τ-η (Terminal.⊤ terminal , X)) ⟩
|
||||||
|
K.₁ π₂ ∘ η (Terminal.⊤ terminal × X) ≈⟨ (sym (F₁⇒extend monadK π₂)) ⟩∘⟨refl ⟩
|
||||||
|
extend (η _ ∘ π₂) ∘ η _ ≈⟨ kleisliK.identityʳ ⟩
|
||||||
|
η X ∘ π₂ ∎)
|
||||||
|
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K.₀ X + Z) → (K.₁ π₂ ∘ τ (Terminal.⊤ terminal , X)) ∘ (idC ⁂ h # ) ≈ ((K.₁ π₂ ∘ τ (Terminal.⊤ terminal , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
||||||
|
comm₂ {Z} h = begin
|
||||||
|
(K.₁ π₂ ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (♯-preserving (stable X) (η _) h) ⟩
|
||||||
|
K.₁ π₂ ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves ((freealgebras (Terminal.⊤ terminal × X) FreeObject.*) (η X ∘ π₂)) ⟩
|
||||||
|
((K.₁ π₂ +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras X) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((K.₁ π₂ ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
||||||
|
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K.₀ X + Z) → π₂ ∘ (idC ⁂ h #) ≈ ((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₃ {Z} h = begin
|
||||||
|
π₂ ∘ (idC ⁂ h #) ≈⟨ π₂∘⁂ ⟩
|
||||||
|
h # ∘ π₂ ≈⟨ sym (#-Uniformity (algebras X) uni-helper) ⟩
|
||||||
|
((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
where
|
||||||
|
uni-helper = begin
|
||||||
|
(idC +₁ π₂) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||||
|
(idC ∘ π₂ +₁ π₂ ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ identityʳ) ⟩∘⟨refl ⟩
|
||||||
|
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ dstr-law₅ ⟩
|
||||||
|
π₂ ∘ (idC ⁂ h) ≈⟨ project₂ ⟩
|
||||||
|
h ∘ π₂ ∎
|
||||||
|
|
||||||
|
μ-η-comm' : ∀ {A B} → μ.η _ ∘ K.₁ (τ _) ∘ τ (A , K.₀ B) ≈ τ _ ∘ (idC ⁂ μ.η _)
|
||||||
|
μ-η-comm' {A} {B} = begin
|
||||||
|
μ.η _ ∘ K.₁ (τ _) ∘ τ _ ≈⟨ ♯-unique (stable (K.₀ B)) (τ (A , B)) (μ.η _ ∘ K.₁ (τ _) ∘ τ _) comm₁ comm₂ ⟩
|
||||||
|
(τ _ ♯) ≈⟨ sym (♯-unique (stable (K.₀ B)) (τ (A , B)) (τ _ ∘ (idC ⁂ μ.η _)) (sym (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ identity² monadK.identityʳ ○ ⟨⟩-unique id-comm id-comm))) comm₃) ⟩
|
||||||
|
τ _ ∘ (idC ⁂ μ.η _) ∎
|
||||||
|
where
|
||||||
|
comm₁ : τ (A , B) ≈ (μ.η _ ∘ K.₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _)
|
||||||
|
comm₁ = sym (begin
|
||||||
|
(μ.η _ ∘ K.₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (τ-η _)) ⟩
|
||||||
|
μ.η _ ∘ K.₁ (τ _) ∘ η _ ≈⟨ refl⟩∘⟨ (K₁η (τ (A , B))) ⟩
|
||||||
|
μ.η _ ∘ η _ ∘ τ _ ≈⟨ cancelˡ monadK.identityʳ ⟩
|
||||||
|
τ _ ∎)
|
||||||
|
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K.₀ (K.₀ B) + Z) → (μ.η _ ∘ K.₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₂ {Z} h = begin
|
||||||
|
(μ.η _ ∘ K.₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (pullʳ (τ-comm h)) ⟩
|
||||||
|
μ.η _ ∘ K.₁ (τ _) ∘ (((τ (A , K.₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ≈⟨ refl⟩∘⟨ (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η _ ∘ τ _))) ⟩
|
||||||
|
μ.η _ ∘ ((K.₁ (τ _) +₁ idC) ∘ (τ (A , K.₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩
|
||||||
|
((μ.η _ +₁ idC) ∘ (K.₁ (τ _) +₁ idC) ∘ (τ (A , K.₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
||||||
|
((μ.η _ ∘ K.₁ (τ _) +₁ idC ∘ idC) ∘ (τ (A , K.₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
||||||
|
(((μ.η _ ∘ K.₁ (τ _)) ∘ τ _ +₁ (idC ∘ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (cancelʳ identity²)) ⟩∘⟨refl) ⟩
|
||||||
|
((μ.η _ ∘ K.₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K.₀ (K.₀ B) + Z) → (τ _ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₃ {Z} h = begin
|
||||||
|
