mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Work on initial pre-Elgot
This commit is contained in:
parent
08cf9b6f61
commit
60f60ce3bf
2 changed files with 64 additions and 7 deletions
|
@ -18,6 +18,7 @@ open import Categories.Category.Core
|
||||||
module Category.Construction.PreElgotMonads {o ℓ e} (ambient : Ambient o ℓ e) where
|
module Category.Construction.PreElgotMonads {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
open Ambient ambient
|
open Ambient ambient
|
||||||
open import Monad.ElgotMonad ambient
|
open import Monad.ElgotMonad ambient
|
||||||
|
open import Algebra.ElgotAlgebra ambient
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
open Equiv
|
open Equiv
|
||||||
open M C
|
open M C
|
||||||
|
@ -25,12 +26,14 @@ open MR C
|
||||||
|
|
||||||
module _ (P S : PreElgotMonad) where
|
module _ (P S : PreElgotMonad) where
|
||||||
private
|
private
|
||||||
open PreElgotMonad P using () renaming (T to TP)
|
open PreElgotMonad P using () renaming (T to TP; elgotalgebras to P-elgots)
|
||||||
open PreElgotMonad S using () renaming (T to TS)
|
open PreElgotMonad S using () renaming (T to TS; elgotalgebras to S-elgots)
|
||||||
module TP = Monad TP
|
module TP = Monad TP
|
||||||
module TS = Monad TS
|
module TS = Monad TS
|
||||||
open RMonad (Monad⇒Kleisli C TP) using () renaming (extend to extendP)
|
open RMonad (Monad⇒Kleisli C TP) using () renaming (extend to extendP)
|
||||||
open RMonad (Monad⇒Kleisli C TS) using () renaming (extend to extendS)
|
open RMonad (Monad⇒Kleisli C TS) using () renaming (extend to extendS)
|
||||||
|
_#P = λ {X} {A} f → P-elgots._# {X} {A} f
|
||||||
|
_#S = λ {X} {A} f → S-elgots._# {X} {A} f
|
||||||
record PreElgotMonad-Morphism : Set (o ⊔ ℓ ⊔ e) where
|
record PreElgotMonad-Morphism : Set (o ⊔ ℓ ⊔ e) where
|
||||||
field
|
field
|
||||||
α : NaturalTransformation TP.F TS.F
|
α : NaturalTransformation TP.F TS.F
|
||||||
|
@ -40,6 +43,7 @@ module _ (P S : PreElgotMonad) where
|
||||||
→ α.η X ∘ TP.η.η X ≈ TS.η.η X
|
→ α.η X ∘ TP.η.η X ≈ TS.η.η X
|
||||||
α-μ : ∀ {X}
|
α-μ : ∀ {X}
|
||||||
→ α.η X ∘ TP.μ.η X ≈ TS.μ.η X ∘ TS.F.₁ (α.η X) ∘ α.η (TP.F.₀ X)
|
→ α.η X ∘ TP.μ.η X ≈ TS.μ.η X ∘ TS.F.₁ (α.η X) ∘ α.η (TP.F.₀ X)
|
||||||
|
preserves : ∀ {X A} (f : X ⇒ TP.F.₀ A + X) → α.η A ∘ f #P ≈ ((α.η A +₁ idC) ∘ f) #S
|
||||||
|
|
||||||
PreElgotMonads : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
|
PreElgotMonads : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
|
||||||
PreElgotMonads = record
|
PreElgotMonads = record
|
||||||
|
@ -57,6 +61,7 @@ PreElgotMonads = record
|
||||||
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h g≈i
|
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h g≈i
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
|
open Elgot-Algebra-on using (#-resp-≈)
|
||||||
id' : ∀ {A : PreElgotMonad} → PreElgotMonad-Morphism A A
|
id' : ∀ {A : PreElgotMonad} → PreElgotMonad-Morphism A A
|
||||||
id' {A} = record
|
id' {A} = record
|
||||||
{ α = ntHelper (record
|
{ α = ntHelper (record
|
||||||
|
@ -68,10 +73,16 @@ PreElgotMonads = record
|
||||||
T.μ.η _ ∘ T.F.₁ idC ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
T.μ.η _ ∘ T.F.₁ idC ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||||
T.μ.η _ ∘ T.F.₁ idC ≈⟨ elimʳ T.F.identity ⟩
