Big refactor, tidying up some proofs, compiling sadly is still slow

This commit is contained in:
Leon 2023-08-08 13:13:27 +02:00
parent 597b03af8a
commit 609f75781e
Failed to generate hash of commit
2 changed files with 76 additions and 118 deletions

View file

@ -73,10 +73,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
#-Compositionality : {X Y} {f : X A + X} {h : Y X + Y}
(((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
#-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))
((f # +₁ h)# h) ≈˘⟨ inject₂
(([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl
(([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl
@ -89,7 +89,7 @@ module _ (D : ExtensiveDistributiveCategory o e) where
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ] i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]}
(begin
(begin
(idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁

View file

@ -1,24 +1,18 @@
open import Level renaming (suc to -suc)
open import Function using (_$_) renaming (id to idf; _∘_ to _∘ᶠ_)
open import Data.Product using (_,_) renaming (_×_ to _∧_)
open import Level
open import Categories.Category.Cocartesian
open import Categories.Category.Cocartesian.Bundle
open import Categories.Category.Cartesian
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Object.Terminal
open import Categories.Object.Product
open import Categories.Object.Exponential
open import Categories.Object.Coproduct
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Functor using (Functor) renaming (id to idF)
open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Product using (Product)
open import Categories.Object.Coproduct using (Coproduct)
open import Categories.Object.Exponential using (Exponential)
open import Categories.Category
open import ElgotAlgebra
open import Distributive.Bundle
open import Distributive.Core
open import Extensive.Bundle
open import Extensive.Core
open import Categories.Morphism
open import ElgotAlgebra using (Elgot-Algebra)
open import Extensive.Bundle using (ExtensiveDistributiveCategory)
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
module ElgotAlgebras where
@ -31,6 +25,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Cocartesian cocartesian
open Cartesian cartesian
open BinaryProducts products
open M C
open MR C
open HomReasoning
open Equiv
--*
-- let's define the category of elgot-algebras
@ -52,16 +50,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; _⇒_ = Elgot-Algebra-Morphism
; _≈_ = λ f g Elgot-Algebra-Morphism.h f Elgot-Algebra-Morphism.h g
; id = λ {EB} let open Elgot-Algebra EB in
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
idC f # ≈⟨ identityˡ
(f #) ≈⟨ sym $ #-resp-≈ identityˡ
((idC f) #) ≈⟨ sym (#-resp-≈ (∘-resp-≈ˡ +-η))
(([ i₁ , i₂ ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ ([]-cong₂ identityʳ identityʳ))
(([ i₁ idC , i₂ idC ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ []∘+₁)
((([ i₁ , i₂ ] (idC +₁ idC)) f)#) ≈⟨ #-resp-≈ assoc
(([ i₁ , i₂ ] (idC +₁ idC) f)#) ≈⟨ #-resp-≈ (∘-resp-≈ˡ +-η)
((idC (idC +₁ idC) f)#) ≈⟨ #-resp-≈ identityˡ
((idC +₁ idC) f) # }
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
idC f # ≈⟨ identityˡ
f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym))
((idC +₁ idC) f) # }
; _∘_ = λ {EA} {EB} {EC} f g let
open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
@ -69,12 +61,9 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin
(hᶠ hᵍ) (f #ᵃ) ≈⟨ assoc
(hᶠ hᵍ (f #ᵃ)) ≈⟨ ∘-resp-≈ʳ preservesᵍ
(hᶠ hᵍ) (f #ᵃ) ≈⟨ pullʳ preservesᵍ
(hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ sym-assoc
((((hᶠ +₁ idC) (hᵍ +₁ idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)
((((hᶠ hᵍ) +₁ (idC idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ refl (identity²)))
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²))))
((hᶠ hᵍ +₁ idC) f) #ᶜ }
; identityˡ = identityˡ
; identityʳ = identityʳ
@ -88,10 +77,7 @@ module _ (D : ExtensiveDistributiveCategory o e) where
}
; ∘-resp-≈ = ∘-resp-≈
}
where
open Elgot-Algebra-Morphism
open HomReasoning
open Equiv
where open Elgot-Algebra-Morphism
--*
-- products and exponentials of elgot-algebras
@ -115,7 +101,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
}
where
open Terminal T
open Equiv
-- if the carriers of the algebra form a product, so do the algebras
A×B-Helper : {EA EB : Elgot-Algebra D} Elgot-Algebra D
@ -124,88 +109,66 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ
; #-Fixpoint = λ {X} {f} begin
((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc
([ idC , ((π₁ +₁ idC) f)#ᵃ ] (π₁ +₁ idC)) f , ([ idC , ((π₂ +₁ idC) f)#ᵇ ] (π₂ +₁ idC)) f ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁)
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ⟨⟩∘
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique (begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₁ , ((π₁ +₁ idC) f)#ᵃ ] ≈⟨ sym ([]-cong₂ identityʳ project₁)
[ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ) (begin
π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ
[ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂)
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[]
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁)
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈˘⟨ ⟨⟩∘
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique
(begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁))
[ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈˘⟨ ∘[]
π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
(begin
π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂))
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈˘⟨ ∘[]
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
)
([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f)
; #-Uniformity = λ {X Y f g h} uni unique (begin
π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁
