From 32c479a027db054dcc820b58a325a86212c69f58 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Fri, 5 Jan 2024 17:51:20 +0100 Subject: [PATCH] Finish delayMonad proofs without musical notation --- agda/src/Monad/Instance/K/Instance/D.lagda.md | 143 ++++++++++++++++-- 1 file changed, 132 insertions(+), 11 deletions(-) diff --git a/agda/src/Monad/Instance/K/Instance/D.lagda.md b/agda/src/Monad/Instance/K/Instance/D.lagda.md index 5a58787..9739860 100644 --- a/agda/src/Monad/Instance/K/Instance/D.lagda.md +++ b/agda/src/Monad/Instance/K/Instance/D.lagda.md @@ -8,7 +8,10 @@ open import Data.Sum using (_⊎_; inj₁; inj₂) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_) open import Function.Inverse as Inv using (_↔_; Inverse; inverse) - +open import Function using (id) +open import Categories.Monad +open import Categories.Category.Instance.Setoids +open import Categories.NaturalTransformation hiding (id) module Monad.Instance.K.Instance.D {c ℓ} where @@ -107,7 +110,7 @@ module Bisimilarity (A : Setoid c (c ⊔ ℓ)) where force∼ (∼′-trans x∼y y∼z) = ∼-trans (force∼ x∼y) (force∼ y∼z) data _↓_ : Delay ∣ A ∣ → ∣ A ∣ → Set (c ⊔ ℓ) where - now↓ : ∀ {x y} → [ A ][ x ≡ y ] → now x ↓ y + now↓ : ∀ {x y} (x≡y : [ A ][ x ≡ y ]) → now x ↓ y later↓ : ∀ {x y} (x↓y : (force x) ↓ y) → later x ↓ y unique↓ : ∀ {a : Delay ∣ A ∣ } {x y : ∣ A ∣} → a ↓ x → a ↓ y → [ A ][ x ≡ y ] @@ -210,9 +213,6 @@ module DelayMonad where now-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : ∣ A ∣} → [ A ][ x ≡ y ] → [ A ][ now x ≈ now y ] now-cong {A} {x} {y} x≡y = ↓≈ x≡y (now↓ (≡-refl A)) (now↓ (≡-refl A)) - η : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ Delayₛ A - η A = record { _⟨$⟩_ = now ; cong = now-cong } - now-inj : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : ∣ A ∣} → [ A ][ now x ≈ now y ] → [ A ][ x ≡ y ] now-inj {A} {x} {y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b)) @@ -220,12 +220,133 @@ module DelayMonad where _≋_ : ∀ {c' ℓ'} {A B : Setoid c' ℓ'} → A ⟶ B → A ⟶ B → Set (c' ⊔ ℓ') _≋_ {c'} {ℓ'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g - -- later-eq : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} {y : Delay ∣ A ∣} → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ] + later-self : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} → [ A ][ force x ≈ later x ] + later-self {A} {x} with force x in eqx + ... | now y = ↓≈ (≡-refl A) (now↓ (≡-refl A)) (later↓ helper) + where + helper : [ A ][ force x ↓ y ] + helper rewrite eqx = now↓ (≡-refl A) + ... | later y = later≈ helper + where + helper : [ A ][ force y ≈′ force x ] + force≈ (helper) rewrite eqx = later-self {x = y} + + later-eq : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} {y : Delay ∣ A ∣} → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ] -- later-eq′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay′ ∣ A ∣} {y : Delay ∣ A ∣} → [ A ][ later x ≈′ y ] → [ A ][ force x ≈′ y ] -- force≈ (later-eq′ {A} {x} {y} x≈y) = later-eq (force≈ x≈y) - -- later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b) - -- later-eq {A} {x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = ↓≈ a≡b x↓a (later↓ y↓b) - -- later-eq {A} {x} {later y} (later≈ x≈y) with force x - -- ... | now a = {! !} - -- ... | later a = later≈ (later-eq′ x≈y) + later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b) + later-eq {A} {x} {later y} x≈ly = ≈-trans A later-self x≈ly + + lift-id : ∀ {A : Setoid c (c ⊔ ℓ)} → (liftFₛ idₛ) ≋ (idₛ {A = Delayₛ A}) + lift-id′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ A ][ (liftF id) x ≈′ id y ] + lift-id {A} {now x} {y} x≈y = x≈y + lift-id {A} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ x≡b)) = ↓≈ a≡b (lift↓ idₛ (later↓ x↓a)) (now↓ x≡b) + lift-id {A} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-id′ (≈→≈′ A (↓≈ a≡b x↓a y↓b))) + lift-id {A} {later x} {.