Finished small proof

This commit is contained in:
Leon Vatthauer 2023-11-06 15:26:18 +01:00
parent 91ca1b5813
commit 5bdc57f064
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 36 additions and 11 deletions

View file

@ -200,4 +200,14 @@ module Category.Instance.AmbientCategory where
μ.η _ ∘ F.₁ (η.η _) ∘ F.₁ f ≈⟨ cancelˡ m-identityˡ ⟩
F.₁ f ∎
where open Monad M using (F; η; μ) renaming (identityˡ to m-identityˡ)
extend∘F₁ : ∀ (M : Monad C) {X Y Z} (f : Y ⇒ Monad.F.₀ M Z) (g : X ⇒ Y) → RMonad.extend (Monad⇒Kleisli C M) f ∘ Monad.F.₁ M g ≈ RMonad.extend (Monad⇒Kleisli C M) (f ∘ g)
extend∘F₁ M f g = begin
extend f ∘ F.₁ g ≈⟨ (refl⟩∘⟨ sym (F₁⇒extend M g)) ⟩
extend f ∘ extend (unit ∘ g) ≈⟨ k-sym-assoc ⟩
extend (extend f ∘ unit ∘ g) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
extend (f ∘ g) ∎
where
open Monad M using (F)
open RMonad (Monad⇒Kleisli C M) using (extend; unit; extend-≈) renaming (sym-assoc to k-sym-assoc; identityʳ to k-identityʳ)
```

View file

@ -45,7 +45,6 @@ Given a pointed object A (i.e. there exists a morphism !! : ⇒ A), (f : X
[_,_]#⟩ : ∀ {X A : Obj} → ( ⇒ A) → X ⇒ A + X → X × N ⇒ A
[_,_]#⟩ {X} {A} !! f = p-rec (!! ∘ !) ([ π₂ , π₁ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ f ∘ π₁))
-- TODO might be wrong, check it by testing kleene fixpoint ʳ
-- Notation
open kleisliK using (extend)
@ -91,15 +90,28 @@ Given a pointed object A (i.e. there exists a morphism !! : ⇒ A), (f : X
dom-⊑ : ∀ {X Y} (f : X ⇒ K.₀ Y) → (f ↓) ⊑ (η.η _)
dom-⊑ {X} {Y} f = begin
-- TODO try with RST laws
(f ↓) ≈⟨ refl ⟩
K.₁ π₁ ∘ τ _ ∘ ⟨ idC , f ⟩ ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
extend π₁ ∘ τ _ ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ {! !} ⟩ -- multiple steps
extend π₁ ∘ K.₁ (idC ⁂ π₁) ∘ τ _ ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ {! !} ⟩
extend π₁ ∘ τ _ ∘ (idC ⁂ K.₁ π₁) ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ {! !} ⟩
extend π₁ ∘ τ _ ∘ ⟨ η.η X , K.₁ π₁ ∘ τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ {! !} ⟩
K.₁ π₁ ∘ τ _ ∘ ⟨ idC , f ⟩ ≈⟨ (sym (F₁⇒extend monadK π₁)) ⟩∘⟨refl ⟩
extend (η.η X ∘ π₁) ∘ τ _ ∘ ⟨ idC , f ⟩ ≈˘⟨ (kleisliK.extend-≈ (pullˡ project₁)) ⟩∘⟨refl ⟩
extend (π₁ ∘ ⟨ η.η X , idC ⟩ ∘ π₁) ∘ τ _ ∘ ⟨ idC , f ⟩ ≈˘⟨ (kleisliK.extend-≈ (pullʳ π₁∘⁂)) ⟩∘⟨refl ⟩
extend ((π₁ ∘ π₁) ∘ (⟨ η.η X , idC ⟩ ⁂ idC)) ∘ τ _ ∘ ⟨ idC , f ⟩ ≈˘⟨ pullˡ (extend∘F₁ monadK (π₁ ∘ π₁) (⟨ η.η X , idC ⟩ ⁂ idC)) ⟩
extend (π₁ ∘ π₁) ∘ K.₁ ((⟨ η.η X , idC ⟩ ⁂ idC)) ∘ τ _ ∘ ⟨ idC , f ⟩ ≈˘⟨ pullʳ (pullˡ (τ-comm-id ⟨ η.η X , idC ⟩) ○ assoc) ⟩
(extend (π₁ ∘ π₁) ∘ τ _) ∘ (⟨ η.η X , idC ⟩ ⁂ idC) ∘ ⟨ idC , f ⟩ ≈⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityʳ identityˡ) ⟩
