mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
minor
This commit is contained in:
parent
21c98bab4f
commit
4d052891cd
1 changed files with 19 additions and 14 deletions
|
@ -476,20 +476,6 @@ Given a pointed object A (i.e. there exists a morphism !! : ⊤ ⇒ A), (f : X
|
|||
w' = p-rec idC {! case ? inl ? inr ? !} -- ([ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ f ∘ π₁))
|
||||
w : X × N ⇒ X
|
||||
w = universal idC (case f inl π₁ inr π₂) --([ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ ⟨ idC , f ⟩)
|
||||
|
||||
ww' : w' ∘ (idC ⁂ s) ≈ w
|
||||
ww' = unique (sym IB) {! !}
|
||||
where
|
||||
IB : (w' ∘ (idC ⁂ s)) ∘ ⟨ idC , z ∘ ! ⟩ ≈ idC
|
||||
IB = begin
|
||||
(w' ∘ (idC ⁂ s)) ∘ ⟨ idC , z ∘ ! ⟩ ≈⟨ (p-rec-IS idC _) ⟩∘⟨refl ⟩
|
||||
(([ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ f ∘ π₁)) ∘ φ' _ _) ∘ ⟨ idC , z ∘ ! ⟩ ≈⟨ pullʳ (sym commute₁) ⟩
|
||||
([ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ f ∘ π₁)) ∘ ⟨ idC , ⟨ idC , z ∘ ! ⟩ ⟩ ≈⟨ pullʳ (pullʳ ⁂∘⟨⟩) ⟩
|
||||
[ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ ⟨ idC ∘ idC , (f ∘ π₁) ∘ ⟨ idC , z ∘ ! ⟩ ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ identity² (cancelʳ project₁) ⟩
|
||||
[ π₁ , π₂ ] ∘ distributeˡ⁻¹ ∘ ⟨ idC , f ⟩ ≈⟨ {! !} ⟩
|
||||
(case f inl π₁ inr π₂) ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
idC ∎
|
||||
|
||||
-- TODO this depends on (8) and (9)
|
||||
stronger : ((extend [ i₂ # , f ]#⟩ ∘ τ (X , N) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∘ ⟨ π₁ , ⟨ w , π₂ ⟩ ⟩ ≈ f # ∘ w
|
||||
|
@ -498,6 +484,25 @@ Given a pointed object A (i.e. there exists a morphism !! : ⊤ ⇒ A), (f : X
|
|||
((π₂ +₁ π₁) ∘ distributeˡ⁻¹ ∘ ⟨ idC ⁂ s , f ∘ w ⟩ )# ≈⟨ #-Uniformity (algebras _) by-uni₂ ⟩
|
||||
f # ∘ w ∎
|
||||
where
|
||||
f#⟩-fact : [ i₂ # , f ]#⟩ ∘ (idC ⁂ s) ≈ case (f ∘ w) inl π₂ inr (i₂ #)
|
||||
f#⟩-fact = begin
|
||||
[ i₂ # , f ]#⟩ ∘ (idC ⁂ s) ≈⟨ {! !} ⟩
|
||||
universal (case f inl (π₂) inr (i₂ #)) {! case f inl ? inr ? !} ≈⟨ sym (unique (sym IB₁) (sym IS₁)) ⟩
|
||||
(case (f ∘ w) inl π₂ inr (i₂ #)) ∎
|
||||
where
|
||||
IB₁ : (case f ∘ w inl π₂ inr (i₂ #)) ∘ ⟨ idC , z ∘ ! ⟩ ≈ case f inl (π₂) inr (i₂ #)
|
||||
IB₁ = begin
|
||||
(case f ∘ w inl π₂ inr (i₂ #)) ∘ ⟨ idC , z ∘ ! ⟩ ≈⟨ case∘ʳ (f ∘ w) π₂ (i₂ #) ⟨ idC , z ∘ ! ⟩ ⟩
|
||||
(case (f ∘ w) ∘ ⟨ idC , z ∘ ! ⟩ inl (π₂ ∘ (⟨ idC , z ∘ ! ⟩ ⁂ idC)) inr (i₂ # ∘ (⟨ idC , z ∘ ! ⟩ ⁂ idC))) ≈⟨ (case⟩ (cancelʳ (sym commute₁)) ⟨inl⟩ (π₂∘⁂ ○ identityˡ) ⟨inr⟩ {! !}) ⟩
|
||||
(case f inl (π₂) inr (i₂ #)) ∎
|
||||
IS₁ : (case f ∘ w inl π₂ inr (i₂ #)) ∘ (idC ⁂ s) ≈ {! (case f inl π₂ inr (i₂ #)) ∘ w !} ∘ (case f ∘ w inl π₂ inr (i₂ #))
|
||||
IS₁ = begin
|
||||
(case f ∘ w inl π₂ inr (i₂ #)) ∘ (idC ⁂ s) ≈⟨ case∘ʳ (f ∘ w) π₂ (i₂ #) (idC ⁂ s) ⟩
|
||||
(case ((f ∘ w) ∘ (idC ⁂ s)) inl (π₂ ∘ ((idC ⁂ s) ⁂ idC)) inr ((i₂ #) ∘ ((idC ⁂ s) ⁂ idC))) ≈⟨ (case⟩ (pullʳ (sym commute₂)) ⟨inl⟩ (π₂∘⁂ ○ identityˡ) ⟨inr⟩ {! !}) ⟩
|
||||
(case (f ∘ (case f inl π₁ inr π₂) ∘ w) inl (π₂) inr (i₂ #)) ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
{! !} ∎
|
||||
by-uni₁ : (idC +₁ ⟨ π₁ , ⟨ w , π₂ ⟩ ⟩) ∘ (π₂ +₁ π₁) ∘ distributeˡ⁻¹ ∘ ⟨ idC ⁂ s , f ∘ w ⟩ ≈ ((extend [ i₂ # , f ]#⟩ ∘ τ (X , N) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ ⟨ π₁ , ⟨ w , π₂ ⟩ ⟩
|
||||
by-uni₁ = {! !}
|
||||
by-uni₂ : (idC +₁ w) ∘ (π₂ +₁ π₁) ∘ distributeˡ⁻¹ ∘ ⟨ idC ⁂ s , f ∘ w ⟩ ≈ f ∘ w
|
||||
|
|
Loading…
Reference in a new issue