From 2317c6b30d1a231beff20021850a1ccf076b0cb5 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Wed, 22 Nov 2023 09:58:20 +0100 Subject: [PATCH] minor --- src/Algebra/Elgot.lagda.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/src/Algebra/Elgot.lagda.md b/src/Algebra/Elgot.lagda.md index a7c9ed5..c305bfc 100644 --- a/src/Algebra/Elgot.lagda.md +++ b/src/Algebra/Elgot.lagda.md @@ -113,6 +113,18 @@ Here we give a different Characterization and show that it is equal. ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂ ∎ -- TODO Proposition 41 + #-Diamond : ∀ {X} (f : X ⇒ A + (X + X)) → ((idC +₁ [ idC , idC ]) ∘ f)# ≈ ([ i₁ , ((idC +₁ [ idC , idC ]) ∘ f) # +₁ idC ] ∘ f) # + #-Diamond {X} f = begin + g # ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ + [ (idC +₁ i₁) ∘ [ i₁ , (idC +₁ i₂) ∘ g ] , i₂ ∘ h ] # ∘ i₂ ≈⟨ (sym #-Folding) ⟩∘⟨refl ⟩ + ([ i₁ , (idC +₁ i₂) ∘ g ] # +₁ h)# ∘ i₂ ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ + ([ i₁ , g # +₁ idC ] ∘ f) # ∎ + where + g = (idC +₁ [ idC , idC ]) ∘ f + h = [ i₁ ∘ i₁ , i₂ +₁ idC ] ∘ f -- every elgot-algebra comes with a divergence constant !ₑ : ⊥ ⇒ A