|
T.μ.η _ ∘ T.F.₁ idC ≈⟨ elimʳ T.F.identity ⟩
|
||||||
T.μ.η _ ≈⟨ sym identityˡ ⟩
|
T.μ.η _ ≈⟨ sym identityˡ ⟩
|
||||||
idC ∘ T.μ.η _ ∎) }
|
idC ∘ T.μ.η _ ∎)
|
||||||
|
; preserves = λ f → begin
|
||||||
|
idC ∘ f # ≈⟨ identityˡ ⟩
|
||||||
|
f # ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) ⟩
|
||||||
|
((idC +₁ idC) ∘ f) # ∎
|
||||||
|
}
|
||||||
where
|
where
|
||||||
open PreElgotMonad A using (T)
|
open PreElgotMonad A using (T; elgotalgebras)
|
||||||
module T = Monad T
|
module T = Monad T
|
||||||
|
_# = λ {X} {A} f → elgotalgebras._# {X} {A} f
|
||||||
_∘'_ : ∀ {X Y Z : PreElgotMonad} → PreElgotMonad-Morphism Y Z → PreElgotMonad-Morphism X Y → PreElgotMonad-Morphism X Z
|
_∘'_ : ∀ {X Y Z : PreElgotMonad} → PreElgotMonad-Morphism Y Z → PreElgotMonad-Morphism X Y → PreElgotMonad-Morphism X Z
|
||||||
_∘'_ {X} {Y} {Z} f g = record
|
_∘'_ {X} {Y} {Z} f g = record
|
||||||
{ α = αf ∘ᵥ αg
|
{ α = αf ∘ᵥ αg
|
||||||
|
@ -80,19 +91,27 @@ PreElgotMonads = record
|
||||||
αf.η A ∘ TY.η.η A ≈⟨ α-η f ⟩
|
αf.η A ∘ TY.η.η A ≈⟨ α-η f ⟩
|
||||||
TZ.η.η A ∎
|
TZ.η.η A ∎
|
||||||
; α-μ = λ {A} → begin
|
; α-μ = λ {A} → begin
|
||||||
(αf.η A ∘ αg.η A) ∘ TX.μ.η A ≈⟨ pullʳ (α-μ g) ⟩
|
(αf.η A ∘ αg.η A) ∘ TX.μ.η A ≈⟨ pullʳ (α-μ g) ⟩
|
||||||
αf.η A ∘ TY.μ.η A ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ pullˡ (α-μ f) ⟩
|
αf.η A ∘ TY.μ.η A ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ pullˡ (α-μ f) ⟩
|
||||||
(TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ αf.η (TY.F.₀ A)) ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ assoc ○ refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) ⟩
|
(TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ αf.η (TY.F.₀ A)) ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ assoc ○ refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) ⟩
|
||||||
TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ (TZ.F.₁ (αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism TZ.F))) ⟩
|
TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ (TZ.F.₁ (αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism TZ.F))) ⟩
|
||||||
TZ.μ.η A ∘ (TZ.F.₁ (αf.η A ∘ αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ assoc ⟩
|
TZ.μ.η A ∘ (TZ.F.₁ (αf.η A ∘ αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ assoc ⟩
|
||||||
TZ.μ.η A ∘ TZ.F.₁ ((αf.η A ∘ αg.η A)) ∘ αf.η (TX.F.₀ A) ∘ αg.η (TX.F.₀ A) ∎
|
TZ.μ.η A ∘ TZ.F.₁ ((αf.η A ∘ αg.η A)) ∘ αf.η (TX.F.₀ A) ∘ αg.η (TX.F.₀ A) ∎
|
||||||
|
; preserves = λ {A} {B} h → begin
|
||||||
|
(αf.η B ∘ αg.η B) ∘ (h #X) ≈⟨ pullʳ (preserves g h) ⟩
|
||||||
|
αf.η B ∘ ((αg.η B +₁ idC) ∘ h) #Y ≈⟨ preserves f ((αg.η B +₁ idC) ∘ h) ⟩
|
||||||
|
(((αf.η B +₁ idC) ∘ (αg.η B +₁ idC) ∘ h) #Z) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
(((αf.η B ∘ αg.η B +₁ idC) ∘ h) #Z) ∎
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
module TX = Monad (PreElgotMonad.T X)
|
module TX = Monad (PreElgotMonad.T X)
|
||||||
module TY = Monad (PreElgotMonad.T Y)
|
module TY = Monad (PreElgotMonad.T Y)
|
||||||
module TZ = Monad (PreElgotMonad.T Z)
|
module TZ = Monad (PreElgotMonad.T Z)
|
||||||
|
_#X = λ {A} {B} f → PreElgotMonad.elgotalgebras._# X {A} {B} f
|
||||||
|
_#Y = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Y {A} {B} f
|
||||||