(((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity (begin
(idC +₁ h) (π₁ +₁ idC) f ≈⟨ sym-assoc
((idC +₁ h) (π₁ +₁ idC)) f ≈⟨ ∘-resp-≈ˡ +₁∘+₁
(idC π₁ +₁ h idC) f ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₁ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
(((π₁ idC +₁ idC h)) f) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₁ +₁ idC) (idC +₁ h)) f ≈⟨ assoc
(π₁ +₁ idC) ((idC +₁ h) f) ≈⟨ ∘-resp-≈ʳ uni
(π₁ +₁ idC) g h ≈⟨ sym-assoc
((π₁ +₁ idC) g) h
)
(((π₁ +₁ idC) g)#ᵃ h) ≈⟨ sym (∘-resp-≈ˡ project₁)
((π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
) (begin
π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂
((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity (begin
(idC +₁ h) (π₂ +₁ idC) f ≈⟨ sym-assoc
(((idC +₁ h) (π₂ +₁ idC)) f) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
((idC π₂ +₁ h idC) f) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((π₂ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
((((π₂ idC +₁ idC h)) f)) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₂ +₁ idC) ((idC +₁ h))) f ≈⟨ assoc
(π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ ∘-resp-≈ʳ uni
(π₂ +₁ idC) g h ≈⟨ sym-assoc
((π₂ +₁ idC) g) h
)
((π₂ +₁ idC) g)#ᵇ h ≈⟨ sym (∘-resp-≈ˡ project₂)
((π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
)
; #-Uniformity = λ {X Y f g h} uni unique
(begin
π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁
(((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
-- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
(idC +₁ h) (π₁ +₁ idC) f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))
(π₁ idC +₁ idC h) f ≈˘⟨ pullˡ +₁∘+₁
(π₁ +₁ idC) (idC +₁ h) f ≈⟨ pushʳ uni
((π₁ +₁ idC) g) h )
(((π₁ +₁ idC) g)#ᵃ h) ≈˘⟨ pullˡ project₁
π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h )
(begin
π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂
((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin
(idC +₁ h) (π₂ +₁ idC) f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))
((π₂ idC +₁ idC h) f) ≈˘⟨ pullˡ +₁∘+₁
(π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ pushʳ uni
((π₂ +₁ idC) g) h )
((π₂ +₁ idC) g)#ᵇ h ≈˘⟨ pullˡ project₂
π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h )
; #-Folding = λ {X} {Y} {f} {h} ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open HomReasoning
open Equiv
+₁-id-swap : {X Y C} {f : X (A × B) + X} {h : Y X + Y} (π : A × B C) [ (idC +₁ i₁) ((π +₁ idC) f) , i₂ h ] (π +₁ idC) [ (idC +₁ i₁) f , i₂ h ]
+₁-id-swap {X} {Y} {C} {f} {h} π = begin ([ (idC +₁ i₁) ((π +₁ idC) f) , i₂ h ] ) ≈⟨ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π +₁ idC)) f , i₂ h ] ) ≈⟨ []-cong₂ (∘-resp-≈ˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))) (∘-resp-≈ˡ (sym identityʳ))
(([ (π idC +₁ idC i₁) f , (i₂ idC) h ])) ≈˘⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂)
(([ (π +₁ idC) (idC +₁ i₁) f , (π +₁ idC) i₂ h ])) ≈˘⟨ ∘[]
((π +₁ idC) [ (idC +₁ i₁) f , i₂ h ])
foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ +₁∘+₁
((π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-cong₂ project₁ identityˡ)
((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₁ identityˡ))
((((π₁ +₁ idC) f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding
([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₁ +₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₁ +₁ i₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₁ +₁ i₁)) f , i₂ h ] #ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₁ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₁ +₁ idC) (idC +₁ i₁)) f , ((π₁ +₁ idC) i₂) h ])#ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₁ +₁ idC) (idC +₁ i₁) f , (π₁ +₁ idC) i₂ h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ∘[])
([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-id-swap π₁)
((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingʳ : {X} {Y} {f} {h} ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ +₁∘+₁
((π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵇ) ≈⟨ #ᵇ-resp-≈ (+₁-cong₂ project₂ identityˡ)
((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₂ identityˡ))
((((π₂ +₁ idC) f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding
[ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π₂ +₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₂ +₁ i₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₂ +₁ i₁)) f , i₂ h ] #ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₂ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₂ +₁ idC) (idC +₁ i₁)) f , ((π₂ +₁ idC) i₂) h ])#ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₂ +₁ idC) (idC +₁ i₁) f , (π₂ +₁ idC) i₂ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[])
[ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ (+₁-id-swap π₂)
((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product Elgot-Algebras EA EB
@ -220,9 +183,8 @@ module _ (D : ExtensiveDistributiveCategory o e) where
begin
f , g (h #ᵉ) ≈⟨ ⟨⟩∘
f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)))
(((π₁ +₁ idC) ( f , g +₁ idC)) h) #ᵃ , (((π₂ +₁ idC) ( f , g +₁ idC)) h) #ᵇ ≈⟨ (⟨⟩-cong₂ (#ᵃ-resp-≈ assoc) (#ᵇ-resp-≈ assoc))
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²)))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (pullˡ +₁∘+₁)) (#ᵇ-resp-≈ (pullˡ +₁∘+₁))
((π₁ +₁ idC) ( f , g +₁ idC) h) #ᵃ , ((π₂ +₁ idC) ( f , g +₁ idC) h) #ᵇ }
; project₁ = project₁
; project₂ = project₂
@ -232,8 +194,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ)
open HomReasoning
open Equiv
-- if the carrier is cartesian, so is the category of algebras
@ -242,8 +202,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
{ terminal = Terminal-Elgot-Algebras terminal
; products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB }
}
where
open Equiv
-- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : {EA : Elgot-Algebra D} {X : Obj} Exponential C X (Elgot-Algebra.A EA) Elgot-Algebra D