mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Proof that maybe is equational lifting
This commit is contained in:
parent
acac2d6ee4
commit
24a1bbee0e
4 changed files with 301 additions and 0 deletions
53
agda/src/Monad/Instance/Maybe.lagda.md
Normal file
53
agda/src/Monad/Instance/Maybe.lagda.md
Normal file
|
@ -0,0 +1,53 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.Category.Core
|
||||||
|
open import Categories.Category.Cocartesian
|
||||||
|
open import Categories.Category.Cartesian
|
||||||
|
open import Categories.Category.Distributive
|
||||||
|
open import Categories.Functor hiding (id)
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.NaturalTransformation hiding (id)
|
||||||
|
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
# The maybe monad
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.Maybe {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where
|
||||||
|
open Category C
|
||||||
|
open MR C
|
||||||
|
open HomReasoning
|
||||||
|
open Equiv
|
||||||
|
open Distributive distributive
|
||||||
|
open Cocartesian cocartesian
|
||||||
|
open Cartesian cartesian using (terminal)
|
||||||
|
open Terminal terminal
|
||||||
|
|
||||||
|
maybeFunctor : Endofunctor C
|
||||||
|
maybeFunctor = record
|
||||||
|
{ F₀ = λ X → X + ⊤
|
||||||
|
; F₁ = λ f → f +₁ id
|
||||||
|
; identity = +-unique id-comm-sym id-comm-sym
|
||||||
|
; homomorphism = λ {X} {Y} {Z} {f} {g} → sym (+₁∘+₁ ○ +₁-cong₂ refl identity²)
|
||||||
|
; F-resp-≈ = λ eq → +₁-cong₂ eq refl
|
||||||
|
}
|
||||||
|
|
||||||
|
open Monad renaming (identityˡ to m-identityˡ; identityʳ to m-identityʳ; assoc to m-assoc; sym-assoc to m-sym-assoc)
|
||||||
|
|
||||||
|
maybeMonad : Monad C
|
||||||
|
maybeMonad .F = maybeFunctor
|
||||||
|
maybeMonad .η = ntHelper (record { η = λ X → i₁ ; commute = λ f → sym inject₁ })
|
||||||
|
maybeMonad .μ = ntHelper (record { η = λ X → [ id , i₂ ] ; commute = λ f → []∘+₁ ○ []-cong₂ id-comm-sym (sym inject₂) ○ sym ∘[]})
|
||||||
|
maybeMonad .m-assoc = begin
|
||||||
|
[ id , i₂ ] ∘ ([ id , i₂ ] +₁ id) ≈⟨ []∘+₁ ⟩
|
||||||
|
[ id ∘ [ id , i₂ ] , i₂ ∘ id ] ≈˘⟨ []-cong₂ id-comm (inject₂ ○ introʳ refl) ⟩
|
||||||
|
[ [ id , i₂ ] ∘ id , [ id , i₂ ] ∘ i₂ ] ≈˘⟨ ∘[] ⟩
|
||||||
|
[ id , i₂ ] ∘ [ id , i₂ ] ∎
|
||||||
|
maybeMonad .m-sym-assoc = sym (m-assoc maybeMonad)
|
||||||
|
maybeMonad .m-identityˡ = []∘+₁ ○ +-unique refl id-comm-sym
|
||||||
|
maybeMonad .m-identityʳ = inject₁
|
||||||
|
```
|
85
agda/src/Monad/Instance/Maybe/Commutative.lagda.md
Normal file
85
agda/src/Monad/Instance/Maybe/Commutative.lagda.md
Normal file
|
@ -0,0 +1,85 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.Category.Core
|
||||||
|
open import Categories.Category.Cocartesian
|
||||||
|
open import Categories.Category.Cartesian
|
||||||
|
open import Categories.Category.BinaryProducts
|
||||||
|
open import Categories.Category.Cartesian.Monoidal
|
||||||
|
open import Categories.Category.Cartesian.SymmetricMonoidal
|
||||||
|
open import Categories.Category.Distributive
|
||||||
|
open import Categories.Functor hiding (id)
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Monad.Strong
|
||||||
|
open import Categories.Monad.Commutative
|
||||||
|
open import Categories.NaturalTransformation hiding (id)
|
||||||
|
open import Data.Product using (_,_)
|
||||||
|
open import Categories.Category.Monoidal.Braided
|
||||||
|
open import Categories.Category.Monoidal.Symmetric
|
||||||
|
|
||||||
|
import Categories.Morphism as M
