mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
build on recent PR to agda-categories
This commit is contained in:
parent
78260e3f91
commit
2e28faeda6
2 changed files with 41 additions and 39 deletions
|
@ -14,12 +14,12 @@ mkShell {
|
|||
}))
|
||||
(agdaPackages.agda-categories.overrideAttrs (oldAttrs : {
|
||||
version = "0.2.0";
|
||||
src = fetchFromGitHub {
|
||||
repo = "agda-categories";
|
||||
owner = "agda";
|
||||
rev = "a1c797e935432702d25fd729802aeb155b423761";
|
||||
hash = "sha256-p9rrQq3aFSG14sJ65aYDvAoPkTsa/UmdkkxD5suhClY="; # sha256-GQuQxzYSQxAIVSJ1vf0blRC0juoxAqD1AHW66H/6NSk=
|
||||
};
|
||||
src = fetchFromGitHub {
|
||||
repo = "agda-categories";
|
||||
owner = "agda";
|
||||
rev = "944a487b92ab3a9d3b3ee54d209cd7ea95dc58ed";
|
||||
hash = "sha256-G5QgEMj6U+5s3o7HUfORn+Y3gQA9KvpUuAvHAXn7TKk=";
|
||||
};
|
||||
|
||||
# without this nix might use a wrong version of the stdlib to try and typecheck agda-categories
|
||||
buildInputs = [
|
||||
|
|
|
@ -178,7 +178,7 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
delay-algebras : ∀ (A : Setoid ℓ ℓ) → Elgot-Algebra
|
||||
delay-algebras A = record { A = Delayₛ A ; algebra = delay-algebras-on {A}}
|
||||
|
||||
open Elgot-Algebra using (#-Fixpoint; #-Uniformity; #-resp-≈; #-Diamond) renaming (A to ⟦_⟧)
|
||||
open Elgot-Algebra using (#-Fixpoint; #-Uniformity; #-Compositionality; #-resp-≈; #-Diamond) renaming (A to ⟦_⟧)
|
||||
|
||||
|
||||
delay-lift : ∀ {A : Setoid ℓ ℓ} {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
|
||||
|
@ -255,7 +255,7 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
(#-resp-≈ B {Delayₛ∼ (A ×ₛ ℕ-setoid)} {helper'} step₁)
|
||||
(≡-trans ⟦ B ⟧
|
||||
(#-Diamond B {Delayₛ∼ (A ×ₛ ℕ-setoid)} helper''')
|
||||
(#-resp-≈ B (λ {x} → (≡-trans (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid)) (stepid {x}) (step₂ {x})))))
|
||||
(#-resp-≈ B (λ {x} → (step₂ {x}))))
|
||||
where
|
||||
helper₁''' : Delay (∣ A ∣ × ℕ {ℓ}) → ∣ ⟦ B ⟧ ∣ ⊎ (Delay (∣ A ∣ × ℕ {ℓ}) ⊎ Delay (∣ A ∣ × ℕ {ℓ}))
|
||||
helper₁''' (now (x , zero)) = inj₁ (< f > x)
|
||||
|
@ -284,12 +284,6 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
by-induction (suc n) = ≡-trans ⟦ B ⟧ (#-Fixpoint B) (by-induction n)
|
||||
step₂ {later y} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
|
||||
-- this step should not be needed, the problem is the hole in its type, if we try to write down the type that should go into the hole, agda will reject it above.
|
||||
stepid : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid) ][ ([ inj₁ , [ inj₁ ∘′ _ , inj₂ ] ] ∘′ helper₁''') x ≡ ([ inj₁ , [ inj₁ ∘′ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) , idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) ]ₛ ]ₛ ∘ helper''') # > , inj₂ ] ] ∘′ helper₁''') x ]
|
||||
stepid {now (x , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
stepid {now (x , suc n)} = inj₁ (#-resp-≈ B (≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))))
|
||||
stepid {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
|
||||
eq₁ : ∀ {z} → [ ⟦ B ⟧ ][ helper'' # ⟨$⟩ z ≡ helper # ⟨$⟩ liftF proj₁ z ]
|
||||
eq₁ {z} = #-Uniformity B {f = helper''} {g = helper} {h = liftFₛ∼ proj₁ₛ} by-uni
|
||||
where
|
||||
|
@ -310,18 +304,41 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
|
||||
delay-lift' = record { to = < helper # > ; cong = helper#≈-cong }
|
||||
|
||||
-- discretize a setoid
|
||||
‖_‖ : Setoid ℓ ℓ → Setoid ℓ ℓ
|
||||
∣_∣ ‖ X ‖ = ∣ X ∣
|
||||
[_][_≡_] ‖ X ‖ = _≡_
|
||||
Setoid.isEquivalence ‖ X ‖ = Eq.isEquivalence
|
||||
|
||||
‖‖-quote : ∀ {X : Setoid ℓ ℓ} → ‖ X ‖ ⟶ X
|
||||
_⟶_.to ‖‖-quote x = x
|
||||
cong (‖‖-quote {X}) ≣-refl = ≡-refl X
|
||||
|
||||
disc-dom : ∀ {X : Setoid ℓ ℓ} → X ⟶ (Delayₛ A ⊎ₛ X) → ‖ X ‖ ⟶ (Delayₛ∼ A ⊎ₛ ‖ X ‖)
|
||||
_⟶_.to (disc-dom f) x = f ⟨$⟩ x
|
||||