(later _)} (later≈ x≈y) = later≈ (lift-id′ x≈y) + force≈ (lift-id′ {A} {x} {y} x≈y) = lift-id (force≈ x≈y) + + lift-comp : ∀ {A B C : Setoid c (c ⊔ ℓ)} {f : A ⟶ B} {g : B ⟶ C} → liftFₛ (g ∘ f) ≋ (liftFₛ g ∘ liftFₛ f) + lift-comp′ : ∀ {A B C : Setoid c (c ⊔ ℓ)} {f : A ⟶ B} {g : B ⟶ C} {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ C ][ liftFₛ (g ∘ f) ⟨$⟩ x ≈′ (liftFₛ g ∘ liftFₛ f) ⟨$⟩ y ] + force≈ (lift-comp′ {A} {B} {C} {f} {g} {x} {y} x≈y) = lift-comp {A} {B} {C} {f} {g} (force≈ x≈y) + lift-comp {A} {B} {C} {f} {g} {now x} {now y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = now-cong (cong g (cong f (≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b))))) + lift-comp {A} {B} {C} {f} {g} {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (cong g (cong f a≡b)) (now↓ (cong g (cong f (x≡a)))) (later↓ (lift↓ g (lift↓ f y↓b))) + lift-comp {A} {B} {C} {f} {g} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (cong g (cong f a≡b)) (later↓ (lift↓ (g ∘ f) x↓a)) (now↓ (cong g (cong f y≡b))) + lift-comp {A} {B} {C} {f} {g} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-comp′ {A} {B} {C} {f} {g} (≈→≈′ A (↓≈ a≡b x↓a y↓b))) + lift-comp {A} {B} {C} {f} {g} {later x} {later y} (later≈ x≈y) = later≈ (lift-comp′ {A} {B} {C} {f} {g} x≈y) + + lift-resp-≈ : ∀ {A B : Setoid c (c ⊔ ℓ)} {f g : A ⟶ B} → f ≋ g → liftFₛ f ≋ liftFₛ g + lift-resp-≈′ : ∀ {A B : Setoid c (c ⊔ ℓ)} {f g : A ⟶ B} → f ≋ g → ∀ {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ B ][ liftFₛ f ⟨$⟩ x ≈′ liftFₛ g ⟨$⟩ y ] + lift-resp-≈ {A} {B} {f} {g} f≋g {now x} {now y} x≈y = now-cong (f≋g (now-inj x≈y)) + lift-resp-≈ {A} {B} {f} {g} f≋g {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (f≋g a≡b) (now↓ (cong f x≡a)) (later↓ (lift↓ g y↓b)) + lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (f≋g a≡b) (later↓ (lift↓ f x↓a)) (now↓ (cong g y≡b)) + lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g (≈→≈′ A (↓≈ a≡b x↓a y↓b))) + lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {later y} (later≈ x≈y) = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g x≈y) + force≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g {x} {y} x≈y) = lift-resp-≈ {A} {B} {f} {g} f≋g (force≈ x≈y) + + ηₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ Delayₛ A + ηₛ A = record { _⟨$⟩_ = now ; cong = now-cong } + + η-natural : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) → (ηₛ B ∘ f) ≋ (liftFₛ f ∘ ηₛ A) + η-natural {A} {B} f {x} {y} x≈y = now-cong (cong f x≈y) + + μ : ∀ {A : Setoid c (c ⊔ ℓ)} → Delay (Delay ∣ A ∣) → Delay ∣ A ∣ + μ′ : ∀ {A : Setoid c (c ⊔ ℓ)} → Delay′ (Delay ∣ A ∣) → Delay′ ∣ A ∣ + force (μ′ {A} x) = μ {A} (force x) + μ {A} (now x) = x + μ {A} (later x) = later (μ′ {A} x) + + μ↓-trans : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} {b : ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ y ↓ b ] → [ A ][ (μ {A} x) ↓ b ] + μ↓-trans {A} {now x} {y} {b} (now↓ x≡y) y↓b = ≈↓ A (≈-sym A x≡y) y↓b + μ↓-trans {A} {later x} {now y} {b} (later↓ x↓y) (now↓ y≡b) = later↓ (μ↓-trans x↓y (now↓ y≡b)) + μ↓-trans {A} {later x} {later y} {b} (later↓ x↓y) (later↓ y↓b) = later↓ (μ↓-trans (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y) y↓b) + + μ↓ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈ y ] + μ↓′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈′ y ] + force≈ (μ↓′ {A} {x} {y} x↓y) = μ↓ x↓y + μ↓ {A} {now x} {y} (now↓ x≡y) = x≡y + μ↓ {A} {later x} {now y} (later↓ x↓y) = ≈-trans A (≈-sym A later-self) (↓≈ (≡-refl A) (μ↓-trans x↓y (now↓ (≡-refl A))) (now↓ (≡-refl A))) + μ↓ {A} {later x} {later y} (later↓ x↓y) = later≈ (μ↓′ {A} {force x} {force y} (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y)) + + μ-cong : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ A ][ x ≈ y ] → [ A ][ μ {A} x ≈ μ {A} y ] + μ-cong′ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ A ][ x ≈′ y ] → [ A ][ μ {A} x ≈′ μ {A} y ] + μ-cong A {now x} {now