(τ _ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
||||||
|
τ _ ∘ (idC ∘ idC ⁂ μ.η _ ∘ h #) ≈⟨ refl⟩∘⟨ (⁂-cong₂ identity² (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC))) ⟩
|
||||||
|
τ _ ∘ (idC ⁂ ((μ.η _ +₁ idC) ∘ h) #) ≈⟨ τ-comm ((μ.η B +₁ idC) ∘ h) ⟩
|
||||||
|
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC) ∘ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂))) ⟩
|
||||||
|
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC)) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (pullˡ (sym (distribute₁ idC (μ.η B) idC)))) ⟩
|
||||||
|
((τ _ +₁ idC) ∘ ((idC ⁂ μ.η B +₁ idC ⁂ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))))) ⟩
|
||||||
|
(((τ _ ∘ (idC ⁂ μ.η B) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) assoc ⟩
|
||||||
|
((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
|
||||||
|
strength-assoc' : ∀ {X Y Z} → K.₁ assocˡ ∘ τ (X × Y , Z) ≈ τ (X , Y × Z) ∘ (idC ⁂ τ (Y , Z)) ∘ assocˡ
|
||||||
|
strength-assoc' {X} {Y} {Z} = begin
|
||||||
|
K.₁ assocˡ ∘ τ _ ≈⟨ ♯-unique (stable _) (η (X × Y × Z) ∘ assocˡ) (K.₁ assocˡ ∘ τ _) (sym (pullʳ (τ-η _) ○ K₁η _)) comm₁ ⟩
|
||||||
|
((η (X × Y × Z) ∘ assocˡ) ♯) ≈⟨ sym (♯-unique (stable _) (η (X × Y × Z) ∘ assocˡ) (τ _ ∘ (idC ⁂ τ _) ∘ assocˡ) comm₂ comm₃) ⟩
|
||||||
|
τ _ ∘ (idC ⁂ τ _) ∘ assocˡ ∎
|
||||||
|
where
|
||||||
|
comm₁ : ∀ {A : Obj} (h : A ⇒ K.₀ Z + A) → (K.₁ assocˡ ∘ τ _) ∘ (idC ⁂ h #) ≈ ((K.₁ assocˡ ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₁ {A} h = begin
|
||||||
|
(K.₁ assocˡ ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (τ-comm h) ⟩
|
||||||
|
K.₁ assocˡ ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) _) ⟩
|
||||||
|
((K.₁ assocˡ +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((K.₁ assocˡ ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
comm₂ : η (X × Y × Z) ∘ assocˡ ≈ (τ _ ∘ (idC ⁂ τ _) ∘ assocˡ) ∘ (idC ⁂ η _)
|
||||||
|
comm₂ = sym (begin
|
||||||
|
(τ _ ∘ (idC ⁂ τ _) ∘ assocˡ) ∘ (idC ⁂ η _) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ η _) ≈⟨ pullʳ ⟨⟩∘ ⟩
|
||||||
|
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ η _) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ η _) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ η _) , π₂ ∘ (idC ⁂ η _) ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂))) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , η _ ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (refl⟩∘⟨ ((⟨⟩-cong₂ (sym identityˡ) refl) ○ sym ⁂∘⟨⟩))) ⟩
|
||||||
|
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (τ-η (Y , Z)))) ⟩
|
||||||
|
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , η _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
|
||||||
|
τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ pullˡ (τ-η _) ⟩
|
||||||
|
η _ ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) refl) ⟩
|
||||||
|
η (X × Y × Z) ∘ assocˡ ∎)
|
||||||
|
comm₃ : ∀ {A : Obj} (h : A ⇒ K.₀ Z + A) → (τ _ ∘ (idC ⁂ τ _) ∘ assocˡ) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ τ _) ∘ assocˡ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
|
||||||
|
comm₃ {A} h = begin
|
||||||
|
(τ _ ∘ (idC ⁂ τ _) ∘ assocˡ) ∘ (idC ⁂ h #) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⟨⟩∘ ⟩
|
||||||
|
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ h #) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ h #) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ h #) , π₂ ∘ (idC ⁂ h #) ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl))) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ idC ∘ π₂ ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ (sym ⁂∘⟨⟩)) ⟩
