mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Work on delay monad
This commit is contained in:
parent
4c3f3923a1
commit
17ecc55223
3 changed files with 142 additions and 8 deletions
|
@ -26,8 +26,9 @@ open Eq using (_≡_)
|
||||||
Most of the required properties are already proven in the agda-categories library, we are only left to construct the natural numbers object.
|
Most of the required properties are already proven in the agda-categories library, we are only left to construct the natural numbers object.
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module Category.Ambient.Setoid {ℓ} where
|
module Category.Ambient.Setoids {ℓ} where
|
||||||
-- equality on setoid functions
|
-- equality on setoid functions
|
||||||
|
private
|
||||||
_≋_ : ∀ {A B : Setoid ℓ ℓ} → A ⟶ B → A ⟶ B → Set ℓ
|
_≋_ : ∀ {A B : Setoid ℓ ℓ} → A ⟶ B → A ⟶ B → Set ℓ
|
||||||
_≋_ {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
|
_≋_ {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
|
||||||
≋-sym : ∀ {A B : Setoid ℓ ℓ} {f g : A ⟶ B} → f ≋ g → g ≋ f
|
≋-sym : ∀ {A B : Setoid ℓ ℓ} {f g : A ⟶ B} → f ≋ g → g ≋ f
|
|
@ -25,6 +25,8 @@ open Eq using (_≡_)
|
||||||
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
||||||
open import Codata.Musical.Notation
|
open import Codata.Musical.Notation
|
||||||
import Category.Monad.Partiality
|
import Category.Monad.Partiality
|
||||||
|
|
||||||
|
open import Category.Ambient.Setoids
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
|
@ -105,6 +107,11 @@ module Monad.Instance.K.Instance.Delay {c ℓ} where
|
||||||
now-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Setoid.Carrier A} → A [ x ∼ y ] → A [ now x ≈ now y ]
|
now-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Setoid.Carrier A} → A [ x ∼ y ] → A [ now x ≈ now y ]
|
||||||
now-cong {A} {x} {y} x∼y = ↓≈ x∼y (now↓ (∼-refl A)) (now↓ (∼-refl A))
|
now-cong {A} {x} {y} x∼y = ↓≈ x∼y (now↓ (∼-refl A)) (now↓ (∼-refl A))
|
||||||
|
|
||||||
|
-- slightly different types than later≈
|
||||||
|
-- TODO remove this is useless
|
||||||
|
later-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay (Setoid.Carrier A)} → A [ x ≈ y ] → A [ later (♯ x) ≈ later (♯ y) ]
|
||||||
|
later-cong {A} {x} {y} x≈y = later≈ (♯ x≈y)
|
||||||
|
|
||||||
now-inj : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Setoid.Carrier A} → A [ now x ≈ now y ] → A [ x ∼ y ]
|
now-inj : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Setoid.Carrier A} → A [ now x ≈ now y ] → A [ x ∼ y ]
|
||||||
now-inj {A} {x} {y} (↓≈ a∼b (now↓ x∼a) (now↓ y∼b)) = ∼-trans A x∼a (∼-trans A a∼b (∼-sym A y∼b))
|
now-inj {A} {x} {y} (↓≈ a∼b (now↓ x∼a) (now↓ y∼b)) = ∼-trans A x∼a (∼-trans A a∼b (∼-sym A y∼b))
|
||||||
|
|
||||||
|
@ -239,7 +246,6 @@ module Monad.Instance.K.Instance.Delay {c ℓ} where
|
||||||
identityʳ {A} {now x} {y} x≈y = x≈y
|
identityʳ {A} {now x} {y} x≈y = x≈y
|
||||||
identityʳ {A} {later x} {y} x≈y = x≈y
|
identityʳ {A} {later x} {y} x≈y = x≈y
|
||||||
|
|
||||||
|
|
||||||
delayMonad : Monad (Setoids c (c ⊔ ℓ))
|
delayMonad : Monad (Setoids c (c ⊔ ℓ))
|
||||||
delayMonad = record
|
delayMonad = record
|
||||||
{ F = record
|
{ F = record
|
||||||
|
|
127