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
import Categories.Morphism.Properties as MP
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
# The maybe monad
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.Maybe.Commutative {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where
|
||||||
|
open Category C
|
||||||
|
open M C
|
||||||
|
open MR C
|
||||||
|
open MP C
|
||||||
|
open HomReasoning
|
||||||
|
open Equiv
|
||||||
|
open Distributive distributive
|
||||||
|
open import Categories.Category.Distributive.Properties distributive
|
||||||
|
open Cocartesian cocartesian
|
||||||
|
open Cartesian cartesian using (terminal; products)
|
||||||
|
open BinaryProducts products renaming (unique to ⟨⟩-unique)
|
||||||
|
open Terminal terminal
|
||||||
|
open CartesianMonoidal cartesian using (monoidal)
|
||||||
|
|
||||||
|
open import Monad.Instance.Maybe distributive
|
||||||
|
open import Monad.Instance.Maybe.Strong distributive
|
||||||
|
|
||||||
|
open Symmetric (symmetric C cartesian) using (braided)
|
||||||
|
|
||||||
|
open Commutative
|
||||||
|
|
||||||
|
distribute₄ : ∀ {A B C D} → (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ {A + B} {C} {D} ≈ [ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹
|
||||||
|
distribute₄ = Iso⇒Epi (IsIso.iso isIsoʳ) ((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) (begin
|
||||||
|
(((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ distributeʳ) ≈⟨ ∘[] ⟩
|
||||||
|
[ (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₁ ⁂ id)) , (((distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ (i₂ ⁂ id)) ] ≈⟨ []-cong₂ (pullʳ ((refl⟩∘⟨ (⁂-cong₂ refl (sym (+-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₁ id id))) (pullʳ (((refl⟩∘⟨ (⁂-cong₂ refl (sym (+-unique id-comm-sym id-comm-sym)))) ○ sym (distributeˡ⁻¹-natural i₂ id id)))) ⟩
|
||||||
|
[ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₁ ⁂ id) +₁ (i₁ ⁂ id)) ∘ distributeˡ⁻¹ , (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ ((i₂ ⁂ id) +₁ (i₂ ⁂ id)) ∘ distributeˡ⁻¹ ] ≈⟨ []-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₁ distributeʳ⁻¹-i₁)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ distributeʳ⁻¹-i₂ distributeʳ⁻¹-i₂)) ⟩
|
||||||
|
[ (i₁ +₁ i₁) ∘ distributeˡ⁻¹ , (i₂ +₁ i₂) ∘ distributeˡ⁻¹ ] ≈˘⟨ []∘+₁ ⟩
|
||||||
|
([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹)) ≈˘⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoʳ)) ⟩
|
||||||
|
(([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ distributeʳ) ∎)
|
||||||
|
|
||||||
|
commutativeMaybe : Commutative braided maybeStrong
|
||||||
|
commutativeMaybe .commutes {X} {Y} = begin
|
||||||
|
[ id , i₂ ] ∘ ((swap +₁ id) ∘ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap +₁ id) ∘ (id +₁ !) ∘ distributeˡ⁻¹ ≈⟨ refl⟩∘⟨ (pullˡ (+₁∘+₁ ○ +₁-cong₂ identityʳ identityˡ)) ⟩
|
||||||
|
[ id , i₂ ] ∘ ((swap +₁ id) ∘ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap +₁ !) ∘ distributeˡ⁻¹ ≈⟨ pullˡ ([]∘+₁ ○ []-cong₂ identityˡ refl) ⟩
|
||||||
|
[ (swap +₁ id) ∘ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap , i₂ ∘ ! ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ (refl⟩∘⟨ (pullʳ distributeˡ⁻¹∘swap)) (refl⟩∘⟨ !-unique (! ∘ distributeʳ⁻¹))) ⟩∘⟨refl ⟩
|
||||||
|
[ (swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ , i₂ ∘ ! ∘ distributeʳ⁻¹ ] ∘ distributeˡ⁻¹ ≈˘⟨ pullˡ ([]∘+₁ ○ []-cong₂ assoc²' assoc) ⟩
|
||||||
|
[ (swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap) , i₂ ∘ ! ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ≈⟨ refl⟩∘⟨ distribute₄ ⟩