|
_#Z = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Z {A} {B} f
|
||||||
|
|
||||||
open PreElgotMonad-Morphism using (α-η; α-μ)
|
open PreElgotMonad-Morphism using (α-η; α-μ; preserves)
|
||||||
|
|
||||||
open PreElgotMonad-Morphism f using () renaming (α to αf)
|
open PreElgotMonad-Morphism f using () renaming (α to αf)
|
||||||
open PreElgotMonad-Morphism g using () renaming (α to αg)
|
open PreElgotMonad-Morphism g using () renaming (α to αg)
|
||||||
|
|
|
@ -2,6 +2,11 @@
|
||||||
```agda
|
```agda
|
||||||
open import Level
|
open import Level
|
||||||
open import Category.Instance.AmbientCategory
|
open import Category.Instance.AmbientCategory
|
||||||
|
open import Categories.FreeObjects.Free
|
||||||
|
open import Categories.Object.Initial
|
||||||
|
open import Categories.NaturalTransformation
|
||||||
|
open import Categories.NaturalTransformation.Equivalence
|
||||||
|
open import Categories.Monad
|
||||||
import Monad.Instance.K as MIK
|
import Monad.Instance.K as MIK
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
@ -17,7 +22,8 @@ open import Monad.ElgotMonad ambient
|
||||||
open import Monad.Instance.K ambient
|
open import Monad.Instance.K ambient
|
||||||
open import Monad.Instance.K.Compositionality ambient MK
|
open import Monad.Instance.K.Compositionality ambient MK
|
||||||
open import Monad.Instance.K.Commutative ambient MK
|
open import Monad.Instance.K.Commutative ambient MK
|
||||||
open import Categories.FreeObjects.Free
|
open import Category.Construction.PreElgotMonads ambient
|
||||||
|
open import Category.Construction.ElgotAlgebras ambient
|
||||||
|
|
||||||
open Equiv
|
open Equiv
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
|
@ -43,4 +49,36 @@ preElgot : PreElgotMonad
|
||||||
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
|
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
|
||||||
|
|
||||||
-- initialPreElgot :
|
-- initialPreElgot :
|
||||||
|
initialPreElgot : IsInitial PreElgotMonads preElgot
|
||||||
|
initialPreElgot = record
|
||||||
|
{ ! = !′
|
||||||
|
; !-unique = !-unique′
|
||||||
|
}
|
||||||
|
where
|
||||||
|
!′ : ∀ {A : PreElgotMonad} → PreElgotMonad-Morphism preElgot A
|
||||||
|
!′ {A} = record
|
||||||
|
{ α = ntHelper (record
|
||||||
|
{ η = η'
|
||||||
|
; commute = {!!}
|
||||||
|
})
|
||||||
|
; α-η = {!!}
|
||||||
|
; α-μ = {!!}
|
||||||
|
}
|
||||||
|
where
|
||||||
|
open PreElgotMonad A using (T)
|
||||||
|
module T = Monad T
|
||||||
|
open PreElgotMonad preElgot using ()
|
||||||
|
η' : ∀ (X : Obj) → K.₀ X ⇒ T.F.₀ X
|
||||||
|
η' X = Elgot-Algebra-Morphism.h (_* {A = record { A = T.F.F₀ X ; algebra = PreElgotMonad.elgotalgebras A }} (T.η.η X))
|
||||||
|
where open FreeObject (freeElgot X)
|
||||||
|
!-unique′ : ∀ {A : PreElgotMonad} (f : PreElgotMonad-Morphism preElgot A) → PreElgotMonad-Morphism.α !′ ≃ PreElgotMonad-Morphism.α f
|
||||||
|
!-unique′ {A} f {X} = sym (*-uniq (T.η.η X) (record
|
||||||
|
{ h = α.η X
|
||||||
|
; preserves = preserves _
|
||||||
|
}) α-η)
|
||||||
|
where
|
||||||
|
open PreElgotMonad-Morphism f using (α; α-η; preserves)
|
||||||
|
open PreElgotMonad A using (T)
|
||||||
|
module T = Monad T
|
||||||
|
open FreeObject (freeElgot X)
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in a new issue