mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
minor comments (+ fix makefile)
This commit is contained in:
parent
f5ae9924eb
commit
4d24b1d0e5
2 changed files with 3 additions and 8 deletions
|
@ -27,7 +27,7 @@ push: all
|
||||||
|
|
||||||
Everything.agda:
|
Everything.agda:
|
||||||
echo "{-# OPTIONS --guardedness #-}" > src/Everything.agda
|
echo "{-# OPTIONS --guardedness #-}" > src/Everything.agda
|
||||||
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda
|
git ls-files | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda
|
||||||
|
|
||||||
|
|
||||||
open:
|
open:
|
||||||
|
|
|
@ -34,9 +34,6 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
||||||
open Setoid using () renaming (Carrier to ∣_∣; _≈_ to [_][_≡_])
|
open Setoid using () renaming (Carrier to ∣_∣; _≈_ to [_][_≡_])
|
||||||
open eq using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans)
|
open eq using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans)
|
||||||
|
|
||||||
≡to≡ : ∀ {A : Setoid ℓ ℓ} {a b : ∣ A ∣} → a ≡ b → [ A ][ a ≡ b ]
|
|
||||||
≡to≡ {A} a≡b rewrite a≡b = ≡-refl A
|
|
||||||
|
|
||||||
conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''}
|
conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''}
|
||||||
{x : ∣ X ∣} {y : ∣ Y ∣} → [ X ⊎ₛ Y ][ inj₁ x ≡ inj₂ y ] → Z
|
{x : ∣ X ∣} {y : ∣ Y ∣} → [ X ⊎ₛ Y ][ inj₁ x ≡ inj₂ y ] → Z
|
||||||
conflict X Y ()
|
conflict X Y ()
|
||||||
|
@ -219,18 +216,16 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
||||||
out-cong {later x} {now y} x≡y = {! !}
|
out-cong {later x} {now y} x≡y = {! !}
|
||||||
out-cong {later x} {later y} x≡y = {! !}
|
out-cong {later x} {later y} x≡y = {! !}
|
||||||
|
|
||||||
lift'' : ∀ {A B : Set ℓ} → (∀ (C : Set ℓ) → (A ⊥ → B ⊎ A ⊥) → A ⊥ → B) → (A → B) → A ⊥ → B
|
|
||||||
lift'' {A} {B} [_]_# f = [ B ] (λ { (now x) → inj₁ (f x) ; (later x) → inj₂ (later (♯ {! !})) }) #
|
|
||||||
|
|
||||||
delay-lift : ∀ {A : Setoid ℓ ℓ} {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
|
delay-lift : ∀ {A : Setoid ℓ ℓ} {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
|
||||||
delay-lift {A} {B} f = record { h = (B Elgot-Algebra.#) helper ; preserves = {! !} }
|
delay-lift {A} {B} f = record { h = (B Elgot-Algebra.#) helper ; preserves = {! !} }
|
||||||
where
|
where
|
||||||
|
-- this definition of helper₁ corresponds to `(f + id) ∘ out`, but using the representation of _⊥ as a positive coinductive type
|
||||||
helper₁ : ∣ A ∣ ⊥ → ∣ ⟦ B ⟧ ∣ ⊎ ∣ A ∣ ⊥
|
helper₁ : ∣ A ∣ ⊥ → ∣ ⟦ B ⟧ ∣ ⊎ ∣ A ∣ ⊥
|
||||||
helper₁ (now x) = inj₁ (< f > x)
|
helper₁ (now x) = inj₁ (< f > x)
|
||||||
helper₁ (later x) = inj₂ (♭ x)
|
helper₁ (later x) = inj₂ (♭ x)
|
||||||
helper₁-cong : ∀ {x y : ∣ A ∣ ⊥} → [ A ][ x ≈ y ] → [ ⟦ B ⟧ ⊎ₛ A ⊥ₛ ][ helper₁ x ≡ helper₁ y ]
|
helper₁-cong : ∀ {x y : ∣ A ∣ ⊥} → [ A ][ x ≈ y ] → [ ⟦ B ⟧ ⊎ₛ A ⊥ₛ ][ helper₁ x ≡ helper₁ y ]
|
||||||
helper₁-cong {now x} {now y} x≈y = {! !} -- yes
|
helper₁-cong {now x} {now y} x≈y = {! !} -- yes
|
||||||
helper₁-cong {now x} {later y} x≈y = {! !}
|
helper₁-cong {now x} {later y} x≈y = {! !} -- problematic, need to show inj₁ (f x) ≈ inj₂ y, which is contradictory, while the assumption now x ≈ later y is not contradictory.
|
||||||
helper₁-cong {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = {! !}
|
helper₁-cong {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = {! !}
|
||||||
helper₁-cong {later x} {later y} (later≈ x≈y) = {! !} -- cong inj₂ₛ (♭ x≈y)
|
helper₁-cong {later x} {later y} (later≈ x≈y) = {! !} -- cong inj₂ₛ (♭ x≈y)
|
||||||
helper₁-cong {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = {! !} --cong inj₂ₛ (↓≈ a≡b x↓a y↓b)
|
helper₁-cong {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = {! !} --cong inj₂ₛ (↓≈ a≡b x↓a y↓b)
|
||||||
|
|
Loading…
Reference in a new issue