mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
⚡️ Proof that rho is natural in X
This commit is contained in:
parent
22306ddb27
commit
0b71566f54
1 changed files with 26 additions and 7 deletions
|
@ -12,6 +12,7 @@ open import Data.Product using (_,_; Σ; Σ-syntax)
|
||||||
open import Categories.Functor.Algebra
|
open import Categories.Functor.Algebra
|
||||||
open import Categories.Functor.Coalgebra
|
open import Categories.Functor.Coalgebra
|
||||||
open import Categories.Object.Terminal
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.NaturalTransformation.Core
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
|
@ -74,11 +75,28 @@ We will now show that the following conditions are equivalent:
|
||||||
ρ-epi : ∀ {X} → Epi (ρ {X})
|
ρ-epi : ∀ {X} → Epi (ρ {X})
|
||||||
ρ-epi {X} = Coequalizer⇒Epi (coeqs X)
|
ρ-epi {X} = Coequalizer⇒Epi (coeqs X)
|
||||||
|
|
||||||
|
-- TODO this belongs in different module
|
||||||
|
▷extend : ∀ {X} {Y} (f : X ⇒ D₀ Y) → ▷ ∘ extend f ≈ extend f ∘ ▷
|
||||||
|
▷extend {X} {Y} f = {! !}
|
||||||
|
where
|
||||||
|
helper₁ : [ f , extend (▷ ∘ f) ] ∘ out ≈ extend f
|
||||||
|
helper₁ = {! !}
|
||||||
|
|
||||||
-- TODO maybe needs that ρ is natural in X
|
-- TODO maybe needs that ρ is natural in X
|
||||||
ρ▷ : ∀ {X} → ρ ∘ ▷ ≈ ρ {X}
|
ρ▷ : ∀ {X} → ρ ∘ ▷ ≈ ρ {X}
|
||||||
ρ▷ {X} = sym {! coeq-universal !}
|
ρ▷ {X} = begin
|
||||||
|
ρ ∘ ▷ ≈⟨ coeq-universal {eq = eq'} ⟩
|
||||||
|
coequalize eq' ∘ ρ ≈⟨ ({! !} ⟩∘⟨refl) ⟩
|
||||||
|
coequalize equality ∘ ρ ≈⟨ elimˡ (sym id-coequalize) ⟩
|
||||||
|
ρ ∎
|
||||||
where
|
where
|
||||||
open Coequalizer (coeqs X) using () renaming (universal to coeq-universal)
|
open Coequalizer (coeqs X) using (equality; coequalize; id-coequalize) renaming (universal to coeq-universal; unique to coeq-unique; unique′ to coeq-unique′)
|
||||||
|
eq' = begin
|
||||||
|
(ρ ∘ ▷) ∘ extend ι ≈⟨ pullʳ (▷extend ι) ⟩
|
||||||
|
ρ ∘ extend ι ∘ ▷ ≈⟨ pullˡ equality ⟩
|
||||||
|
(ρ ∘ D₁ π₁) ∘ ▷ ≈⟨ assoc ⟩
|
||||||
|
ρ ∘ D₁ π₁ ∘ ▷ ≈⟨ sym (pullʳ (▷extend (now ∘ π₁))) ⟩
|
||||||
|
(ρ ∘ ▷) ∘ D₁ π₁ ∎
|
||||||
|
|
||||||
Ď-Functor : Endofunctor C
|
Ď-Functor : Endofunctor C
|
||||||
Ď-Functor = record
|
Ď-Functor = record
|
||||||
|
@ -127,6 +145,12 @@ We will now show that the following conditions are equivalent:
|
||||||
where
|
where
|
||||||
open Coequalizer (coeqs X) using (coequalize; equality) renaming (universal to coeq-universal)
|
open Coequalizer (coeqs X) using (coequalize; equality) renaming (universal to coeq-universal)
|
||||||
|
|
||||||
|
ρ-natural : NaturalTransformation D-Functor Ď-Functor
|
||||||
|
ρ-natural = ntHelper (record
|
||||||
|
{ η = λ X → ρ {X}
|
||||||
|
; commute = λ {X} {Y} f → Coequalizer.universal (coeqs X)
|
||||||
|
})
|
||||||
|
|
||||||
cond-1 : Set (o ⊔ ℓ ⊔ e)
|
cond-1 : Set (o ⊔ ℓ ⊔ e)
|
||||||
cond-1 = ∀ X → preserves D-Functor (coeqs X)
|
cond-1 = ∀ X → preserves D-Functor (coeqs X)
|
||||||
|
|
||||||
|
@ -176,9 +200,4 @@ We will now show that the following conditions are equivalent:
|
||||||
ρ ∘ extend ι ∘ μ.η (X × N) ≈⟨ pullˡ equality ⟩
|
ρ ∘ extend ι ∘ μ.η (X × N) ≈⟨ pullˡ equality ⟩
|
||||||
(ρ ∘ D₁ π₁) ∘ μ.η (X × N) ≈⟨ (pullʳ (sym (μ.commute π₁)) ○ sym-assoc) ⟩
|
(ρ ∘ D₁ π₁) ∘ μ.η (X × N) ≈⟨ (pullʳ (sym (μ.commute π₁)) ○ sym-assoc) ⟩
|
||||||
(ρ ∘ μ.η X) ∘ D₁ (D₁ π₁) ∎)
|
(ρ ∘ μ.η X) ∘ D₁ (D₁ π₁) ∎)
|
||||||
▷extend : ∀ {X} {Y} (f : X ⇒ D₀ Y) → ▷ ∘ extend f ≈ extend f ∘ ▷
|
|
||||||
▷extend {X} {Y} f = {! !}
|
|
||||||
where
|
|
||||||
helper₁ : [ f , extend (▷ ∘ f) ] ∘ out ≈ extend f
|
|
||||||
helper₁ = {! !}
|
|
||||||
```
|
```
|
Loading…
Reference in a new issue