From 2e010ba8b35ebdbe91bc508119a0534f5f77fd99 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Sun, 21 Jan 2024 17:26:55 +0100 Subject: [PATCH] minor fix --- slides/sections/01_abstracting.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/slides/sections/01_abstracting.tex b/slides/sections/01_abstracting.tex index 182a438..e4df5c6 100644 --- a/slides/sections/01_abstracting.tex +++ b/slides/sections/01_abstracting.tex @@ -177,7 +177,7 @@ The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complet \item \textbf{Fixpoint}: $f^\dagger = [ \eta , f^\dagger ]^* \circ f$ \\for $f : X \rightarrow T(Y + X)$ \item \textbf{Uniformity}: $f \circ h = T(id + h) \circ g \Rightarrow f^\dagger \circ h = g^\dagger$ - \\for $f : X \rightarrow T(Y + X) , g : Z \rightarrow T(Y + Z)$ + \\for $f : X \rightarrow T(Y + X) , g : Z \rightarrow T(Y + Z), h : Z \rightarrow X$ \item \textbf{Naturality}: $g^* \circ f^\dagger = ([ (T inl) \circ g , \eta \circ inr ]^* \circ f )^\dagger$ \\for $f : X \rightarrow T(Y + X), g : Y \rightarrow TZ$ \item \textbf{Codiagonal}: $f^{\dagger\dagger} = (T[id , inr ] \circ f)^\dagger$