|
||||||
|
[ (swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap) , i₂ ∘ ! ] ∘ [ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ pullˡ ∘[] ⟩
|
||||||
|
[ [ (swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap) , i₂ ∘ ! ] ∘ (i₁ +₁ i₁) , [ (swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap) , i₂ ∘ ! ] ∘ (i₂ +₁ i₂) ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ []∘+₁ []∘+₁) ⟩∘⟨refl ⟩
|
||||||
|
[ [ ((swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap)) ∘ i₁ , (i₂ ∘ !) ∘ i₁ ] , [ ((swap +₁ id) ∘ (id +₁ !) ∘ (swap +₁ swap)) ∘ i₂ , (i₂ ∘ !) ∘ i₂ ] ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ ([]-cong₂ (pullʳ (pullʳ inject₁)) (pullʳ (sym (!-unique (! ∘ i₁))))) ([]-cong₂ (pullʳ (pullʳ inject₂)) (pullʳ (sym (!-unique (! ∘ i₂)))))) ⟩∘⟨refl ⟩
|
||||||
|
[ [ (swap +₁ id) ∘ (id +₁ !) ∘ i₁ ∘ swap , i₂ ∘ ! ] , [ (swap +₁ id) ∘ (id +₁ !) ∘ i₂ ∘ swap , i₂ ∘ ! ] ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ ([]-cong₂ (refl⟩∘⟨ (pullˡ (inject₁ ○ identityʳ))) refl) ([]-cong₂ (refl⟩∘⟨ (pullˡ inject₂)) refl)) ⟩∘⟨refl ⟩
|
||||||
|
[ [ (swap +₁ id) ∘ i₁ ∘ swap , i₂ ∘ ! ] , [ (swap +₁ id) ∘ (i₂ ∘ !) ∘ swap , i₂ ∘ ! ] ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ ([]-cong₂ (pullˡ inject₁) refl) ([]-cong₂ (pullˡ (pullˡ (inject₂ ○ identityʳ))) refl)) ⟩∘⟨refl ⟩
|
||||||
|
[ [ (i₁ ∘ swap) ∘ swap , i₂ ∘ ! ] , [ (i₂ ∘ !) ∘ swap , i₂ ∘ ! ] ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ ([]-cong₂ (pullʳ swap∘swap) refl) ([]-cong₂ (pullʳ (sym (!-unique (! ∘ swap)))) refl)) ⟩∘⟨refl ⟩
|
||||||
|
[ id +₁ ! , [ i₂ ∘ ! , i₂ ∘ ! ] ] ∘ (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈⟨ pullˡ []∘+₁ ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , [ i₂ ∘ ! , i₂ ∘ ! ] ∘ distributeˡ⁻¹ ] ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ refl ((sym ∘[]) ⟩∘⟨refl)) ⟩∘⟨refl ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , (i₂ ∘ [ ! , ! ]) ∘ distributeˡ⁻¹ ] ∘ distributeʳ⁻¹ ≈⟨ ([]-cong₂ refl (pullʳ (sym (!-unique ([ ! , ! ] ∘ distributeˡ⁻¹))))) ⟩∘⟨refl ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , i₂ ∘ ! ] ∘ distributeʳ⁻¹ ≈˘⟨ ([]-cong₂ (cancelʳ swap∘swap) (pullʳ (sym (!-unique (! ∘ swap))))) ⟩∘⟨refl ⟩
|
||||||
|
[ (((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap) ∘ swap , (i₂ ∘ !) ∘ swap ] ∘ distributeʳ⁻¹ ≈˘⟨ pullˡ []∘+₁ ⟩
|
||||||
|
[ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap , i₂ ∘ ! ] ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ≈˘⟨ pullʳ distributeˡ⁻¹∘swap ⟩
|
||||||
|
([ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap , i₂ ∘ ! ] ∘ distributeˡ⁻¹) ∘ swap ≈˘⟨ pullˡ (pullˡ ([]∘+₁ ○ []-cong₂ identityˡ (refl⟩∘⟨ identityˡ))) ⟩
|
||||||
|
[ id , i₂ ] ∘ (((((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap) +₁ id ∘ !) ∘ distributeˡ⁻¹) ∘ swap ≈˘⟨ refl⟩∘⟨ (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²) ○ pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ identityʳ refl))) ⟩
|
||||||
|
[ id , i₂ ] ∘ ((id +₁ !) ∘ distributeˡ⁻¹ +₁ id) ∘ (swap +₁ id) ∘ ((id +₁ !) ∘ distributeˡ⁻¹) ∘ swap ∎
|
||||||
|
|
||||||
|
|
||||||
|
```
|
61
agda/src/Monad/Instance/Maybe/EquationalLifting.lagda.md
Normal file
61
agda/src/Monad/Instance/Maybe/EquationalLifting.lagda.md
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.Category.Core
|
||||||
|
open import Categories.Category.Cocartesian
|
||||||
|
open import Categories.Category.Cartesian
|
||||||
|
open import Categories.Category.BinaryProducts
|
||||||
|
open import Categories.Category.Cartesian.Monoidal
|
||||||
|
