Added missing proof principle

This commit is contained in:
Leon Vatthauer 2023-10-16 11:07:30 +02:00
parent 9ff33adfda
commit 14c41b3666
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -13,6 +13,7 @@ open import Categories.Monad.Construction.Kleisli
open import Categories.Category.Construction.F-Coalgebras
open import Categories.NaturalTransformation
open import Category.Instance.AmbientCategory using (Ambient)
open import Data.Product using (∃-syntax; _,_; Σ-syntax)
```
-->
```agda
@ -232,12 +233,50 @@ and second that `extend f` is the unique morphism satisfying the commutative dia
▷∘extendʳ : extend' f ∘ ▷ ≈ extend' (▷ ∘ f)
▷∘extendʳ = (sym ▷∘extend-comm) ○ ▷∘extendˡ
is-guarded : ∀ {X Y} (g : X ⇒ D₀ (Y + X)) → Set ( ⊔ e)
is-guarded {X} {Y} g = ∃[ h ] (i₁ +₁ idC) ∘ h ≈ out ∘ g
guarded-unique : ∀ {X Y} (g : X ⇒ D₀ (Y + X)) (f i : X ⇒ D₀ Y) → is-guarded g → f ≈ extend' ([ now , f ]) ∘ g → i ≈ extend' ([ now , i ]) ∘ g → f ≈ i
guarded-unique {X} {Y} g f i (h , guarded) eqf eqi = begin
f ≈⟨ eqf ⟩
extend' ([ now , f ]) ∘ g ≈⟨ (sym (Terminal.!-unique (coalgebras Y) (record { f = extend' ([ now , f ]) ; commutes = begin
out ∘ extend' ([ now , f ]) ≈⟨ extendlaw ([ now , f ]) ⟩
[ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩
[ [ out ∘ now , out ∘ f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper f eqf)) refl) ⟩∘⟨refl ⟩
[ [ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ identityʳ refl) refl) ⟩∘⟨refl ⟩
[ [ i₁ ∘ idC , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ +₁∘i₁ refl) refl) ⟩∘⟨refl ⟩
[ [ (idC +₁ extend' ([ now , f ])) ∘ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩
[ (idC +₁ extend' ([ now , f ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , f ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩
(idC +₁ extend' ([ now , f ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ }))) ⟩∘⟨refl ⟩
u (Terminal.! (coalgebras Y)) ∘ g ≈⟨ (Terminal.!-unique (coalgebras Y) (record { f = extend' ([ now , i ]) ; commutes = begin
out ∘ extend' ([ now , i ]) ≈⟨ extendlaw ([ now , i ]) ⟩
[ out ∘ [ now , i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩
[ [ out ∘ now , out ∘ i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper i eqi)) refl) ⟩∘⟨refl ⟩
[ [ i₁ , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ identityʳ refl) refl) ⟩∘⟨refl ⟩
[ [ i₁ ∘ idC , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ([]-cong₂ +₁∘i₁ refl) refl) ⟩∘⟨refl ⟩
[ [ (idC +₁ extend' ([ now , i ])) ∘ i₁ , (idC +₁ extend' ([ now , i ])) ∘ h ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩
[ (idC +₁ extend' ([ now , i ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , i ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩
(idC +₁ extend' ([ now , i ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ })) ⟩∘⟨refl ⟩
extend' ([ now , i ]) ∘ g ≈⟨ sym eqi ⟩
i ∎
where
helper : ∀ (f : X ⇒ D₀ Y) → f ≈ extend' ([ now , f ]) ∘ g → out ∘ f ≈ (idC +₁ extend' ([ now , f ])) ∘ h
helper f eqf = begin
out ∘ f ≈⟨ refl⟩∘⟨ eqf ⟩
out ∘ extend' ([ now , f ]) ∘ g ≈⟨ pullˡ (extendlaw ([ now , f ])) ⟩
([ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out) ∘ g ≈⟨ pullʳ (sym guarded) ⟩
[ out ∘ [ now , f ] , i₂ ∘ extend' ([ now , f ]) ] ∘ (i₁ +₁ idC) ∘ h ≈⟨ pullˡ []∘+₁ ⟩
[ (out ∘ [ now , f ]) ∘ i₁ , (i₂ ∘ extend' ([ now , f ])) ∘ idC ] ∘ h ≈⟨ ([]-cong₂ (pullʳ inject₁) identityʳ) ⟩∘⟨refl ⟩
[ out ∘ now , i₂ ∘ extend' ([ now , f ]) ] ∘ h ≈⟨ ([]-cong₂ (unitlaw ○ sym identityʳ) refl) ⟩∘⟨refl ⟩
(idC +₁ extend' ([ now , f ])) ∘ h ∎
out-law : ∀ {X Y} (f : X ⇒ Y) → out {Y} ∘ extend' (now ∘ f) ≈ (f +₁ extend' (now ∘ f)) ∘ out {X}
out-law {X} {Y} f = begin
out ∘ extend' (now ∘ f) ≈⟨ extendlaw (now ∘ f) ⟩
[ out ∘ now ∘ f , i₂ ∘ extend' (now ∘ f) ] ∘ out ≈⟨ ([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl ⟩
(f +₁ extend' (now ∘ f)) ∘ out ∎
kleisli : KleisliTriple C
kleisli = record
{ F₀ = D₀