agda/src/Monad/Instance/Setoids/Delay/PreElgot.lagda.md
Normal file
127
agda/src/Monad/Instance/Setoids/Delay/PreElgot.lagda.md
Normal file
|
@ -0,0 +1,127 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
{-# OPTIONS --allow-unsolved-metas --guardedness #-}
|
||||||
|
|
||||||
|
open import Level
|
||||||
|
open import Relation.Binary
|
||||||
|
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
|
||||||
|
open import Data.Sum.Function.Setoid
|
||||||
|
open import Data.Sum.Relation.Binary.Pointwise
|
||||||
|
open import Function.Equality as SΠ renaming (id to idₛ)
|
||||||
|
open import Codata.Musical.Notation
|
||||||
|
open import Function using () renaming (_∘_ to _∘f_)
|
||||||
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
|
open Eq using (_≡_) renaming (sym to ≡-sym)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
# The delay monad on the category of setoids is pre-Elgot
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.Setoids.Delay.PreElgot {ℓ : Level} where
|
||||||
|
open import Monad.Instance.K.Instance.Delay {ℓ} {ℓ}
|
||||||
|
open import Category.Ambient.Setoids
|
||||||
|
open import Algebra.Elgot (setoidAmbient {ℓ})
|
||||||
|
open import Monad.PreElgot (setoidAmbient {ℓ})
|
||||||
|
open Equality
|
||||||
|
|
||||||
|
conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''}
|
||||||
|
{x : Setoid.Carrier X} {y : Setoid.Carrier Y } → (X ⊎ₛ Y) [ inj₁ x ∼ inj₂ y ] → Z
|
||||||
|
conflict X Y ()
|
||||||
|
|
||||||
|
|
||||||
|
iter : ∀ {A X : Setoid ℓ ℓ} → (Setoid.Carrier X → (Delay (Setoid.Carrier A) ⊎ Setoid.Carrier X)) → Setoid.Carrier X → Delay (Setoid.Carrier A)
|
||||||
|
iter {A} {X} f x with f x
|
||||||
|
... | inj₁ a = a
|
||||||
|
... | inj₂ b = later (♯ (iter {A} {X} f b))
|
||||||
|
|
||||||
|
inj₁-helper : ∀ {X Y : Setoid ℓ ℓ} (f : X ⟶ Y ⊎ₛ X) {x y : Setoid.Carrier X} {a b : Setoid.Carrier Y} → X [ x ∼ y ] → f ⟨$⟩ x ≡ inj₁ a → f ⟨$⟩ y ≡ inj₁ b → Y [ a ∼ b ]
|
||||||
|
inj₁-helper {X} {Y} f {x} {y} {a} {b} x∼y fi₁ fi₂ = drop-inj₁ {x = a} {y = b} helper
|
||||||
|
where
|
||||||
|
helper : (Y ⊎ₛ X) [ inj₁ a ∼ inj₁ b ]
|
||||||
|
helper rewrite (≡-sym fi₁) | (≡-sym fi₂) = cong f x∼y
|
||||||
|
|
||||||
|
inj₂-helper : ∀ {X Y : Setoid ℓ ℓ} (f : X ⟶ Y ⊎ₛ X) {x y : Setoid.Carrier X} {a b : Setoid.Carrier X} → X [ x ∼ y ] → f ⟨$⟩ x ≡ inj₂ a → f ⟨$⟩ y ≡ inj₂ b → X [ a ∼ b ]
|
||||||
|
inj₂-helper {X} {Y} f {x} {y} {a} {b} x∼y fi₁ fi₂ = drop-inj₂ {x = a} {y = b} helper
|
||||||
|
where
|
||||||
|
helper : (Y ⊎ₛ X) [ inj₂ a ∼ inj₂ b ]
|
||||||
|
helper rewrite (≡-sym fi₁) | (≡-sym fi₂) = cong f x∼y
|
||||||
|
|
||||||
|
absurd-helper : ∀ {ℓ'} {X Y : Setoid ℓ ℓ} {A : Set ℓ'} (f : X ⟶ Y ⊎ₛ X) {x y : Setoid.Carrier X} {a : Setoid.Carrier Y} {b : Setoid.Carrier X} → X [ x ∼ y ] → f ⟨$⟩ x ≡ inj₁ a → f ⟨$⟩ y ≡ inj₂ b → A
|
||||||
|
absurd-helper {ℓ'} {X} {Y} {A} f {x} {y} {a} {b} x∼y fi₁ fi₂ = conflict Y X helper
|
||||||
|
where
|
||||||
|
helper : (Y ⊎ₛ X) [ inj₁ a ∼ inj₂ b ]
|
||||||
|
helper rewrite (≡-sym fi₁) | (≡-sym fi₂) = cong f x∼y
|
||||||
|
|
||||||
|
iter-cong : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (delaySetoid A ⊎ₛ X)) {x y : Setoid.Carrier X} → X [ x ∼ y ] → A [ iter {A} {X} (f ._⟨$⟩_) x ≈ iter {A} {X} (f ._⟨$⟩_) y ]
