Indentation

This commit is contained in:
Leon Vatthauer 2023-07-25 17:23:36 +02:00
parent 86727e4aba
commit 0be1871679
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 137 additions and 131 deletions

View file

@ -37,7 +37,9 @@ module _ (C𝒞 : CocartesianCategory o e) where
f # g # h f # g # h
#-Compositionality : {X Y} {f : X A + F₀ X} {h : Y X + F₀ Y} #-Compositionality : {X Y} {f : X A + F₀ X} {h : Y X + F₀ Y}
(((f #) +₁ idC) h)# ([ (idC +₁ (F₁ i₁)) f , i₂ (F₁ i₂) ] [ i₁ , h ])# i₂ (((f #) +₁ idC) h)# ([ (idC +₁ (F₁ i₁)) f , i₂ (F₁ i₂) ] [ i₁ , h ])# i₂
#-resp-≈ : {X} {f g : X A + F₀ X} f g (f #) (g #) #-resp-≈ : {X} {f g : X A + F₀ X}
f g
(f #) (g #)
--* --*
-- (unguarded) Elgot-Algebra -- (unguarded) Elgot-Algebra
@ -100,7 +102,8 @@ module _ (C𝒞 : CocartesianCategory o e) where
[ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂))) [ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁)) [ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁))
[ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[] [ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] ))) [ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] ))
)
([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂ ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
-- every elgot-algebra comes with a divergence constant -- every elgot-algebra comes with a divergence constant
@ -185,7 +188,8 @@ module _ (C𝒞 : CocartesianCategory o e) where
(idC +₁ h) ((f #) +₁ idC) h ≈⟨ sym-assoc (idC +₁ h) ((f #) +₁ idC) h ≈⟨ sym-assoc
(((idC +₁ h) ((f #) +₁ idC)) h) ≈⟨ ∘-resp-≈ˡ +₁∘+₁ (((idC +₁ h) ((f #) +₁ idC)) h) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
(((idC (f #)) +₁ (h idC)) h) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ) (((idC (f #)) +₁ (h idC)) h) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
(f # +₁ h) h )) (f # +₁ h) h )
)
((((f #) +₁ idC) h) #) ≈⟨ #-Compositionality ((((f #) +₁ idC) h) #) ≈⟨ #-Compositionality
(([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]} {g = [ (idC +₁ i₁) f , i₂ h ]} {h = [ i₁ , h ]} ( (([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]} {g = [ (idC +₁ i₁) f , i₂ h ]} {h = [ i₁ , h ]} (
begin begin
@ -200,7 +204,8 @@ module _ (C𝒞 : CocartesianCategory o e) where
[ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂))) [ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁)) [ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁))
[ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[] [ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] )) [ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] )
)
(([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂) ≈⟨ assoc (([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂) ≈⟨ assoc
([ (idC +₁ i₁) f , i₂ h ] # ([ i₁ , h ] i₂)) ≈⟨ (∘-resp-≈ʳ $ inject₂) ([ (idC +₁ i₁) f , i₂ h ] # ([ i₁ , h ] i₂)) ≈⟨ (∘-resp-≈ʳ $ inject₂)
([ (idC +₁ i₁) f , i₂ h ] # h) ≈⟨ sym $ ∘-resp-≈ˡ inject₂ ([ (idC +₁ i₁) f , i₂ h ] # h) ≈⟨ sym $ ∘-resp-≈ˡ inject₂

View file

@ -126,7 +126,8 @@ module _ (CC : CocartesianCategory o e) where
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂) [ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂)
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[] [ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ) ) π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
)
([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f) ([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f)
; #-Uniformity = λ {X Y f g h} uni unique ( ; #-Uniformity = λ {X Y f g h} uni unique (
begin begin