use coproduct functor from library, minor changes

This commit is contained in:
Leon Vatthauer 2023-09-11 21:06:23 +02:00
parent 34ba57b6ef
commit 230b34da49
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -58,25 +58,13 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
``` ```
--> -->
The delay monad is described via existence of final (Y + \_)-coalgebras, so first we need to define the (Y + \_)-functor: The Delay monad is usually described by existence of final coalgebras for the functor `(X + -)` where `X` is some arbitrary object.
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
```agda
delayF : Obj → Endofunctor C
delayF Y = record
{ F₀ = Y +_
; F₁ = idC +₁_
; identity = CC.coproduct.unique id-comm-sym id-comm-sym
; homomorphism = ⟺ (+₁∘+₁ ○ +₁-cong₂ identity² refl)
; F-resp-≈ = +₁-cong₂ refl
}
```
Using this functor we can define the delay monad ***D***:
```agda ```agda
record DelayM : Set (o ⊔ ⊔ e) where record DelayM : Set (o ⊔ ⊔ e) where
field field
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (delayF A)) coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-))
``` ```
These are all the fields this record needs! These are all the fields this record needs!
@ -94,7 +82,7 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
D₀ = DX D₀ = DX
out-≅ : DX ≅ X + DX out-≅ : DX ≅ X + DX
out-≅ = colambek {F = delayF X} (coalgebras X) out-≅ = colambek {F = X +- } (coalgebras X)
-- note: out-≅.from ≡ .α -- note: out-≅.from ≡ .α
open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public
@ -109,8 +97,10 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
unitlaw = cancelˡ (_≅_.isoʳ out-≅) unitlaw = cancelˡ (_≅_.isoʳ out-≅)
``` ```
Since `DX` is part of a final coalgebra, we can define a *coiteration operator* that sends every `Y ⇒ X + Y` to `Y ⇒ DX` for an arbitrary `Y` Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
TODO rephrase, add diagram
TODO add diagram
```agda ```agda
module _ {Y : Obj} where module _ {Y : Obj} where
coit : Y ⇒ X + Y → Y ⇒ DX coit : Y ⇒ X + Y → Y ⇒ DX
@ -120,8 +110,8 @@ TODO rephrase, add diagram
coit-commutes f = commutes (! {A = record { A = Y ; α = f }}) coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
``` ```
If we combine the interal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`. If we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `delayF` defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras. At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
TODO add diagram TODO add diagram
```agda ```agda
@ -157,14 +147,14 @@ TODO
where where
open Terminal open Terminal
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
alg : F-Coalgebra (delayF Y) alg : F-Coalgebra (Y +-)
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] }
extend : D₀ X ⇒ D₀ Y extend : D₀ X ⇒ D₀ Y
extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y} extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y}
!∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC !∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC
!∘i₂ = -id (coalgebras Y) (F-Coalgebras (delayF Y) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] ) !∘i₂ = -id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
extendlaw = begin extendlaw = begin
@ -213,7 +203,7 @@ TODO
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
(pullʳ inject₁)) (pullʳ inject₁))
⟩∘⟨refl) ⟩∘⟨refl)
(elimˡ (Functor.identity (delayF Y))) (elimˡ (Functor.identity (Y +-)))
[ [ [ (idC +₁ [ g , idC ]) ∘ i₁ [ [ [ (idC +₁ [ g , idC ]) ∘ i₁
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
@ -233,7 +223,7 @@ TODO
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → α (alg f) ≈ α (alg g) αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → α (alg f) ≈ α (alg g)
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g) alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (Y +-)) (alg f) (alg g)
alg-f≈alg-g {X} {Y} {f} {g} eq = record alg-f≈alg-g {X} {Y} {f} {g} eq = record
{ from = record { f = idC ; commutes = begin { from = record { f = idC ; commutes = begin
α (alg g) ∘ idC ≈⟨ identityʳ ⟩ α (alg g) ∘ idC ≈⟨ identityʳ ⟩
@ -250,7 +240,7 @@ TODO
; isoʳ = identity² ; isoʳ = identity²
} }
} }
where open Functor (delayF Y) using (identity) where open Functor (Y +-) using (identity)
identityʳ' : ∀ {X} {Y} {f} → extend f ∘ now X ≈ f identityʳ' : ∀ {X} {Y} {f} → extend f ∘ now X ≈ f
identityʳ' {X} {Y} {f} = begin identityʳ' {X} {Y} {f} = begin
@ -290,7 +280,7 @@ TODO
u (! (coalgebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (coalgebras Y) (record { f = (u (! (coalgebras Y) {A = alg g }) ∘ idC) ; commutes = begin u (! (coalgebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (coalgebras Y) (record { f = (u (! (coalgebras Y) {A = alg g }) ∘ idC) ; commutes = begin
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩ α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ≈⟨ commutes (! (coalgebras Y)) ⟩ α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ≈⟨ commutes (! (coalgebras Y)) ⟩
(idC +₁ u (! (coalgebras Y))) ∘ α (alg g) ≈˘⟨ Functor.F-resp-≈ (delayF Y) identityʳ ⟩∘⟨ αf≈αg eq ⟩ (idC +₁ u (! (coalgebras Y))) ∘ α (alg g) ≈˘⟨ Functor.F-resp-≈ (Y +-) identityʳ ⟩∘⟨ αf≈αg eq ⟩
(idC +₁ u (! (coalgebras Y)) ∘ idC) ∘ α (alg f) ∎ })) (idC +₁ u (! (coalgebras Y)) ∘ idC) ∘ α (alg f) ∎ }))
⟩∘⟨refl ⟩ ⟩∘⟨refl ⟩
(u (! (coalgebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩ (u (! (coalgebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