y} x≈y = now-inj x≈y + μ-cong A {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans A (≈-sym A (μ↓ (≡↓ (Delayₛ A) (≈-trans A (≈-sym A a≡b) (≈-sym A x≡a)) y↓b))) later-self + μ-cong A {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ≈-trans A (≈-sym A later-self) (μ↓ (≡↓ (Delayₛ A) (≈-trans A a≡b (≈-sym A y≡b)) x↓a)) + μ-cong A {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-cong′ A (≈→≈′ (Delayₛ A) (↓≈ a≡b x↓a y↓b))) + μ-cong A {later x} {later y} (later≈ x≈y) = later≈ (μ-cong′ A x≈y) + force≈ (μ-cong′ A {x} {y} x≈y) = μ-cong A (force≈ x≈y) + + μₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → Delayₛ (Delayₛ A) ⟶ Delayₛ A + μₛ A = record { _⟨$⟩_ = μ {A} ; cong = μ-cong A } + + μ-natural : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) → (μₛ B ∘ liftFₛ (liftFₛ f)) ≋ (liftFₛ f ∘ μₛ A) + μ-natural′ : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) → ∀ {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ A ][ x ≈′ y ] → [ B ][ (μₛ B ∘ liftFₛ (liftFₛ f)) ⟨$⟩ x ≈′ (liftFₛ f ∘ μₛ A) ⟨$⟩ y ] + force≈ (μ-natural′ {A} {B} f {x} {y} x≈y) = μ-natural f (force≈ x≈y) + μ-natural {A} {B} f {now x} {now y} x≈y = lift-cong f (now-inj x≈y) + μ-natural {A} {B} f {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans B (lift-cong f (≈-sym A (μ↓ (≡↓ (Delayₛ A) (≈-sym A (≈-trans A x≡a a≡b)) y↓b)))) later-self + μ-natural {A} {B} f {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ x≡y)) = ≈-trans B (≈-sym B later-self) (μ↓ (lift↓ (liftFₛ f) (≡↓ (Delayₛ A) (≈-trans A a≡b (≈-sym A x≡y)) x↓a))) + μ-natural {A} {B} f {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-natural′ f (≈→≈′ (Delayₛ A) (↓≈ a≡b x↓a y↓b))) + μ-natural {A} {B} f {later x} {later y} (later≈ x≈y) = later≈ (μ-natural′ f x≈y) + + μ-assoc' : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼ (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ] + μ-assoc'′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼′ (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ] + force∼ (μ-assoc'′ {A} {x}) = μ-assoc' {A} {x} + μ-assoc' {A} {now x} = ∼-refl A + μ-assoc' {A} {later x} = later∼ (μ-assoc'′ {A} {force x}) + + μ-assoc : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ (liftFₛ (μₛ A))) ≋ (μₛ A ∘ μₛ (Delayₛ A)) + μ-assoc {A} {x} {y} x≈y = ≈-trans A (μ-cong A (lift-cong (μₛ A) x≈y)) (∼⇒≈ (μ-assoc' {A} {y})) + + identityˡ↓ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay ∣ A ∣} {y : ∣ A ∣} → [ A ][ x ↓ y ] → [ A ][ ((μₛ A) ⟨$⟩ ((liftFₛ (ηₛ A)) ⟨$⟩ x)) ↓ y ] + identityˡ↓ {A} {now x} {y} x↓y = x↓y + identityˡ↓ {A} {later x} {y} (later↓ x↓y) = later↓ (identityˡ↓ x↓y) + + identityˡ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ liftFₛ (ηₛ A)) ≋ idₛ + identityˡ′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x ≈′ y ] + force≈ (identityˡ′ {A} {x} {y} x≈y) = identityˡ (force≈ x≈y) + identityˡ {A} {now x} {y} x≈y = x≈y + identityˡ {A} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b (later↓ (identityˡ↓ x↓a)) (now↓ y≡b) + identityˡ {A} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (identityˡ′ (≈→≈′ A (↓≈ a≡b x↓a y↓b))) + identityˡ {A} {later x} {later y} (later≈ x≈y) = later≈ (identityˡ′ x≈y) + + identityʳ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ ηₛ (Delayₛ A)) ≋ idₛ + identityʳ {A} {now x} {y} x≈y = x≈y + identityʳ {A} {later x} {y} x≈y = x≈y + + delayMonad : Monad (Setoids c (c ⊔ ℓ)) + delayMonad = record + { F = record + { F₀ = Delayₛ + ; F₁ = liftFₛ + ; identity = lift-id + ; homomorphism = λ {X} {Y} {Z} {f} {g} → lift-comp {X} {Y} {Z} {f} {g} + ; F-resp-≈ = λ {A} {B} {f} {g} → lift-resp-≈ {A} {B} {f} {g} + } + ; η = ntHelper (record { η = ηₛ ; commute = η-natural }) + ; μ = ntHelper (record { η = μₛ ; commute = μ-natural }) + ; assoc = μ-assoc + ; sym-assoc = λ {A} {x} {y} x≈y → ≈-sym A (μ-assoc (≈-sym (Delayₛ (Delayₛ A)) x≈y)) + ; identityˡ = identityˡ + ; identityʳ = identityʳ + } ```