From 197d036d42c2a95a3a00a61f2bfb283694d6d5e8 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Thu, 4 Jan 2024 18:01:17 +0100 Subject: [PATCH] Work on Delay Monad without musical notation --- agda/src/Monad/Instance/K/Instance/D.lagda.md | 231 ++++++++++++++++++ 1 file changed, 231 insertions(+) create mode 100644 agda/src/Monad/Instance/K/Instance/D.lagda.md diff --git a/agda/src/Monad/Instance/K/Instance/D.lagda.md b/agda/src/Monad/Instance/K/Instance/D.lagda.md new file mode 100644 index 0000000..5a58787 --- /dev/null +++ b/agda/src/Monad/Instance/K/Instance/D.lagda.md @@ -0,0 +1,231 @@ +```agda +{-# OPTIONS --allow-unsolved-metas --guardedness #-} + +open import Level +open import Function.Equality as SΠ renaming (id to idₛ) +open import Relation.Binary +open import Data.Sum using (_⊎_; inj₁; inj₂) +import Relation.Binary.PropositionalEquality as Eq +open Eq using (_≡_) +open import Function.Inverse as Inv using (_↔_; Inverse; inverse) + + +module Monad.Instance.K.Instance.D {c ℓ} where + +open Setoid using () renaming (Carrier to ∣_∣; _≈_ to [_][_≡_]) +open module eq (S : Setoid c (c ⊔ ℓ)) = IsEquivalence (Setoid.isEquivalence S) using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans) + + +mutual + + data Delay (A : Set c) : Set c where + now : A → Delay A + later : Delay′ A → Delay A + + record Delay′ (A : Set c) : Set c where + coinductive + field + force : Delay A + +open Delay′ public + +module Bisimilarity (A : Setoid c (c ⊔ ℓ)) where + + never : Delay ∣ A ∣ + never′ : Delay′ ∣ A ∣ + + never = later never′ + force never′ = never + + -- Removes a later constructor, if possible. + + drop-later : Delay ∣ A ∣ → Delay ∣ A ∣ + drop-later (now x) = now x + drop-later (later x) = force x + + -- An unfolding lemma for Delay. + + Delay↔ : Delay ∣ A ∣ ↔ (∣ A ∣ ⊎ Delay′ ∣ A ∣) + + Inverse.to Delay↔ ⟨$⟩ now x = inj₁ x + Inverse.to Delay↔ ⟨$⟩ later x = inj₂ x + + Inverse.from Delay↔ ⟨$⟩ inj₁ x = now x + Inverse.from Delay↔ ⟨$⟩ inj₂ y = later y + + cong (Inverse.to Delay↔) Eq.refl = Eq.refl + cong (Inverse.from Delay↔) Eq.refl = Eq.refl + + Inv._InverseOf_.left-inverse-of (Inverse.inverse-of Delay↔) (now _) = Eq.refl + Inv._InverseOf_.left-inverse-of (Inverse.inverse-of Delay↔) (later _) = Eq.refl + Inv._InverseOf_.right-inverse-of (Inverse.inverse-of Delay↔) (inj₁ _) = Eq.refl + Inv._InverseOf_.right-inverse-of (Inverse.inverse-of Delay↔) (inj₂ _) = Eq.refl + + mutual + + -- adapted from https://www.cse.chalmers.se/∼nad/listings/delay-monad/Delay-monad.Bisimilarity.html + + data _∼_ : Delay ∣ A ∣ → Delay ∣ A ∣ → Set (c ⊔ ℓ) where + now∼ : ∀ {x y} → [ A ][ x ≡ y ] → now x ∼ now y + later∼ : ∀ {x y} → force x ∼′ force y → later x ∼ later y + + record _∼′_ (x y : Delay ∣ A ∣) : Set (c ⊔ ℓ) where + coinductive + + field + force∼ : x ∼ y + + open _∼′_ public + + -- strong bisimilarity of now and later leads to a clash + now∼later : ∀ {ℓ'}{Z : Set ℓ'}{x : ∣ A ∣}{y : Delay′ ∣ A ∣} → now x ∼ later y → Z + now∼later () + + ∼-refl : ∀ {x : Delay ∣ A ∣} → x ∼ x + ∼′-refl : ∀ {x : Delay ∣ A ∣} → x ∼′ x + + ∼-refl {now x} = now∼ (≡-refl A) + ∼-refl {later x} = later∼ ∼′-refl + + force∼ (∼′-refl {now x}) = now∼ (≡-refl A) + force∼ (∼′-refl {later x}) = later∼ ∼′-refl + + ∼-sym : ∀ {x y : Delay ∣ A ∣} → x ∼ y → y ∼ x + ∼′-sym : ∀ {x y : Delay ∣ A ∣} → x ∼′ y → y ∼′ x + + ∼-sym (now∼ x≡y) = now∼ (≡-sym A x≡y) + ∼-sym (later∼ fx∼fy) = later∼ (∼′-sym fx∼fy) + + force∼ (∼′-sym x∼′y) = ∼-sym (force∼ x∼′y) + + ∼-trans : ∀ {x y z : Delay ∣ A ∣} → x ∼ y → y ∼ z → x ∼ z + ∼′-trans : ∀ {x y z : Delay ∣ A ∣} → x ∼′ y → y ∼′ z → x ∼′ z + + ∼-trans (now∼ x≡y) (now∼ y≡z) = now∼ (≡-trans A x≡y y≡z) + ∼-trans (later∼ x∼y) (later∼ y∼z) = later∼ (∼′-trans x∼y y∼z) + + force∼ (∼′-trans x∼y y∼z) = ∼-trans (force∼ x∼y) (force∼ y∼z) + + data _↓_ : Delay ∣ A ∣ → ∣ A ∣ → Set (c ⊔ ℓ) where + now↓ : ∀ {x y} → [ A ][ x ≡ y ] → now x ↓ y + later↓ : ∀ {x y} (x↓y : (force x) ↓ y) → later x ↓ y + + unique↓ : ∀ {a : Delay ∣ A ∣ } {x y : ∣ A ∣} → a ↓ x → a ↓ y → [ A ][ x ≡ y ] + unique↓ (now↓ a≡x) (now↓ a≡y) = ≡-trans A (≡-sym A a≡x) a≡y + unique↓ (later↓ fb↓x) (later↓ fb↓y) = unique↓ fb↓x fb↓y + + mutual + + data _≈_ : Delay ∣ A ∣ → Delay ∣ A ∣ → Set (c ⊔ ℓ) where + ↓≈ : ∀ {x y a b} (a≡b : [ A ][ a ≡ b ]) (x↓a : x ↓ a) (y↓b : y ↓ b) → x ≈ y + later≈ : ∀ {x y} (x≈y : force x ≈′ force y) → later x ≈ later y + + record _≈′_ (x y : Delay ∣ A ∣) : Set (c ⊔ ℓ) where + coinductive + + field + force≈ : x ≈ y + + open _≈′_ public + + ≈→≈′ : ∀ {x y : Delay ∣ A ∣} → x ≈ y → x ≈′ y + force≈ (≈→≈′ x≈y) = x≈y + + ≡↓ : ∀ {x y : ∣ A ∣} {z : Delay ∣ A ∣} → [ A ][ x ≡ y ] → z ↓ x → z ↓ y + ≡↓ {x} {y} {.(now _)} x≡y (now↓ a≡x) = now↓ (≡-trans A a≡x x≡y) + ≡↓ {x} {y} {.(later _)} x≡y (later↓ z↓x) = later↓ (≡↓ x≡y z↓x) + + ≈↓ : ∀ {x y : Delay ∣ A ∣ } {a : ∣ A ∣} → x ≈ y → x ↓ a → y ↓ a + + ≈↓ (↓≈ c≡b (now↓ x≡c) y↓b) (now↓ x≡a) = ≡↓ (≡-trans A (≡-trans A (≡-sym A c≡b) (≡-sym A x≡c)) x≡a) y↓b + ≈↓ (↓≈ c≡b (later↓ x↓c) y↓b) (later↓ x↓a) = ≡↓ (≡-trans A (≡-sym A c≡b) (≡-sym A (unique↓ x↓a x↓c))) y↓b + ≈↓ (later≈ fx≈fy) (later↓ fx↓a) = later↓ (≈↓ (force≈ fx≈fy) fx↓a) + + + ≈-refl : ∀ {x : Delay ∣ A ∣} → x ≈ x + ≈′-refl : ∀ {x : Delay ∣ A ∣} → x ≈′ x + + ≈-refl {now x} = ↓≈ (≡-refl A) (now↓ (≡-refl A)) (now↓ (≡-refl A)) + ≈-refl {later x} = later≈ ≈′-refl + + force≈ ≈′-refl = ≈-refl + + + ≈-sym : ∀ {x y : Delay ∣ A ∣} → x ≈ y → y ≈ x + ≈′-sym : ∀ {x y : Delay ∣ A ∣} → x ≈′ y → y ≈′ x + + ≈-sym (↓≈ a≡b x↓a y↓b) = ↓≈ (≡-sym A a≡b) y↓b x↓a + ≈-sym (later≈ x≈y) = later≈ (≈′-sym x≈y) + + force≈ (≈′-sym x∼′y) = ≈-sym (force≈ x∼′y) + + + ≈-trans : ∀ {x y z : Delay ∣ A ∣} → x ≈ y → y ≈ z → x ≈ z + ≈′-trans : ∀ {x y z : Delay ∣ A ∣} → x ≈′ y → y ≈′ z → x ≈′ z + + ≈-trans (↓≈ a≡b x↓a y↓b) (↓≈ c≡d y↓c z↓d) = ↓≈ (≡-trans A (≡-trans A a≡b (unique↓ y↓b y↓c)) c≡d) x↓a z↓d + ≈-trans (↓≈ a≡b z↓a (later↓ x↓b)) (later≈ x≈y) = ↓≈ a≡b z↓a (later↓ (≈↓ (force≈ x≈y) x↓b)) + ≈-trans (later≈ x≈y) (↓≈ a≡b (later↓ y↓a) z↓b) = ↓≈ a≡b (later↓ (≈↓ (≈-sym (force≈ x≈y)) y↓a)) z↓b + ≈-trans (later≈ x≈y) (later≈ y≈z) = later≈ (≈′-trans x≈y y≈z) + + force≈ (≈′-trans x≈′y y≈′z) = ≈-trans (force≈ x≈′y) (force≈ y≈′z) + +open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈′_ to [_][_≈′_]; _∼_ to [_][_∼_]; _∼′_ to [_][_∼′_]; _↓_ to [_][_↓_]) + + +module DelayMonad where + Delayₛ : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ) + Delayₛ A = record { Carrier = Delay ∣ A ∣ ; _≈_ = [_][_≈_] A ; isEquivalence = record { refl = ≈-refl A ; sym = ≈-sym A ; trans = ≈-trans A } } + <_> = Π._⟨$⟩_ + + ∼⇒≈ : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay ∣ A ∣} → [ A ][ x ∼ y ] → [ A ][ x ≈ y ] + ∼′⇒≈′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay ∣ A ∣} → [ A ][ x ∼′ y ] → [ A ][ x ≈′ y ] + ∼⇒≈ {A} {.