|
||||||
|
iter-cong {A} {X} f {x} {y} x∼y with (f ._⟨$⟩_) x in eqx | (f ._⟨$⟩_) y in eqy
|
||||||
|
... | inj₁ a | inj₁ b = inj₁-helper f x∼y eqx eqy
|
||||||
|
... | inj₁ a | inj₂ b = absurd-helper f x∼y eqx eqy
|
||||||
|
... | inj₂ a | inj₁ b = absurd-helper f (∼-sym X x∼y) eqy eqx
|
||||||
|
... | inj₂ a | inj₂ b = later≈ (♯ iter-cong {A} {X} f (inj₂-helper f x∼y eqx eqy))
|
||||||
|
|
||||||
|
iter-fixpoint : ∀ {A X : Setoid ℓ ℓ} {f : X ⟶ (delaySetoid A ⊎ₛ X)} {x y : Setoid.Carrier X} → X [ x ∼ y ] → A [ iter {A} {X} (f ._⟨$⟩_) x ≈ [ Function.id , iter {A} {X} (f ._⟨$⟩_) ] ((f ._⟨$⟩_) y) ]
|
||||||
|
iter-fixpoint {A} {X} {f} {x} {y} x∼y with (f ._⟨$⟩_) x in eqx | (f ._⟨$⟩_) y in eqy
|
||||||
|
... | inj₁ a | inj₁ b = inj₁-helper f x∼y eqx eqy
|
||||||
|
... | inj₁ a | inj₂ b = absurd-helper f x∼y eqx eqy
|
||||||
|
... | inj₂ a | inj₁ b = absurd-helper f (∼-sym X x∼y) eqy eqx
|
||||||
|
... | inj₂ a | inj₂ b = ≈-sym (later-eq (later≈ (♯ iter-cong f (∼-sym X (inj₂-helper f x∼y eqx eqy)))))
|
||||||
|
|
||||||
|
iter-uni : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (delaySetoid A ⊎ₛ X)} {g : Y ⟶ (delaySetoid A ⊎ₛ Y)} {h : X ⟶ Y} → ([ inj₁ₛ ∘ idₛ , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h) → ∀ {x y : Setoid.Carrier X} → X [ x ∼ y ] → A [ iter {A} {X} (f ._⟨$⟩_) x ≈ (iter {A} {Y} (g ._⟨$⟩_)) (h ⟨$⟩ y) ]
|
||||||
|
iter-uni {A} {X} {Y} {f} {g} {h} hf≈gh {x} {y} x∼y with (f ._⟨$⟩_) x in eqx | (f ._⟨$⟩_) y in eqy
|
||||||
|
... | inj₁ a | inj₁ b with g ⟨$⟩ (h ⟨$⟩ y) in eqc
|
||||||
|
... | inj₁ c = drop-inj₁ {x = a} {y = c} helper
|
||||||
|
where
|
||||||
|
helper'' : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ [ inj₁ , (λ x₁ → inj₂ (h ⟨$⟩ x₁)) ] (f ⟨$⟩ x) ]
|
||||||
|
helper'' rewrite eqx = ⊎-refl ≈-refl (∼-refl Y)
|
||||||
|
helper' : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ (g ⟨$⟩ (h ⟨$⟩ y)) ]
|
||||||
|
helper' = ∼-trans ((delaySetoid A) ⊎ₛ Y) helper'' (hf≈gh {x} {y} x∼y)
|
||||||
|
helper : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ inj₁ c ]
|
||||||
|
helper rewrite (≡-sym eqc) = helper'
|
||||||
|
... | inj₂ c = conflict (delaySetoid A) Y helper
|
||||||
|
where
|
||||||
|
helper'' : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ [ inj₁ , (λ x₁ → inj₂ (h ⟨$⟩ x₁)) ] (f ⟨$⟩ x) ]
|
||||||
|
helper'' rewrite eqx = ⊎-refl ≈-refl (∼-refl Y)
|
||||||
|
helper' : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ (g ⟨$⟩ (h ⟨$⟩ y)) ]
|
||||||
|
helper' = ∼-trans ((delaySetoid A) ⊎ₛ Y) helper'' (hf≈gh {x} {y} x∼y)
|
||||||
|
helper : (delaySetoid A ⊎ₛ Y) [ inj₁ a ∼ inj₂ c ]
|
||||||
|
helper rewrite (≡-sym eqc) = helper'
|
||||||
|
iter-uni {A} {X} {Y} {f} {g} {h} hf≈gh {x} {y} x∼y | inj₁ a | inj₂ b = absurd-helper f x∼y eqx eqy
|
||||||
|
iter-uni {A} {X} {Y} {f} {g} {h} hf≈gh {x} {y} x∼y | inj₂ a | inj₁ b = absurd-helper f (∼-sym X x∼y) eqy eqx
|
||||||
|
iter-uni {A} {X} {Y} {f} {g} {h} hf≈gh {x} {y} x∼y | inj₂ a | inj₂ b with g ⟨$⟩ (h ⟨$⟩ y) in eqc -- = ≈-sym (later-eq (later≈ (♯ {! !}))) -- (iter-uni {A} {X} {Y} {f} {{! !}} {h} hf≈gh ((inj₂-helper f x∼y eqx eqy)))
|
||||||
|
... | inj₁ c = {! !} -- absurd, probably...