|
||||||
|
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ h #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ (τ-comm h))) ⟩
|
||||||
|
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , (((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
|
||||||
|
τ _ ∘ (idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ assocˡ ≈⟨ pullˡ (τ-comm _) ⟩
|
||||||
|
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) # ∘ assocˡ ≈⟨ sym (#-Uniformity (algebras _) uni-helper) ⟩
|
||||||
|
((τ _ ∘ (idC ⁂ τ _) ∘ assocˡ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
|
||||||
|
where
|
||||||
|
uni-helper : (idC +₁ assocˡ) ∘ (τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assocˡ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) ∘ assocˡ
|
||||||
|
uni-helper = begin
|
||||||
|
(idC +₁ assocˡ) ∘ (τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assocˡ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||||
|
(idC ∘ τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assocˡ +₁ assocˡ ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assocˡ +₁ idC ∘ assocˡ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈˘⟨ (+₁∘+₁ ○ +₁-cong₂ assoc refl) ⟩∘⟨refl ⟩
|
||||||
|
((τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (assocˡ +₁ assocˡ)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹-assoc)) ⟩
|
||||||
|
(τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assocˡ) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ assoc²' ⟩
|
||||||
|
(τ _ ∘ (idC ⁂ τ _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assocˡ ∘ (idC ⁂ h) ≈˘⟨ (+₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assocˡ ∘ (idC ⁂ h) ≈˘⟨ assoc ○ assoc ⟩
|
||||||
|
(((τ _ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ _≅_.to ×-assoc ∘ (idC ⁂ h) ≈˘⟨ pullˡ (pullˡ (pullˡ +₁∘+₁)) ⟩
|
||||||
|
(τ _ +₁ idC) ∘ ((((idC ⁂ τ _) +₁ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assocˡ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ ((distribute₁ idC (τ (Y , Z)) idC) ⟩∘⟨refl) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ +₁ idC) ∘ ((distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC))) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assocˡ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (assoc ○ assoc ○ refl⟩∘⟨ sym-assoc) ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC)) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assocˡ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩∘⟨refl ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assocˡ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ (sym (⟨⟩-unique id-comm id-comm)) refl ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assocˡ ∘ ((idC ⁂ idC) ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ assocˡ∘⁂ ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h)) ∘ assocˡ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h))) ∘ assocˡ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂∘⁂ ⟩∘⟨refl ⟩
|
||||||
|
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ∘ idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) ∘ assocˡ ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ((⁂-cong₂ identity² assoc) ⟩∘⟨refl) ○ sym-assoc) ○ sym-assoc ⟩
|
||||||
|
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) ∘ assocˡ ∎
|
||||||
|
|
||||||
|
KStrong : StrongMonad {C = C} monoidal
|
||||||
|
KStrong = record
|
||||||
|
{ M = monadK
|
||||||
|
; strength = KStrength
|
||||||
|
}
|
||||||
|
```
|
Loading…
Reference in a new issue