(now _)} {.(now _)} (now∼ a≡b) = ↓≈ a≡b (now↓ (≡-refl A)) (now↓ (≡-refl A)) + ∼⇒≈ {A} {.(later _)} {.(later _)} (later∼ x∼y) = later≈ (∼′⇒≈′ x∼y) + force≈ (∼′⇒≈′ {A} {x} {y} x∼y) = ∼⇒≈ (force∼ x∼y) + + liftF : ∀ {A B : Set c} → (A → B) → Delay A → Delay B + liftF′ : ∀ {A B : Set c} → (A → B) → Delay′ A → Delay′ B + liftF f (now x) = now (f x) + liftF f (later x) = later (liftF′ f x) + force (liftF′ f x) = liftF f (force x) + + lift↓ : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) {x : Delay ∣ A ∣} {b : ∣ A ∣} → [ A ][ x ↓ b ] → [ B ][ (liftF (< f >) x) ↓ (f ⟨$⟩ b) ] + lift↓ {A} {B} f {now x} {b} (now↓ x≡a) = now↓ (cong f x≡a) + lift↓ {A} {B} f {later x} {b} (later↓ x↓b) = later↓ (lift↓ f x↓b) + + + lift-cong : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) {x y : Delay ∣ A ∣} → [ A ][ x ≈ y ] → [ B ][ liftF < f > x ≈ liftF < f > y ] + lift-cong′ : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ B ][ liftF < f > x ≈′ liftF < f > y ] + lift-cong {A} {B} f {now x} {now y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ↓≈ (cong f a≡b) (now↓ (cong f x≡a)) (now↓ (cong f y≡b)) + lift-cong {A} {B} f {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (cong f a≡b) (now↓ (cong f x≡a)) (later↓ (lift↓ f y↓b)) + lift-cong {A} {B} f {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (cong f a≡b) (later↓ (lift↓ f x↓a)) (now↓ (cong f y≡b)) + lift-cong {A} {B} f {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-cong′ f (≈→≈′ A (↓≈ a≡b x↓a y↓b))) + lift-cong {A} {B} f {later x} {later y} (later≈ x≈y) = later≈ (lift-cong′ {A} {B} f x≈y) + force≈ (lift-cong′ {A} {B} f {x} {y} x≈y) = lift-cong f (force≈ x≈y) + + liftFₛ : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → Delayₛ A ⟶ Delayₛ B + liftFₛ {A} {B} f = record { _⟨$⟩_ = liftF < f > ; cong = lift-cong f } + + now-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : ∣ A ∣} → [ A ][ x ≡ y ] → [ A ][ now x ≈ now y ] + now-cong {A} {x} {y} x≡y = ↓≈ x≡y (now↓ (≡-refl A)) (now↓ (≡-refl A)) + + η : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ Delayₛ A + η A = record { _⟨$⟩_ = now ; cong = now-cong } + + now-inj : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : ∣ A ∣} → [ A ][ now x ≈ now y ] → [ A ][ x ≡ y ] + now-inj {A} {x} {y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b)) + + -- this needs polymorphic universe levels + _≋_ : ∀ {c' ℓ'} {A B : Setoid c' ℓ'} → A ⟶ B → A ⟶ B → Set (c' ⊔ ℓ') + _≋_ {c'} {ℓ'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g + + -- later-eq : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} {y : Delay ∣ A ∣} → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ] + -- later-eq′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} {y : Delay ∣ A ∣} → [ A ][ later x ≈′ y ] → [ A ][ force x ≈′ y ] + -- force≈ (later-eq′ {A} {x} {y} x≈y) = later-eq (force≈ x≈y) + -- later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b) + -- later-eq {A} {x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = ↓≈ a≡b x↓a (later↓ y↓b) + -- later-eq {A} {x} {later y} (later≈ x≈y) with force x + -- ... | now a = {! !} + -- ... | later a = later≈ (later-eq′ x≈y) +```