cong (disc-dom {X} f) {x} {y} x≡y rewrite x≡y = ≡-refl (Delayₛ∼ A ⊎ₛ ‖ X ‖)
|
||||
|
||||
iter-g-var : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delayₛ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
iter-g-var′ : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delayₛ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼′ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
force∼ (iter-g-var′ {X} g {x}) = iter-g-var {X} g {x}
|
||||
iter-g-var {X} g {x} with g ⟨$⟩ x
|
||||
... | inj₁ a = ∼-refl A
|
||||
... | inj₂ a = later∼ (iter-g-var′ {X} g {a})
|
||||
|
||||
preserves' : ∀ {X : Setoid ℓ ℓ} {g : X ⟶ (Delayₛ A ⊎ₛ X)} → ∀ {x} → [ ⟦ B ⟧ ][ (delay-lift' ∘ (iterₛ {A} {X} g)) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) # ⟨$⟩ x ]
|
||||
-- h would need iter-cong∼', which is not doable i think
|
||||
preserves' {X} {g} {x} = ≡-sym ⟦ B ⟧ (#-Uniformity B {f = [ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g} {g = helper} {h = {! !}} {! !})--(≡-trans (⟦ B ⟧ ⊎ₛ Delayₛ A) by-uni trivial))
|
||||
preserves' {X} {g} {x} = ≡-trans ⟦ B ⟧ step₁ step₂
|
||||
where
|
||||
by-uni : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ < [ inj₁ₛ , inj₂ₛ ∘ iterₛ {A} {X} g ]ₛ ∘ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) > x ≡ (< helper > ∘′ (iter {A} {X} < g >)) x ]
|
||||
by-uni {x} with g ⟨$⟩ x in eqa
|
||||
... | inj₁ a = {! !}
|
||||
-- ... | inj₁ (now a) = {! !} -- easy
|
||||
-- ... | inj₁ (later a) = {! !} -- impossible?
|
||||
... | inj₂ a = inj₂ (∼-refl A)
|
||||
trivial : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ (< helper > ∘′ iter < g >) x ≡ helper₁ (iter < g > x) ]
|
||||
trivial {x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ A)
|
||||
step₁ : [ ⟦ B ⟧ ][ (delay-lift' ∘ (iterₛ {A} {X} g)) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ (disc-dom g)) # ⟨$⟩ x ]
|
||||
step₁ = {! !}
|
||||
step₂ : [ ⟦ B ⟧ ][ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ (disc-dom g)) # ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) # ⟨$⟩ x ]
|
||||
step₂ = #-Uniformity B {h = ‖‖-quote} sub-step₂
|
||||
where
|
||||
sub-step₂ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ X ][([ inj₁ₛ , inj₂ₛ ]ₛ ∘ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ (disc-dom g))) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) ⟨$⟩ x ]
|
||||
sub-step₂ {x} with g ⟨$⟩ x
|
||||
... | inj₁ y = ≡-refl (⟦ B ⟧ ⊎ₛ X)
|
||||
... | inj₂ y = ≡-refl (⟦ B ⟧ ⊎ₛ X)
|
||||
comp-step : [ ⟦ B ⟧ ][ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ disc-dom g) # ⟨$⟩ x ≡ ((([ ([ inj₁ₛ , (inj₂ₛ ∘ inj₁ₛ) ]ₛ ∘ helper) , (inj₂ₛ ∘ inj₂ₛ) ]ₛ ∘ [ inj₁ₛ , (disc-dom g) ]ₛ) #) ∘ inj₂ₛ) ⟨$⟩ x ]
|
||||
comp-step = #-Compositionality B {f = helper} {h = disc-dom g}
|
||||
|
||||
<<_>> = Elgot-Algebra-Morphism.h
|
||||
|
||||
|
@ -339,21 +356,6 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
*-uniq' {B} f g eq {later x} = ≡-trans ⟦ B ⟧ {! !} (≡-sym ⟦ B ⟧ (#-Fixpoint B))
|
||||
-- *-uniq' {B} f g eq {later x} = ≡-trans ⟦ B ⟧ {! *-uniq' {B} f g eq {force x} !} (≡-sym ⟦ B ⟧ (#-Fixpoint B))
|
||||
|
||||
|
||||
|
||||
-- -- TODO stability might be proven more general, since Setoids is CCC (whatever is easier)
|
||||
|
||||
-- delay-stability : ∀ (Y : Setoid ℓ ℓ) (X : Setoid ℓ ℓ) (B : Elgot-Algebra) (f : X ×ₛ Y ⟶ ⟦ B ⟧) → X ×ₛ Delayₛ Y ⟶ ⟦ B ⟧
|
||||
-- delay-stability Y X B f = {! !}
|
||||
|
||||
-- isStableFreeElgotAlgebra : ∀ (A : Setoid ℓ ℓ) → IsStableFreeElgotAlgebra (freeAlgebra A)
|
||||
-- isStableFreeElgotAlgebra A = record
|
||||
-- { [_,_]♯ = λ {X} B f → delay-stability A X B f
|
||||
-- ; ♯-law = {! !}
|
||||
-- ; ♯-preserving = {! !}
|
||||
-- ; ♯-unique = {! !}
|
||||
-- }
|
||||
|
||||
delayK : MonadK
|
||||
delayK = record { freealgebras = freeAlgebra ; stable = {! !} }
|
||||
```
|
Loading…
Reference in a new issue