open import Categories.Category.Cartesian.SymmetricMonoidal
|
||||||
|
open import Categories.Category.Distributive
|
||||||
|
open import Categories.Functor hiding (id)
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Monad.Strong
|
||||||
|
open import Categories.Monad.Commutative
|
||||||
|
open import Categories.NaturalTransformation hiding (id)
|
||||||
|
|
||||||
|
import Categories.Morphism as M
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
import Categories.Morphism.Properties as MP
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
# The maybe monad
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.Maybe.EquationalLifting {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where
|
||||||
|
open Category C
|
||||||
|
open M C
|
||||||
|
open MR C
|
||||||
|
open MP C
|
||||||
|
open HomReasoning
|
||||||
|
open Equiv
|
||||||
|
open Distributive distributive
|
||||||
|
open import Categories.Category.Distributive.Properties distributive
|
||||||
|
open Cocartesian cocartesian
|
||||||
|
open Cartesian cartesian using (terminal; products)
|
||||||
|
open BinaryProducts products renaming (unique to ⟨⟩-unique)
|
||||||
|
open Terminal terminal
|
||||||
|
open CartesianMonoidal cartesian using (monoidal)
|
||||||
|
|
||||||
|
equationalLifting : ∀ {X} → ((id +₁ !) ∘ distributeˡ⁻¹) ∘ Δ {X + ⊤} ≈ ⟨ i₁ , id ⟩ +₁ id
|
||||||
|
equationalLifting = sym (+-unique inj₁ inj₂)
|
||||||
|
where
|
||||||
|
inj₁ : (((id +₁ !) ∘ distributeˡ⁻¹) ∘ Δ) ∘ i₁ ≈ i₁ ∘ ⟨ i₁ , id ⟩
|
||||||
|
inj₁ = begin
|
||||||
|
(((id +₁ !) ∘ distributeˡ⁻¹) ∘ Δ) ∘ i₁ ≈⟨ pullʳ Δ∘ ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ i₁ , i₁ ⟩ ≈˘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ identityʳ) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₁) ∘ ⟨ i₁ , id ⟩ ≈⟨ pullʳ (pullˡ distributeˡ⁻¹-i₁) ⟩
|
||||||
|
(id +₁ !) ∘ i₁ ∘ ⟨ i₁ , id ⟩ ≈⟨ pullˡ (inject₁ ○ identityʳ) ⟩
|
||||||
|
i₁ ∘ ⟨ i₁ , id ⟩ ∎
|
||||||
|
inj₂ : (((id +₁ !) ∘ distributeˡ⁻¹) ∘ Δ) ∘ i₂ ≈ i₂ ∘ id
|
||||||
|
inj₂ = begin
|
||||||
|
(((id +₁ !) ∘ distributeˡ⁻¹) ∘ Δ) ∘ i₂ ≈⟨ pullʳ Δ∘ ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ i₂ , i₂ ⟩ ≈˘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ identityʳ) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₂) ∘ ⟨ i₂ , id ⟩ ≈⟨ pullʳ (pullˡ distributeˡ⁻¹-i₂) ⟩
|
||||||
|
(id +₁ !) ∘ i₂ ∘ ⟨ i₂ , id ⟩ ≈⟨ pullˡ inject₂ ⟩
|
||||||
|
(i₂ ∘ !) ∘ ⟨ i₂ , id ⟩ ≈⟨ pullʳ (sym (!-unique (! ∘ ⟨ i₂ , id ⟩))) ⟩
|
||||||
|
i₂ ∘ ! ≈⟨ refl⟩∘⟨ (!-unique id) ⟩
|
||||||
|
i₂ ∘ id ∎
|
||||||
|
```
|
102
agda/src/Monad/Instance/Maybe/Strong.lagda.md
Normal file
102
agda/src/Monad/Instance/Maybe/Strong.lagda.md
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.Category.Core
|
||||||
|
open import Categories.Category.Cocartesian
|
||||||
|
open import Categories.Category.Cartesian
|
||||||
|
open import Categories.Category.BinaryProducts
|
||||||
|
open import Categories.Category.Cartesian.Monoidal
|
||||||
|
open import Categories.Category.Distributive
|
||||||
|
open import Categories.Functor hiding (id)
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Monad.Strong
|
||||||
|
open import Categories.NaturalTransformation hiding (id)
|
||||||
|
open import Data.Product using (_,_)
|
||||||
|
|
||||||
|
import Categories.Morphism as M
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
import Categories.Morphism.Properties as MP
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
# The maybe monad
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.Maybe.Strong {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where
