diff --git a/agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md b/agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md index 65f3176..beb77dc 100644 --- a/agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md +++ b/agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md @@ -22,7 +22,7 @@ open import Categories.NaturalTransformation using (ntHelper) open import Function.Base using (id) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_) -open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax) +open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax; _×_) ``` --> @@ -50,19 +50,37 @@ module Monad.Instance.K.Instance.DelayRecord {c ℓ} where node (never {A}) = inj₂ never module Equality {A : Setoid c ℓ} where - open Setoid A using () renaming (Carrier to C; _≈_ to _∼_) - data _↓_ : Delay C → C → Set (c ⊔ ℓ) where - now↓ : ∀ {x y} (p : x ∼ y) → now x ↓ y - later↓ : ∀ {x y} (p : _↓_ x y) → later x ↓ y + open Setoid using () renaming (Carrier to ∣_∣; _≈_ to [_][_≈_]; refl to ≈-refl) - data _≈_ : Delay C → Delay C → Set (c ⊔ ℓ) where - ↓≈ : ∀ {x y z} → x ↓ z → y ↓ z → x ≈ y - later-≈ : ∀ {x y} → x ≈ y → later x ≈ later y + record _↓_ (x : Delay ∣ A ∣) (y : ∣ A ∣) : Set (c ⊔ ℓ) where + coinductive + field + now↓ : ∀ {z} → (node x ≡ inj₁ z) → [ A ][ y ≈ z ] + -- later↓ : ∀ {z} → (node x ≡ inj₂ z) → z ↓ y → x ↓ y + + -- data _↓_ : Delay ∣ A ∣ → ∣ A ∣ → Set (c ⊔ ℓ) where + -- now↓ : ∀ {x y} (p : node x ≡ inj₁ y) → x ↓ y + -- later↓ : ∀ {x y z} (p : node x ≡ inj₂ y) (q : _↓_ y z) → x ↓ z + -- -- later↓ : ∀ {x y} (p : _↓_ x y) → later x ↓ y + + record _≈_ (x y : Delay ∣ A ∣) : Set (c ⊔ ℓ) where + coinductive + field + ↓≈ : ∀ {z} → (x ↓ z × y ↓ z) + + open _≈_ refl : ∀ {x} → x ≈ x - refl {x} with node x - ... | inj₁ z = ↓≈ {! !} {! !} - ... | inj₂ z = {! !} + ↓≈ (refl {x}) {z} = record { now↓ = λ {y} eq → {! !} } , {! !} + + -- data _≈_ : Delay ∣ A ∣ → Delay ∣ A ∣ → Set (c ⊔ ℓ) where + -- ↓≈ : ∀ {x y z} → x ↓ z → y ↓ z → x ≈ y + -- later-≈ : ∀ {x y a b} → node x ≡ inj₂ a → node y ≡ inj₂ b → a ≈ b → x ≈ y + + -- refl : ∀ {x} → x ≈ x + -- refl {x} with node x in eqx + -- ... | inj₁ z = ↓≈ (now↓ eqx) (now↓ eqx) + -- ... | inj₂ z = later-≈ eqx eqx {! !} -- first try delay-eq-strong : ∀ (A : Setoid c ℓ) → Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set ℓ diff --git a/agda/src/Monad/Instance/Setoids/K.lagda.md b/agda/src/Monad/Instance/Setoids/K.lagda.md index 321af36..c061881 100644 --- a/agda/src/Monad/Instance/Setoids/K.lagda.md +++ b/agda/src/Monad/Instance/Setoids/K.lagda.md @@ -35,7 +35,14 @@ module Monad.Instance.Setoids.K {ℓ : Level} where conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''} {x : ∣ X ∣} {y : ∣ Y ∣} → (X ⊎ₛ Y) [ inj₁ x ∼ inj₂ y ] → Z conflict X Y () + + iter' : ∀ {A X : Set ℓ} → (X → A ⊥ ⊎ X) → A ⊥ ⊎ X → A ⊥ + iter' {A} {X} f (inj₁ x) = x + iter' {A} {X} f (inj₂ y) = later (♯ iter' {A} {X} f (f y)) + -- TODO works!! + _# : ∀ {A X : Set ℓ} → (X → A ⊥ ⊎ X) → X → A ⊥ + (f #) x = iter' f (inj₂ x) iter : ∀ {A X : Setoid ℓ ℓ} → (∣ X ∣ → (∣ A ∣ ⊥ ⊎ ∣ X ∣)) → ∣ X ∣ → ∣ A ∣ ⊥ iter {A} {X} f x with f x