️ Proof that rho is natural in X

This commit is contained in:
Leon Vatthauer 2023-10-04 23:45:29 +02:00
parent 22306ddb27
commit 0b71566f54
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -12,6 +12,7 @@ open import Data.Product using (_,_; Σ; Σ-syntax)
open import Categories.Functor.Algebra
open import Categories.Functor.Coalgebra
open import Categories.Object.Terminal
open import Categories.NaturalTransformation.Core
```
-->
@ -74,11 +75,28 @@ We will now show that the following conditions are equivalent:
ρ-epi : ∀ {X} → Epi (ρ {X})
ρ-epi {X} = Coequalizer⇒Epi (coeqs X)
-- TODO this belongs in different module
▷extend : ∀ {X} {Y} (f : X ⇒ D₀ Y) → ▷ ∘ extend f ≈ extend f ∘ ▷
▷extend {X} {Y} f = {! !}
where
helper₁ : [ f , extend (▷ ∘ f) ] ∘ out ≈ extend f
helper₁ = {! !}
-- TODO maybe needs that ρ is natural in X
ρ▷ : ∀ {X} → ρ ∘ ▷ ≈ ρ {X}
ρ▷ {X} = sym {! coeq-universal !}
ρ▷ {X} = begin
ρ ∘ ▷ ≈⟨ coeq-universal {eq = eq'} ⟩
coequalize eq' ∘ ρ ≈⟨ ({! !} ⟩∘⟨refl) ⟩
coequalize equality ∘ ρ ≈⟨ elimˡ (sym id-coequalize) ⟩
ρ
where
open Coequalizer (coeqs X) using () renaming (universal to coeq-universal)
open Coequalizer (coeqs X) using (equality; coequalize; id-coequalize) renaming (universal to coeq-universal; unique to coeq-unique; unique to coeq-unique)
eq' = begin
(ρ ∘ ▷) ∘ extend ι ≈⟨ pullʳ (▷extend ι) ⟩
ρ ∘ extend ι ∘ ▷ ≈⟨ pullˡ equality ⟩
(ρ ∘ D₁ π₁) ∘ ▷ ≈⟨ assoc ⟩
ρ ∘ D₁ π₁ ∘ ▷ ≈⟨ sym (pullʳ (▷extend (now ∘ π₁))) ⟩
(ρ ∘ ▷) ∘ D₁ π₁ ∎
Ď-Functor : Endofunctor C
Ď-Functor = record
@ -127,6 +145,12 @@ We will now show that the following conditions are equivalent:
where
open Coequalizer (coeqs X) using (coequalize; equality) renaming (universal to coeq-universal)
ρ-natural : NaturalTransformation D-Functor Ď-Functor
ρ-natural = ntHelper (record
{ η = λ X → ρ {X}
; commute = λ {X} {Y} f → Coequalizer.universal (coeqs X)
})
cond-1 : Set (o ⊔ ⊔ e)
cond-1 = ∀ X → preserves D-Functor (coeqs X)
@ -176,9 +200,4 @@ We will now show that the following conditions are equivalent:
ρ ∘ extend ι ∘ μ.η (X × N) ≈⟨ pullˡ equality ⟩
(ρ ∘ D₁ π₁) ∘ μ.η (X × N) ≈⟨ (pullʳ (sym (μ.commute π₁)) ○ sym-assoc) ⟩
(ρ ∘ μ.η X) ∘ D₁ (D₁ π₁) ∎)
▷extend : ∀ {X} {Y} (f : X ⇒ D₀ Y) → ▷ ∘ extend f ≈ extend f ∘ ▷
▷extend {X} {Y} f = {! !}
where
helper₁ : [ f , extend (▷ ∘ f) ] ∘ out ≈ extend f
helper₁ = {! !}
```