minor comments (+ fix makefile)

This commit is contained in:
Leon Vatthauer 2023-12-22 19:41:00 +01:00
parent f5ae9924eb
commit 4d24b1d0e5
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 3 additions and 8 deletions

View file

@ -27,7 +27,7 @@ push: all
Everything.agda:
echo "{-# OPTIONS --guardedness #-}" > src/Everything.agda
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda
git ls-files | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda
open:

View file

@ -34,9 +34,6 @@ module Monad.Instance.Setoids.K { : Level} where
open Setoid using () renaming (Carrier to _; _≈_ to [_][_≡_])
open eq using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans)
≡to≡ : ∀ {A : Setoid } {a b : A } → a ≡ b → [ A ][ a ≡ b ]
≡to≡ {A} a≡b rewrite a≡b = ≡-refl A
conflict : ∀ {''} (X Y : Setoid ) {Z : Set ''}
{x : X } {y : Y } → [ X ⊎ₛ Y ][ inj₁ x ≡ inj₂ y ] → Z
conflict X Y ()
@ -219,18 +216,16 @@ module Monad.Instance.Setoids.K { : Level} where
out-cong {later x} {now y} x≡y = {! !}
out-cong {later x} {later y} x≡y = {! !}
lift'' : ∀ {A B : Set } → (∀ (C : Set ) → (A ⊥ → B ⊎ A ⊥) → A ⊥ → B) → (A → B) → A ⊥ → B
lift'' {A} {B} [_]_# f = [ B ] (λ { (now x) → inj₁ (f x) ; (later x) → inj₂ (later (♯ {! !})) }) #
delay-lift : ∀ {A : Setoid } {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
delay-lift {A} {B} f = record { h = (B Elgot-Algebra.#) helper ; preserves = {! !} }
where
-- this definition of helper₁ corresponds to `(f + id) ∘ out`, but using the representation of _⊥ as a positive coinductive type
helper₁ : A ⊥ → ⟦ B ⟧ A
helper₁ (now x) = inj₁ (< f > x)
helper₁ (later x) = inj₂ (♭ x)
helper₁-cong : ∀ {x y : A ⊥} → [ A ][ x ≈ y ] → [ ⟦ B ⟧ ⊎ₛ A ⊥ₛ ][ helper₁ x ≡ helper₁ y ]
helper₁-cong {now x} {now y} x≈y = {! !} -- yes
helper₁-cong {now x} {later y} x≈y = {! !}
helper₁-cong {now x} {later y} x≈y = {! !} -- problematic, need to show inj₁ (f x) ≈ inj₂ y, which is contradictory, while the assumption now x ≈ later y is not contradictory.
helper₁-cong {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = {! !}
helper₁-cong {later x} {later y} (later≈ x≈y) = {! !} -- cong inj₂ₛ (♭ x≈y)
helper₁-cong {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = {! !} --cong inj₂ₛ (↓≈ a≡b x↓a y↓b)