|
||||||
|
open Category C
|
||||||
|
open M C
|
||||||
|
open MR C
|
||||||
|
open MP C
|
||||||
|
open HomReasoning
|
||||||
|
open Equiv
|
||||||
|
open Distributive distributive
|
||||||
|
open import Categories.Category.Distributive.Properties distributive
|
||||||
|
open Cocartesian cocartesian
|
||||||
|
open Cartesian cartesian using (terminal; products)
|
||||||
|
open BinaryProducts products renaming (unique to ⟨⟩-unique)
|
||||||
|
open Terminal terminal
|
||||||
|
open CartesianMonoidal cartesian using (monoidal)
|
||||||
|
open import Monad.Instance.Maybe distributive
|
||||||
|
|
||||||
|
open StrongMonad using (M; strength)
|
||||||
|
open Strength renaming (identityˡ to s-identityˡ)
|
||||||
|
|
||||||
|
maybeStrong : StrongMonad monoidal
|
||||||
|
maybeStrong .M = maybeMonad
|
||||||
|
maybeStrong .strength .strengthen = ntHelper (record { η = λ X → (id +₁ !) ∘ distributeˡ⁻¹ ; commute = λ {X} {Y} (f , g) → begin
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (f ⁂ (g +₁ id)) ≈⟨ pullʳ (sym (distributeˡ⁻¹-natural f g id)) ⟩
|
||||||
|
(id +₁ !) ∘ (f ⁂ g +₁ f ⁂ id) ∘ distributeˡ⁻¹ ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ (sym (!-unique (! ∘ (f ⁂ id))))) ⟩
|
||||||
|
(f ⁂ g +₁ !) ∘ distributeˡ⁻¹ ≈˘⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityʳ identityˡ) ⟩
|
||||||
|
(f ⁂ g +₁ id) ∘ (id +₁ !) ∘ distributeˡ⁻¹ ∎ })
|
||||||
|
maybeStrong .strength .s-identityˡ = begin
|
||||||
|
(π₂ +₁ id) ∘ (id +₁ !) ∘ distributeˡ⁻¹ ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityʳ (identityˡ ○ !-unique π₂)) ⟩
|
||||||
|
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ≈⟨ distributeˡ⁻¹-π₂ ⟩
|
||||||
|
π₂ ∎
|
||||||
|
maybeStrong .strength .η-comm = begin
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₁) ≈⟨ pullʳ distributeˡ⁻¹-i₁ ⟩
|
||||||
|
(id +₁ !) ∘ i₁ ≈⟨ inject₁ ○ identityʳ ⟩
|
||||||
|
i₁ ∎
|
||||||
|
maybeStrong .strength .μ-η-comm = begin
|
||||||
|
[ id , i₂ ] ∘ (((id +₁ !) ∘ distributeˡ⁻¹) +₁ id) ∘ (id +₁ !) ∘ distributeˡ⁻¹ ≈⟨ pullˡ ([]∘+₁ ○ []-cong₂ identityˡ identityʳ) ○ pullˡ ([]∘+₁ ○ []-cong₂ identityʳ refl) ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , i₂ ∘ ! ] ∘ distributeˡ⁻¹ ≈⟨ Iso⇒Epi (IsIso.iso isIsoˡ) ([ (id +₁ !) ∘ distributeˡ⁻¹ , i₂ ∘ ! ] ∘ distributeˡ⁻¹) (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ [ id , i₂ ])) (begin
|
||||||
|
([ (id +₁ !) ∘ distributeˡ⁻¹ , i₂ ∘ ! ] ∘ distributeˡ⁻¹) ∘ distributeˡ ≈⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , i₂ ∘ ! ] ≈˘⟨ []-cong₂ refl inject₂ ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , (id +₁ !) ∘ i₂ ] ≈˘⟨ []-cong₂ refl (pullʳ distributeˡ⁻¹-i₂) ⟩
|
||||||
|
[ (id +₁ !) ∘ distributeˡ⁻¹ , ((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₂) ] ≈˘⟨ []-cong₂ (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ identity² inject₁ ○ ⟨⟩-unique id-comm id-comm)) (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² inject₂)) ⟩
|
||||||
|
[ (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ [ id , i₂ ])) ∘ (id ⁂ i₁) , (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ [ id , i₂ ])) ∘ (id ⁂ i₂) ] ≈˘⟨ ∘[] ⟩
|
||||||
|
(((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ [ id , i₂ ])) ∘ distributeˡ ∎) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ [ id , i₂ ]) ∎
|
||||||
|
maybeStrong .strength .strength-assoc = Iso⇒Epi (IsIso.iso isIsoˡ) _ _ (begin
|
||||||
|
((⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ +₁ id) ∘ (id +₁ !) ∘ distributeˡ⁻¹) ∘ distributeˡ ≈⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoˡ)) ⟩
|
||||||
|
(⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ +₁ id) ∘ (id +₁ !) ≈⟨ +₁∘+₁ ○ +₁-cong₂ identityʳ identityˡ ⟩
|
||||||
|
⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ +₁ ! ≈⟨ []-cong₂ (sym lhs) (sym rhs) ⟩
|
||||||
|
[ (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩) , (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩) ] ≈˘⟨ []-cong₂ (pullʳ (pullʳ ⟨⟩∘)) (pullʳ (pullʳ ⟨⟩∘)) ⟩
|
||||||
|
[ (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (id ⁂ i₁) , (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (id ⁂ i₂) ] ≈˘⟨ ∘[] ⟩
|
||||||
|
(((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ distributeˡ ∎)
|
||||||
|
where
|
||||||
|
lhs : ((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩ ≈ i₁ ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
|
||||||
|
lhs = begin
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₁) ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ (project₁ ○ identityˡ)) (⟨⟩∘ ○ ⟨⟩-cong₂ (pullʳ (project₁ ○ identityˡ)) project₂) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₂ ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ ≈˘⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl))) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₁) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (pullʳ distributeˡ⁻¹-i₁))) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ i₁) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl ((inject₁ ○ identityʳ) ⟩∘⟨refl)) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , i₁ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈˘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₁) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ pullˡ (pullʳ distributeˡ⁻¹-i₁) ⟩
|
||||||
|
((id +₁ !) ∘ i₁) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ (inject₁ ○ identityʳ) ⟩∘⟨refl ⟩
|
||||||
|
i₁ ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎
|
||||||
|
rhs : (((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩) ≈ i₂ ∘ !
|
||||||
|
rhs = begin
|
||||||
|
(((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (id ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (id ⁂ i₂) ⟩) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ (project₁ ○ identityˡ)) (⟨⟩∘ ○ ⟨⟩-cong₂ (pullʳ (project₁ ○ identityˡ)) project₂) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ (id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₂ ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ≈˘⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl))) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₂) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (pullʳ distributeˡ⁻¹-i₂))) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ((id +₁ !) ∘ i₂) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (inject₂ ⟩∘⟨refl)) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , (i₂ ∘ !) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullʳ (sym (!-unique (! ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩))))) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , i₂ ∘ ! ⟩ ≈˘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl) ⟩
|
||||||
|
((id +₁ !) ∘ distributeˡ⁻¹) ∘ (id ⁂ i₂) ∘ ⟨ π₁ ∘ π₁ , ! ⟩ ≈⟨ pullˡ (pullʳ distributeˡ⁻¹-i₂) ⟩
|
||||||
|
((id +₁ !) ∘ i₂) ∘ ⟨ π₁ ∘ π₁ , ! ⟩ ≈⟨ inject₂ ⟩∘⟨refl ⟩
|
||||||
|
(i₂ ∘ !) ∘ ⟨ π₁ ∘ π₁ , ! ⟩ ≈⟨ pullʳ (sym (!-unique (! ∘ ⟨ π₁ ∘ π₁ , ! ⟩))) ⟩
|
||||||
|
i₂ ∘ ! ∎
|
||||||
|
```
|
Loading…
Reference in a new issue