(extend (π₁ ∘ π₁) ∘ τ _) ∘ ⟨ ⟨ η.η X , idC ⟩ , f ⟩ ≈˘⟨ ((kleisliK.extend-≈ project₁) ⟩∘⟨refl) ⟩∘⟨refl ⟩
(extend (π₁ ∘ assocˡ) ∘ τ _) ∘ ⟨ ⟨ η.η X , idC ⟩ , f ⟩ ≈˘⟨ (kleisliK.extend-≈ (pullˡ kleisliK.identityʳ)) ⟩∘⟨refl ⟩∘⟨refl ⟩
(extend (extend π₁ ∘ η.η _ ∘ assocˡ) ∘ τ _) ∘ ⟨ ⟨ η.η X , idC ⟩ , f ⟩ ≈˘⟨ pullˡ (pullˡ kleisliK.sym-assoc) ⟩
extend π₁ ∘ (extend (η.η _ ∘ assocˡ) ∘ τ _) ∘ ⟨ ⟨ η.η X , idC ⟩ , f ⟩ ≈⟨ refl⟩∘⟨ ((F₁⇒extend monadK assocˡ ⟩∘⟨refl) ⟩∘⟨refl) ⟩
extend π₁ ∘ (K.₁ assocˡ ∘ τ _) ∘ ⟨ ⟨ η.η X , idC ⟩ , f ⟩ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (⟨⟩-cong₂ (elimʳ project₁) refl) refl ⟩
extend π₁ ∘ (K.₁ assocˡ ∘ τ _) ∘ ⟨ ⟨ η.η X ∘ π₁ ∘ ⟨ idC , f ⟩ , idC ⟩ , f ⟩ ≈˘⟨ refl⟩∘⟨ (sym-assoc ○ pullˡ (assoc ○ sym strongK.strength-assoc)) ⟩
extend π₁ ∘ τ _ ∘ (idC ⁂ τ _) ∘ assocˡ ∘ ⟨ ⟨ η.η X ∘ π₁ ∘ ⟨ idC , f ⟩ , idC ⟩ , f ⟩ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullʳ assocʳ∘⟨⟩ ⟩
extend π₁ ∘ τ _ ∘ (idC ⁂ τ _) ∘ (assocˡ ∘ assocʳ) ∘ ⟨ η.η X ∘ π₁ ∘ ⟨ idC , f ⟩ , ⟨ idC , f ⟩ ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ elimˡ assocˡ∘assocʳ ⟩
extend π₁ ∘ τ _ ∘ (idC ⁂ τ _) ∘ ⟨ η.η X ∘ π₁ ∘ ⟨ idC , f ⟩ , ⟨ idC , f ⟩ ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ (⟨⟩-cong₂ identityˡ refl)) ⟩
extend π₁ ∘ τ _ ∘ ⟨ η.η X ∘ π₁ ∘ ⟨ idC , f ⟩ , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (elimʳ project₁) refl ⟩
extend π₁ ∘ τ _ ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ (sym (kleisliK.extend-≈ (π₁∘⁂ ○ identityˡ))) ⟩∘⟨refl ⟩ -- multiple steps
extend (π₁ ∘ (idC ⁂ π₁)) ∘ τ _ ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈˘⟨ pullˡ (extend∘F₁ monadK π₁ (idC ⁂ π₁)) ⟩
extend π₁ ∘ K.₁ (idC ⁂ π₁) ∘ τ _ ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ refl⟩∘⟨ (pullˡ (sym (strengthen.commute (idC , π₁))) ○ assoc) ⟩
extend π₁ ∘ τ _ ∘ (idC ⁂ K.₁ π₁) ∘ ⟨ η.η X , τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityˡ refl) ⟩
extend π₁ ∘ τ _ ∘ ⟨ η.η X , K.₁ π₁ ∘ τ _ ∘ ⟨ idC , f ⟩ ⟩ ≈⟨ refl ⟩
((η.η X) ⇂ (f ↓)) ∎
-- some helper definitions to make our life easier
@ -108,7 +120,10 @@ Given a pointed object A (i.e. there exists a morphism !! : ⇒ A), (f : X
_♯ˡ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ˡ {Y = X} (stable X) {X = A} (algebras Y) f
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
kleene : ∀ {X Y} (f : X ⇒ K.₀ Y + X) (g : X ⇒ K.₀ Y) → ([ i₂ # , f ]#⟩) ⊑ (f # ∘ π₁) → ([ i₂ # , f ]#⟩) ⊑ (g ∘ π₁) → (f #) ⊑ g
kleene = {! !}
kleene₁ : ∀ {X Y} (f : X ⇒ K.₀ Y + X) → ([ i₂ # , f ]#⟩) ⊑ (f # ∘ π₁)
kleene₁ = {! !}
kleene₂ : ∀ {X Y} (f : X ⇒ K.₀ Y + X) (g : X ⇒ K.₀ Y) → ([ i₂ # , f ]#⟩) ⊑ (g ∘ π₁) → (f #) ⊑ g
kleene₂ = {! !}
```