|
||||||
|
... | inj₂ c = later≈ (♯ {! !})
|
||||||
|
-- why does this not terminate??
|
||||||
|
-- | inj₂ c = ≈-trans (later≈ {A} {_} {♯ (iter {A} {Y} (g ._⟨$⟩_)) (h ⟨$⟩ a)} (♯ (iter-uni {A} {X} {Y} {f} {g} {h} hf≈gh (∼-refl X)))) (later≈ (♯ iter-cong g (∼-sym Y helper)))
|
||||||
|
where
|
||||||
|
helper''' : (delaySetoid A ⊎ₛ Y) [ inj₂ c ∼ g ⟨$⟩ (h ⟨$⟩ y) ]
|
||||||
|
helper''' rewrite eqc = ∼-refl (delaySetoid A ⊎ₛ Y)
|
||||||
|
helper'' : (delaySetoid A ⊎ₛ Y) [ g ⟨$⟩ (h ⟨$⟩ y) ∼ ([ inj₁ , (λ x₂ → inj₂ (h ⟨$⟩ x₂)) ] (f ⟨$⟩ x)) ]
|
||||||
|
helper'' = ∼-sym (delaySetoid A ⊎ₛ Y) (hf≈gh x∼y)
|
||||||
|
helper' : (delaySetoid A ⊎ₛ Y) [ ([ inj₁ , (λ x₂ → inj₂ (h ⟨$⟩ x₂)) ] (f ⟨$⟩ x)) ∼ inj₂ (h ⟨$⟩ a) ]
|
||||||
|
helper' rewrite eqx = ∼-refl (delaySetoid A ⊎ₛ Y)
|
||||||
|
helper : Y [ c ∼ h ⟨$⟩ a ]
|
||||||
|
helper = drop-inj₂ {x = c} {y = h ⟨$⟩ a} (∼-trans (delaySetoid A ⊎ₛ Y) helper''' (∼-trans (delaySetoid A ⊎ₛ Y) helper'' helper'))
|
||||||
|
help : A [ later (♯ iter {A} {Y} (g ._⟨$⟩_) (h ⟨$⟩ a)) ≈ later (♯ (iter {A} {Y} (g ._⟨$⟩_) c)) ]
|
||||||
|
help = later≈ (♯ iter-cong g (∼-sym Y helper))
|
||||||
|
|
||||||
|
delay-algebras : ∀ {A : Setoid ℓ ℓ} → Elgot-Algebra-on (delaySetoid A)
|
||||||
|
delay-algebras {A} = record
|
||||||
|
{ _# = λ {X} f → record { _⟨$⟩_ = iter {A} {X} (f ._⟨$⟩_) ; cong = λ {x} {y} x∼y → iter-cong {A} {X} f {x} {y} x∼y }
|
||||||
|
; #-Fixpoint = λ {X} {f} → iter-fixpoint {A} {X} {f}
|
||||||
|
; #-Uniformity = λ {X} {Y} {f} {g} {h} → iter-uni {A} {X} {Y} {f} {g} {h}
|
||||||
|
; #-Folding = {! !}
|
||||||
|
; #-resp-≈ = {! !}
|
||||||
|
}
|
||||||
|
where
|
||||||
|
iterr : ∀ {X : Setoid ℓ ℓ} → X ⟶ ((delaySetoid A) ⊎ₛ X) → X ⟶ (delaySetoid A)
|
||||||
|
iterr {X} f = record { _⟨$⟩_ = {! !} ; cong = {! !} }
|
||||||
|
|
||||||
|
delayPreElgot : IsPreElgot delayMonad
|
||||||
|
delayPreElgot = record
|
||||||
|
{ elgotalgebras = delay-algebras
|
||||||
|
; extend-preserves = {! !}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
```
|
Loading…
Reference in a new issue